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Abstract—The way-below relation defined on dcpos is a 

important concept, it is the basis for the continuity of dcpos. 

And a poset is also a category, so we want to generalize the 

concept of way-below to category and further define 

continous category. In this paper, we give the way-below 

relation on arbitrary small categories and even a topos and 

introduce the concept of continuous category and obtain 

some correspontive characterizations by mean of the 

diagram proof. This also shows diagram method can be used 

to reconstruct the classical order theory in an arbitrary 

elementary topos. 
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I. INTRODUCTION  

We know that the way-below relation defined on dcpos 
is the basis for the definition of continuous dcpos as in [1] 
and thus the most important concept for Domain theoty 
and continuous lattice theory. From categorical view, a 
poset is a small, thin, skeletal category, a topos is a 
category which has finite limits and every object of  has a 
power object. For a fixed object   of category , the power 
object of   is an object    which represents           , 
so that                     naturally. It means that for 

any arrow   
 
→  , the following diagram commutes, 

where   is the natural isomorphism. 
 

 
Figure 1 

Mac Lane and Moerdijk, in their thorough introduction 
to topos theory, start their Prologue by saying –A startling 
aspect of topos theory is that it unifies two seemingly 
wholly distinct mathematical subjects: on the one hand, 
topology and algebraic geometry, and on the other hand, 
logic and set theory. Indeed, a topos can be considered 

both as a “generalized space” and as a “ generalized 

universe of sets”. This dual nature of topos theory is of 
great importance, and one can quite reasonably understand 

Grothendieck’s name “topos” as meaning “that of which 

topology is the study”. Mac Lane and Moerdijk are 
unquestionably masters of the spatial nature of toposes. 

So how to define a suitable way-below ralation on 
arbitrary small category and further more define the 
concept of continuous category in a topos is interesting. 

Let us review some definitons. 
A locale to be a “propositional geometric theory 

pretending to be a space” which took the logical theory as 
the starting point. That is to say, the locale is the theory, 
but repackaged in a spatial language of points and maps 
instead of models and Lindenbaum algebra 
homomorphisms. What makes this repackaging significant 
is the fact that geometric logic is incomplete –in general, 
there are not enough standard models to account for all the 

frame homomorphisms (cf. Proposition 1.4). Thus the 
spatial side (in terms of standard models) and the logical 
side (in terms of Lindenbaum algebras) become 
mathematically inequivalent. However, the logical side 
still contains good topological results; indeed, in 
constructive mathematics they are often better than the 
spatial ones. The localic repackaging makes it much easier 
to see this topological content. The usual definition is that 
a locale is a frame. We prefer to say it is the propositional 
geometric theory, and that it has a frame. This makes it 
easier to see locales as a special case of toposes, which 
arise from predicate geometric theories. In addition, in 
certain foundational schools such as predicative type 
theory, the frames are problematic. They are constructed 
using the powerset, and that is impredicative. The locale 
has the following properties: 

And a locle is a propositional geometric theory. If the 
theory is  , we write     for the locale. The locale     
should be conceptualized as “the space of models of T ”. 

 If   is a locale, then     denotes its Lindenbaum 
algebra, a frame. 

The opens of   are the elements of   . 
If   and   are locales, then a map      →    is a 

frame homomorphism.        →      . Locales and maps 
form a category Loc, dual to the category Frm of frames 

 As a matter of fact, the category of sheaves of sets on 
a topological space is a topos. In particular, the category of 
sets is a topos. For details of the treatment of toposes and 
sheaves please see [2], [3], [4], [5]. For a general 
background on category theory please refers to [6], 
[7],[8],[9],[10],[11]. 
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  CONTINUOUSII. WAY-BELOW RELATION ON  

CATEGORIES 

Throughout this paper, all categories are small 

category, morphisms in small category   is denoted by →. 

For      , denote            →   . 
Definition 2.1. Let   be a small category,    →   be a   

diagram.   is called a filtered diagram provided for every 

         , there exists       and     →     ,  
    →       

 
Figure 2 

 

A directed diagram is defined dually. i.e.,for 

every         , there exists       and      →     ,  
     →     . 

 
Figure 3 

 

Definition 2.2.Let    →   be a   diagram.      . 

(1). If there exists a cocone over D, i.e., 

the following triangle commutes for any         

 
Figure 4 

 

then a is called a upper bound of  . 

(2).   is called least upper bound of  , provided that 

the cocone {       →        } is universal, i.e., for 

any cocone 

 
Figure 5 

 

there exists an unique morphism  →   such that the 

following diagram commutes for any      . 

 
Figure 6 

 

We denote   by    or       . In particular, if   is a 

full subcategory of   then   is denoted by    or       . 

Definition 2.3.Let   be a small category,   is called 

directed complete provided that each directed diagram  

   →   has least upper bound. 

Definition 2.4.Let   be directed complete category. 

       , we say   is way below  , in symbols,     

iff for each directed diagram    →  , if there exists 

 →       , then we have        with  →   . 

 
Figure 7 

Proposition 2.1. Let   be a cocomplete category, i.e.,   

has all colimits, the following statements hold for 

            

(1).     implies  →    
(2).  →    →   implies  →    
(3).     and     together imply      , 

where     is the coproduct of   and  . 

(4).    . 

Proof. 

(1). Take      , then  →  is obvious. 

(2). From the following diagram, (2) can be obtained 

easily. 

 
Figure 8 

 

(3). Suppose there exists  →         for directed 

diagram  , so there exists   →          →       , , 

such that  →     →   , since     and    . By the 

universal property of colimit, then    →      →

      . Thus      . 

(4). 0 is initial object, so the result is obvious. 

We write                      
          
Definition 2.5. Let   be a directed complete category.   is 

called a continuous category if         is a directed 

diagram and            for all      . 

Lemma 2.1. In a directed complete category  , the 

following conditions are equivalent: 

(1).     

(2). →    and       implies the existence of  

a finite subset     with  →   . 

Lemma 2.2. In a category  , the following conditions are 

equivalent: 

(1).     

(2).     for every ideal diagram   of   such that 

 →   . 

Proof. 

(1)   (2) is immediate from the definition 2.4. 

(2)   (1). Assume (2) and let   be a directed 

diagram with  →   . Then      is an ideal, and 

 →      , Then    , i.e., there is a     (implies 

 →   ) such that  →  . Hence    . 

Proposition 2.2. Let   be a continuous category. 

(1). if      and  →    for a directed diagram, 

then exists  →  , such that    . 

(2). the way-below relation satisfies the interpolation 

property. i.e.,     implies there exists   such that 

     . 

Proof. 
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(1). Let   be a directed diagram with  →   , let 

           , by continuity,      , being a 

union of a directed family of ideals,   is an ideal diagram. 

Hence, if     then    , which means that     for 

some  →  . 

(2).                             
          , thus there exists   with       

such that  →  . Hence      . 

Definition 2.6.Let   be a category which have initial 

object, we say that a binary relation   on     is an 

auxiliary relation, if it satisfying the following conditions 

for all         

(1).     implies  →  ; 

(2).  →    →   implies    ; 

(3).    . 

The set of all auxiliary relation on     will be 

denoted by          (considered as a category endowed 

with inclusion order). Clearly,every auxiliary relation is 

transitive and the way-below relation is an auxiliary 

relation. So, how we can locate the auxiliary relation( ) 

within         ? For a category , let          denote 

the set of all lower sets in    . 

Proposition 2.3. Let   be a category and let   be the set 

of all monotone functions       →          satisfying 

        for all      —considered as a category with 

the morphisms   →    (         ) for all      . 

Then the category          is equivalence to category  , 

with functor            →  ( →      →

        ) and functor    →           →

  (           ) . 

Proof. Let   be a auxiliary relation. Then      can 

be easily verified. If    ,    is a auxiliary relation. So, 

it remained to prove the equivalence, it suffices to prove 

                  . From the following 

commutative diagram: 

 
Figure 9 

      is obtained. The rest is obvious.  

From Lemma 2.2, we know that     
            →    . If we define function       →
         by 

 

      {
      →    

                 
                  (1) 

then     . And now we can calculate        
         in M. 

                                  

    →        ⋂            

    →       ⋂    

              →        

Definition 2.7.Let   be directed complete category, an 

auxiliary relation   on     is called approximating iff the 

set                  is a directed subcategory of 

  and                       for all      . 

Now we can answer the question as follow: 

Proposition 2.4.In a continuous category, the way-below 

relation   is the smallest approximating auxiliary relation 

on    . 

Proof. From (1), and proposition 2.3, it can be 

obtained obviously. 

We can also generalize the continuous theory to locally 

directed complete category and their proof is obvious. 

III. WAY-BELOW RELATION ON LOCALLY DIRECTED 

COMPLETE CATEGORY 

 

Definition 2.7.  Let   be a small category, if for      , 

           →    is a directed complete category, 

then   is a locally directed complete category. 

Proposition 2.5. Let   be a locally directed complete 

category, then  the following statements hold for 

            

(1).     implies  →    
(2).  →    →   implies  →    
(3). If    has initial object             . 

Definition 2.8. Let   be a locally directed complete 

category.   is called a continuously locally directed 

complete category if         is a directed diagram and 

           for all      . 

We denote          be the set of all approximative 

auxiliary relation on    . 

From Definition 2.7. we know way-below relation is a 

approximative auxiliary relation. 

Proposition 2.6. Let   be a locally directed complete 

category, then the way-below relation is included in each 

approximative auxiliary relation on    . 

Proof. From Definition 2.6. the proof is obvious. 

Proposition 2.7. Let   be a locally directed complete 

category, then   is a continuously locally directed 

complete category if and only if the way-below relation is 

the smallest approximative auxiliary relation. 

Proof. From Definition 2.8. and Proposition 2.6.the 

proof is obvious. 

And in a locally directed complete category, the  

interpolation properties are also hold. 

Proposition 2.8.Let   be a locally directed complete 

category and   be a approximative  auxiliary relation. For 

       , if     and    , then there exists       

such that  →    ,and    . 

Proof. From the definition of approximative  

auxiliary relation , the proof is obvious. 

Proposition 2.9. Let   be a locally directed complete 

category, each approximative  auxiliary relation has the 

following properties: For        , 

(1) Let    →    be a direct diagram and   a upper 

bound of  . If        , and  →   , then there 

exists       , such that     and    . 

(2) If        , then there exists      , such 

that       and    . 

Proof. From the definition of approximative  

auxiliary relation , the proof  is obvious and similar.. 
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