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Abstract—In this paper we improve the computer
algorithm of Zhou and Winkler for computing relative
Groebner bases which used in Computer aided design and
Robotics, etc. We introduce the concept of difference
differential degree compatibility on generalized term orders.
Then we prove that in the process of the algorithm the
polynomials with higher and higher degree wouldn't be
produced, if the term orders are difference differential
degree compatibility. We present a condition on the
generalized orders and prove that under the condition the
algorithm for computing relative Groebner bases will
terminate. And then the relative Groebner bases exist under
the condition. Due to the algorithm is used as the main tool
for algorithmic computation of many engineering and
technique problems, we conclude that our result improve the
algorithm and guarantee the algorithm effective works in
solving verious problems of science and technology.

Keywords- Computer aided design; relative Groebner basis;
difference differential module; dimension polynomials;
termination of algorithm.

I. INTRODUCTION

Commutative Groebner basis theory and its computer
algorithm software are well known and have found
numerous applications both inside mathematics as well as
in science and technology. They are widely used in solving
equations, cryptosystems and cryptoanalysis, Geometric
modeling, proving theorems in geometries, computer aided
design, robotics, and other engineering technique fields.
For non-commutative case, the theory of Groebner bases in
free modules over various rings of differential operators or
difference-differential operators has been developed. See
[1-8]. Relative Groebner bases were introduced by Zhou
and Winkler[9] in order to compute bivariate dimension
polynomials in difference-differential modules. The
algorithm for computing relative Groebner bases and
bivariate dimension polynomials also were presented in [9].
Christian Donch [10] made Maple software of the
algorithm. By now it is used as the main tool for the
algorithmic computation of dimension polynomials in
difference differential modules.

Recently Christian Donch[10] presented an example
where the algorithm provided by Zhou and Winkler[9]does
not terminate. From the counterexample Donch pointed
out that it is questionable whether a relative Grobner basis
always exists.

In this paper we improve the results of Zhou and
Winkler[8] about relative Groebner bases. We introduce
the concept of difference-differential degree compatibility
on generalized term orders. Then we prove that in the
process of the algorithm the polynomials with higher and
higher degree wouldn't be produced, if the two term orders
are difference-differential degree compatibility. So we
present a condition on the generalized orders and prove
that under the condition the algorithm for computing
relative Groebner bases will terminate. Also the relative
Groebner bases exist under the condition. Finally we prove
the algorithm for computation of the bivariate dimension
polynomials in difference-differential modules.

II. DEGREE COMPATIBILITY

In this paper Z, N, Z- and Q will denote the sets of all
integers, all nonnegative integers, all non-positive integers,
and all rational numbers, respectively. By a ring we always
mean an associative ring with a unit. By the module over a
ring A we mean a unitary left A-module. Let R be a field
with character 0, },,{ 1 m  a set of derivations

and },,{ 1 n  a set of automorphisms of the ring

R, will denote the commutative semigroup of terms, i.e.
elements of the form

nm l
n

lk
m

k   11
11 …………….(2.1)

where m
m Nkk ),,( 1 and n

n Zll ),,( 1 .

Let D = }{ Raa 





 ……………….(2.2)

There are only finitely many coefficients a in (2.2)
are different from zero. D is called the ring of difference
differential operators over R.

Let F be a finitely generated free D-module (we call it
a finitely generated free difference-differential module)
with a set of free generators E={ qee ,,1 }. Zhou and
Winkler[8] introduced the notion of relative Groebner
bases and the algorithm for computation of a relative
Groebner bases in difference-differential module F.

THEOREM 2.1. ( [9]) Let F be a free D-module, “ ”
and “  ” be two generalized term orders on F, G be a
finite subset of F \ {0} and W be the submodule in F
generated by G. Then G is a  -Groebner basis of W
relative to  if and only if G is a Grobner basis with
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respect to of W and for all j , for all Ggg ki , ,

for all ),,( ki ggjVv , the S-polynomials

),,,( vggjS ki with respect to  can be  -reduced

to 0 modulo G relative to  .
Christian Donch[11] gave a counterexample pointing

out that the algorithm does not terminate in some cases. He
pointed out that in the process of the algorithm some
polynomials with higher and higher degree will be
produced, and then the algorithm will not terminate. This
motivates us to give the concept of degree compatibility.

DEFINITION 2.1. Let F be a free D-module, “ ” and
“  ” be two generalized term orders on F, for

j
l
n

lk
m

k et nm   11
11 denote 




m

j
jkt

1
deg 

,





n

j
jlt

1
deg 

, we call term orders “  ” and “  ”

are of difference-differential degree compatibility, if
(i) 21 tt  when 1deg t < 2deg t , or

1deg t = 2deg t and 1deg t < 2deg t , for

any 21,tt ;

(ii) 21 tt  when 1deg t < 2deg t , or

1deg t = 2deg t and 1deg t < 2deg t , for

any 21,tt ;

(iii) 21 tt   21 tt  when 1deg t = 2deg t
and 1deg t = 2deg t , for any 21,tt .

Form the algorithm described in Theorem 2.1, let G be
a  -Groebner basis of W, if there exist Ggf , and

),,( gfjVv such that ),,,( vgfjS is  -reduced

to 01 r by G relative to  , we put

}{ 11 rGG  , and so on will get a sequence

,2,1, iGi . Then the algorithm in Theorem 2.1 for

computing a  -Groebner basis relative to  of W will
terminate if the sequence ,2,1, iGi , is a finite

sequence, i.e., there exist kN such that kk GG 1 for
all iN.

THEOREM 2.2. Let F be a free D-module, “  ” and
“  ” be two generalized term order on F,

FrrggG ipi  },,,,,{ 11  \{0}, ,2,1i , such

that 1ir is  -reduced modulo iG relative to  .

Denote )(hlt as hu and )(hlt as hv for Fh .

If thr uu
i


1
for any t  , h iG , then sequence iG is

a finite sequence.
PROOF. Since 1ir is  -reduced modulo iG

relative to  and thr uu
i


1
for any t  , h iG , it

follows that 1ir is  -reduced modulo iG in usual

meaning. Then the sequence iG is just the produced

sequence from the algorithm for computing  -Groebner
bases of W= pgg ,,1 (see [7], Theorem 3.3).

Therefore the sequence iG is a finite sequence.
THEOREM 2.3. Let F be the free D-module and let U

be an infinite sequence of terms from the set E . Then
there exists an index j (1  j  q) and an infinite
subsequence  jkjj eueueu ,,, 21 of the sequence U,
such that any two elements of the sequence are in the same
orthant of  ,and for all ,2,1i , iii uu 1 for some

i which is in the same orthant of  as iu .
PROOF. The statement is just Lemma 4.1 in [6]. The

proof can be found in ([12 ],Chap.0,section 17).
THEOREM 2.4. Let F be a free D-module,  be a

generalized term order on F. If v= )(hlt and )( hlt  

is in the same orthant of  as v, where h  F and
 , then )( hlt   )= v .

PROOF. By [9] Lemma 3.3, for each j there exists
some  and a term ju of h such that

)( hlt  = Eu jj  , Furthermore, the term ju of h is

unique: if )( 1hlt  = Eu jj 
11 and

)( 2hlt  = Eu jj 
22 then

21 jj uu  . The term ju
is called j-th leading term of h and denoted by )(hlt j . The

coefficient of ju is denoted by )(hlc j .

Now suppose v= )(hlt Ej , then for j1
we have )( 1hlt  = Ev j1 (because in the same

orthant,  is a usual term order). So for any  , if
)( hlt   = Eu jj  for a term ju of h, then ju =v.

THEOREM 2.5. vdeg deg + vdeg for

 , v E . If  and v are in the same orthant,
then vdeg deg + vdeg .

PROOF. Since 



n

j
jlv

1
deg 

for

j
l
n

lk
m

k ev nm   11
11 , it is clear that




n

j
jj ll

1



n

j
jl

1

+ 



n

j
jl

1

for


 nm l

n
lk

m
k   11

11 . If  and v are in the

same orthant then 


n

j
jj ll

1



n

j
jl

1
+




n

j
jl

1
.

III. TERMINATION OF THE ALGORITHM FOR COMPUTING
RELATIVE GROEBNER BASES

THEOREM 3.1. Let F be a free D-module, “  ” and
“  ” be two generalized term order on F. If the term
orders “ ” and “ ” are of difference-differential degree
compatibility, then the algorithm for computing a
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 -Groebner basis relative to  of W will terminate.
And then there exist the relative Groebner bases.

PROOF. Let G={ pgg ,,1 } be a finite subset of F\
{0} and W be the submodule in F generated by G. We may
suppose that G is a  -Groebner basis of W, and by the
algorithm for computing a  -Groebner basis relative to
 of W we get a series },,,,,{ 11 ipi rrggG  ,

,2,1i , such that 1ir is  -reduced modulo iG
relative to  .

Denote )(hlt as hu and )(hlt as hv for

Fh . Then it follows from [9] Theorem 2.1 that
(a) thr uu

i


1
for any t  , h iG ; or

(b) thr uu
i


1
, thr vv

i


1
and thr vv

i


1
for

some t  , h iG .
If the algorithm doesn't terminate, then the sequence

},,,,,{ 11 ipi rrggG  , ,2,1i , will be an

infinite sequence. Because there are finitely many ir
satisfy (a) ( see THEOREM 2.2), we may suppose that
there are infinitely many { ir , ,2,1i } and kN such
that when i>k the following condition holds:

ir
u =

ji rt
u ,

jii rtr vv  and
jii rtr vv  for some

it  , j<i.

Note that if
ji rr uu  , then

ji rr vv  . So there exists

an infinite subsequence U = { ku ,2,1k } of {
ir
u }

and it does not contain two equal elements. Indeed, if this
is not true, then there is an infinite subsequence U'=
{ ,2,1 lul } of {

ir
u } such that all elements of U'

are equal. It follows that V'={ ,2,1 lvl } is an

infinite strictly descending sequence with respect to  ,
i.e.   21 vv , Since  is a generalized term order
on F, this is impossible.

Now the set U is infinite and it does not contain two
equal elements. By THEOREM 2.3, there is an infinite
sequence { 

21
, hh uu } of elements of U which does not

contain two equal elements, such that any two elements of
the sequence are in the same orthant of  , and for all

,2,1i ,
ii hih uu 

1
for some i which is in

the same orthant of  as
ih

u (and
1ih

u ).

From that
iii hh vv 

1
,

iii hh vv 
1

, and the term

orders “  ” and “  ” are difference-differential degree
compatibility, we have

1
deg

ih
v <

iih
vdeg , or

1
deg

ih
v <

iih
vdeg , or

1
deg

ih
v =

iih
vdeg and

1
deg

ih
v =

iih
vdeg for some i which is in the

same orthant of as
ih

u (and
1ih

u ).

Now we may suppose that all
ih
v , ,2,1i , are in

a same orthant of  , this is because there are only
finitely many orthant in  , so there exist an infinite
subsequence of

ih
v , ,2,1i such that all elements are

in a same orthant of  . Then by THEOREM 2.4,
)( iihlt  = )( ii hlt , i.e.

iih
v =

ihi
v . It follows that

1
deg

ih
v <

ihi
vdeg (3.1)

or
1

deg
ih

v <
ihi
vdeg (3.2)

or
1

deg
ih

v =
ihi
vdeg ,

1
deg

ih
v =

ihi
vdeg (3.3)

for some i which is in the same orthant of  as

ih
u (and

1ih
u ). Still, we may suppose that all

ih
v ,

,2,1i satisfy (3.1)(or all
ih
v , ,2,1i satisfy (3.2),

or all
ih
v , ,2,1i satisfy (3.3)).

If all
ih
v , ,2,1i satisfy (3.1), let ih ku

i
deg

and ih lv
i
deg , then 1il < ii ldeg (THEOREM

2.5) and then ii ll 1 < ideg . Note that
ii hih uu 

1

implies that
1

deg
ih

u =
ihi u  degdeg 

( THEOREM 2.5) and then 1ik = ii kdeg ,

therefore ii kk 1 = ideg .

So we get ii ll 1 < ii kk 1 for all ,2,1i .

This means that 11   ii kl < ii kl  for all ,2,1i .

Since il =
ih
vdeg ,

ihi uk deg and
ih

u 
ih
v so

ii kl   0 by the definition of difference-differential

degree compatibility in “ ” and “ ”. Therefore we get
a infinite nonnegative integer series

ii kl  > 11   ii kl > 22   ii kl >……, a contradiction.

If all
ih
v , ,2,1i satisfy (3.2), then by the

symmetry of “  ” and “  ” for relative Groebner bases
(see[9]) and the symmetry of difference-differential degree
compatibility (DEFINITION 2.1), it is obvious that a
contradiction will be reduced as in the case (3.1). If all

ih
v , ,2,1i satisfy (3.3), then by the definition of
difference-differential degree compatibility, the  leading
term and the leading term of ih will be the same one.
This contradict to the definition of sequence
{ ih , ,2,1i }. Then the proof of the theorem is
completed.

IV. CONCLUSIONS

From THEOREM 3.1 we can conclude that if the term
orders “  ” and “  ” are difference-differential degree
compatibility, then the algorithm for computing a relative
Groebner basis can be implemented in finite steps by
computer.

THEOREM 4.1. Let F be a free D-module, “  ” and
“  ” be two generalized term order on F, which are of
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difference-differential degree compatibility, G be a finite
subset of F\ {0} and W be the submodule in F generated
by G. For each j and f, g F\{0} let V(j, f, g) , S(j, f,

g, v) and S'(j, f, g, v) be as in [9] w.r.t.  and  ,
respectively. Then the following algorithm for computing
a  -Groebner basis of W relative to  will be
completed in finite steps:
Input: G={ gg ,,1 }, a set of generators of W

 and  , two generalized term order on F
Output: },,{ 1 ggG   , a  -Groebner basis of W

relative to
Begin

G G: ;
While there exist f, gG' and vV(j, f, g) such that

S'(j, f, g, v) is reduced (w.r.t.  ) to r 0 by G'
Do G' :=G' {r}

Endwhile;
G'' :=G';
While there exist f, gG'' and vV(j, f, g) such that

S(j, f, g, v) is  -reduced to r 0 by G'' relative
to 

Do G'' :=G'' {r}
Endwhile

End
PROOF. In the theorem, the algorithm for computing a
relative Groebner basis can be divided into two parts. The
first part deals with S'(j, f, g, v) w.r.t.  and determines
a Groebner basis G' w.r.t.  . Then, the second part
deals with S(j, f, g, v) w.r.t.  and relative to  ,
which determines a  -Groebner basis relative to  .
It is known that the first part for a Groebner basis G' w.r.t.
 will be completed in finite steps [7]. By THEOREM
3.1, if G' is a  -Groebner basis , “ ” and “ ” are of
difference-differential degree compatibility, then the
sequence },,,,,{ 11 ipi rrggG  , ,2,1i , will
not be an infinite sequence, and then the second part will
be completed in finite steps.

Then we get the following conclusions.
(1) If the term orders “  ” and “  ” satisfy the

condition of difference-differential degree
compatibility, then the algorithm for computing
relative Groebner bases will be completed in finite
steps.

(2) If the term orders “  ” and “  ” satisfy the
condition of difference-differential degree

compatibility, then the  -Groebner bases relative
to  exist.

(3) The algorithm in [9] for computation of the
bivariate dimension polynomials in difference
differential modules can be implemented in finite
steps by computer, and the Maple software in [10]
can be implemented in finite time.
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