
Test Case Generation Based on Hierarchical

Genetic Algorithm

Liu Shurong

School of Software

Beijing Institute of Technology

Beijing, China

brendaliu1989@foxmail.com

Hu Changzhen

School of Software

Beijing Institute of Technology

Beijing, China

chzhoo@bit.edu.cn

Xue Jingfeng

School of Software

Beijing Institute of Technology

Beijing, China

xuejf@bit.edu.cn

Li Zhiqiang*

School of Software

Beijing Institute of Technology

Beijing, China

*Corresponding author: lizq@bit.edu.cn

Abstract—The basic genetic algorithm was proposed to

optimize the test case generation. It has been applied widely.

Based on basic genetic algorithm, this paper proposed the

hierarchical genetic algorithm to generate test cases. The

hierarchical genetic algorithm divided the initial population

into hierarchical son population and operated selection,

crossover and mutation among son population independently.

In the hierarchical genetic algorithm, the evolution of

population was firstly operated between all layers, if the

algorithm can't get the best test cases, it entered the next

generation. Using this mechanism, the hierarchical genetic

algorithm can avoid effectively ‘inbreeding’, ‘local

convergence’, ‘slow convergence’ phenomenon. So it was the

better way to generate test cases. This paper did the

experiment using 3 benchmark program:

triangle classification, bubble sort, the Max and Min. The

experimental results show that the quality of test cases and

the efficiency of generating test cases are improved markedly

by hierarchical genetic algorithm compared with the basic

genetic algorithm.

Keywords-hierarchical genetic algorithm; test case; son

population; local convergence; benchmark program

I. INTRODUCTION

With the continuous development of software

technology and software scale, software testing is

becoming increasingly important role. In software testing,

the selection of test case is a problem for structural testing.

The quality of test case determines whether the code error

can be detected as expected. With the development of

automated testing tools, at present there are a number of

methods for generating test case automatically, such as

finite state machine (FSM), genetic algorithm (GA) and so

on [1]. This paper aimed to improve the basic genetic

algorithm to optimize the test case generation.

Genetic algorithm referenced biological mechanisms of

natural selection and evolution and developed to

randomize and adaptive searching algorithm [2]. In the

1960s, John Holland proposed genetic algorithm firstly, it

is used to solve optimization problems of the searching

algorithm. Genetic algorithm maps the inputting data

domain D to gene domain G by coding technology and

determines the searching method by the generic operator

selection, crossover, mutation and survival of the fittest.

Because it uses populations organized search, so you can

simultaneously search multiple areas within G [3]. The

operator crossover and mutation can generate new entity

in populations. So it’s more conducive to find the global

optimal solution and avoid the local optimal solution. In

the 1960s, after the genetic algorithm was proposed, it

was applied in several ways.

Although the genetic algorithm has good global

searching capability, but in the last stage of searching

genetic algorithm prone to "local convergence", "slow

convergence", such that the optimal solution is not a

global optimum. For these problems, some people solve it

by optimizing the fitness function and some people solve

it by optimizing the genetic operator [4]. This paper

solves it by Hierarchical genetic algorithm. Hierarchical

genetic algorithm divides initial population into sub-

populations to form a hierarchical tree structure, then

operates the corresponding genetic operations on each

layer of the tree. That takes full advantage of the excellent

information between different layers and also avoids

"inbreeding "phenomenon.

II. RESEARCH

Using genetic algorithm to generate test data still faces

many shortcomings, such as ‘local convergence’,

‘premature question’, ‘inbreeding’ phenomenon and so on.

For different problems, people have proposed different

solutions. These solutions are mainly divided into three

areas: improvement of the fitness function, improvement

© 2014. The authors - Published by Atlantis Press 262

International Conference on Mechatronics, Control and Electronic Engineering (MCE 2014)

of the genetic operator, the improvement of initial

population.

Literature [5] mainly improved the initial population

and proposed the genetic particle swarm algorithm. Its

main idea was that the entire initial population was

divided into t populations, and then chosen individual

whose fitness value was minimum to cross-breeding

between different groups. This way of crossing between

populations actually controlled the Hamming distance of

crossing individual, avoided inbreeding and helps

maintain the diversity of population. In order to improve

the convergence speed, in the same group individual was

randomly chosen to cross-breeding. Before mutation this

algorithm used elitist strategy to retain good individuals.

Literature [6] mainly improved the fitness function and

genetic operators. It used the evaluation function from the

constraints on the way to generate test data. That avoided

the blindness of the searching data process and has the

higher the efficiency and was unnecessary to care the

problem that was matching of test data and the test

sequence generation. Even there was only the evaluation

function to provide an evaluation value to the point of the

searching space, but also it can operate efficiently, which

makes it become a powerful searching algorithms.

In Literature [7], Bui T U and Moon B R proposed the

Hierarchical genetic algorithm(HGA). They initially

proposed hierarchical genetic algorithm to solve the

problem of segmentation map. Hierarchical genetic

algorithm effectively solved the problems "local

convergence" and "inbreeding", and is applied in different

fields. In [8] and [9] the hierarchical genetic algorithm

were applied in the network to optimize task scheduling

and power transformer design, greatly improving the

convergence rate.

III. HIERARCHICAL GENETIC ALGORITHM

A. The Base Model of HGA

Base genetic algorithm(BGA) changed all optimization

variables to chromosomes by encoding. These

chromosomes formed population and operated evolution.

Hierarchical genetic algorithm divided initial entire

population into hierarchical sub-population. For example,

in Figure 1 there are three layers, and each layer has two

sub-populations, you can see the details by Fig.1:

GA1

GA11 GA12

GA111 GA112 GA121 GA122

First layer

 Second layer

 Third layer

GA2

GA21 GA22

GA211 GA212 GA221 GA222

Figure 1. The population distribution of HGA

In Fig.1 there are two sub-populations in the first layer,

each sub-population in the first layer has two sub-

populations in the second layer, in total there are 2*2 sub-

populations in the second layer. Each sub-population in

the second layer has two sub-populations in the third layer,

in total there are 2*2*2 sub-populations in the third layer.

So, if there is K1 sub-populations in the first layer and

there is Kn sub-populations in the (n-1)th layer. The

number of the sub-populations in the nth layer [10] is :

 

n

i iK
1

 

The essence of the Hierarchical genetic algorithm is

that the upper layer operates lower layer as sub-population.

We took 3-layer hierarchical genetic algorithm as example

and figure 2 is its flow char. In Fig.2 the first step is the

initial population stratified according to Fig.1, at the same

time, the genetic variable t=0 and define hierarchies

counter m = 3 for circulating layers. Firstly, the

hierarchical genetic algorithm operated selection,

mutation, crossover in the same layer, if we can't get the

best test case for the target path, then m-1 and enter the

next layer to searching the best test case for target path

and so on until you find the best test case for your target

path.

Populations:GA111,GA112,GA121,GA122,GA211,GA212,GA221,GA222

Generic counter:t=0

Layer counter:m=3

Calculate Fitness:PGAXXX(t)

Judge:PGAXXX(t)

P,
GAXXX(t)=f(PGAXXX(t))

Judge:P,
GAXXX(t)

m=m-1

m=0

t=t+1

Output:GAXXX

Y

N

N

Y

N

Y

Figure 2. The flow chart of HGA

263

B. The Fitness Function of HGA

According to specific hierarchical genetic algorithm to

generate test cases, we choose the fitness function based

on the Huffman coding method, which codes all paths by

the Huffman coding, then cartridge the corresponding

program. Finally, get the fitness function value of the

corresponding test cases by matching method proposed by

Ahmed.

We signed the Tth generation of evolutionary

population as x, x is the input data of the program testing.

Sign the path string as f(x), the length of f(x) is |f(x)|, in

total n testing path, fj(j=1,2,…,n) is the jth testing path. We

can get the fitness function P(x) by calculating the

matching value of f(x) and fj.

The specific calculation formula is as follows:

'() ((())) 1)* ()j j jP x C f x P x  

min(| (),| |)
'

*

1

() (())
jf x f

j jk jk

k

P x m d f x


  

mj-Sign the number of the same bit of the f(x)and fj;
djk-judge whether the kth bit of f(x) and fj is the same,

iftrue,djk=1;if false djk=0;

cj(f(x))-the number of the continuous same bit starting

from first bit;

mjk-the number of same bit of f(x) and fj when finished

the kth bit;

we can get the matching degree of f(x) and fj by

calculating Pj(x).

C. The Genetic Operator of HGA

a) The Encoding Method of HGA

The base genetic algorithm has many coding methods,

such as binary coding, real coding, gray coding, sign

coding, natural coding. According to the hierarchical

genetic algorithm used to generate the test case, we use

binary coding that is used commonly in base genetic

algorithm. Binary coding coded the individuals of the

initial population to a binary string by binary symbols '0'

and '1'.Using binary coding has many advantages, it

makes the decoding and encoding more simple; At the

same time, it makes the genetic operator selection,

crossover, mutation more convenient.

b) The Selection Operator of HGA

We use simple and effective roulette wheel selection as

selection operator and set selection probability Pc=10%,

that said that the 10% individuals of the populations were

selected and the 10% individuals of the populations were

eliminated, in order to maintain the population size.

c) The Crossover Operator of HGA

The performance of the new populations generated by

selection is improved, but it doesn't generate new

chromosomes. In order to generate new chromosomes,

genetic algorithm modeled on the way hybrid in biology,

cross transposition on some part of the chromosome. First,

to determine the probability Pi of crossover,

approximately 0.8 ~ 0.95, which is about 80% ~ 95%

individuals to perform cross, and then using the roulette

wheel selection method, according to the fitness value

selection is cross individual, using the method of random

pairing of two individual selection, using the method of

random positioning decided to cross position.

d) The Mutation Operator of HGA

The selection of chromosome variation and the

determination of mutation position are all generated with

the method of random. It’s the first to determine the

mutation probability Pm, and in order to prevent too many

mutations result in slow convergence speed, the Pm is

usually small, is about 0.001 ~0.01, which is to say there

was 1~10 of 1000 characters mutations.

IV. EXPERIMENT AND APPROACH VALIDATION

We use three benchmarks for experimental verification

of the method. These three benchmarks are triangular

classification, bubble sort, maximum minimum. The

structure of these three benchmarks are varies. Depending

to TABLE I, for each set of experiment, we used a

hierarchical genetic algorithm and genetic algorithm 500

times for each run under the same experimental

environment, the initial population and the same

parameter settings. The experimental procedures are

written in java, running in the eclipse environment, the

experimental parameters Settings as shown in TABLE II.

TABLE I. THE INTRODUCTION OF PROGRAM

Program Name
Number of

Branches

Composition of

Branches

Triangle Classific

ation

3 select 3 layer selection nested

Bubble Sort 2 loop,1 select 2 layer loop nested

Max and Min 1 loop, 2 select Loop nesting 2 parallel

selection

TABLE II. THE INTRODUCTION OF PROGRAM

V. EXPERIMENTAL RESULT

A. The Experiment of Triangular Classification

Range of different data classification procedures for the

triangle, the target path select one of the four paths, the

path to find the target set for the termination condition.

Laboratory records every time to find the evolution of the

target path algebra and the average of the evolution

algebra for 500 times. Due to the evolution of each run

time only a few milliseconds, so only recorded the total

evolutionary time for 500 times. As the results listed in

table 3, the algebraic and time ratio got by hierarchical

genetic algorithm/basic genetic algorithms.

Para

meter

Selectio

n mode

Crossover

mode

Crossover

probability

Mutation

mode

Mutation

probability
encoding

Value roulette

wheel

Single point 0.1 Single

point

0.4 Binary

264

TABLE III. TEST RESULT OF TRIANGLE CLASSIFICATION

Data

Scope

Size of

Population

The Average

Evolution

Generation

Evolutionary Time

（s）

HAG BGA
Ratio

（%）
HGA BGA

Ratio

（%）

[0,100]3 40 25.2 64.3 39.2 0.16 0.33 46.4

[0,200]3 60 38.6 75.4 51.2 0.17 0.42 39.5

[0,500]3 80 46.5 334.2 13.9 0.64 3.22 20.0

[0,1000]3 150 70.9 514.7 13.8 1.23 6.89 17.8

[0,2000]3 300 78.7 635.9 12.3 2.45 20.7 11.9

The experimental results showed that: (1) With the

increasing of the input data range, two methods to find the

evolution of the target path test cases generation and

evolutionary time increases, this is due to the increase of

the input data range makes search harder．(2) For the

different input data range, two methods of algebraic ratio

and time ratio is different, the biggest difference between

algebraic ratio and time ratio is 51.2% and 46.4%. That

Indicated that this method requires only basic genetic up

about half of the evolutionary algorithm method algebra

and evolutionary time to find the data coverage of the

target. (3) With the increase of the input data range, the

time ratio is more and more small. Which show that the

superiority of the method under the large range of input

data is more obvious.

B. The Experiment of Other Two Programs

To further verify the performance of the hierarchical ge

netic algorithm, the reference to two different structures of

 the other program, select the input data [0, 1000] for the c

ase of three experiments.

When comparing method, the population size of the thr

ee test procedures selected as shown in Table IV, the expe

riments to find the rules of the target path test data as the t

ermination conditions.record the evolution algebra and the

 general evolutionary time, the results listed in TABLE IV.

TABLE IV. TEST RESULT OF OTHER TWO PROGRAMS

Program Size of

Popu-

lation

The average evolution

generation

Evolutionary time

（s）

HGA BGA Ratio（%） HGA BGA Ratio（%）
Max and

Min

200 58.3 238.4 24.5 1.245 6.34 19.6

Bubble Sort 100 24.6 39.4 62.4 0.23 0.45 51.1

As we can see from the table 4, for all the test program,

layered algebraic average evolution of genetic algorithm a

nd evolutionary world is less than the basic genetic algorit

hm, the evolution algebra and evolutionary time scale big

gest, hierarchical genetic algorithm is 62.4% and 51.1% of

 the basic genetic algorithm, which shows that to find the

target path test data, the evolution of the hierarchical gene

tic algorithm and evolutionary time algebra is about half o

f the basic genetic algorithm, the results are in conformity

with triangle classification procedures. This fully shows th

at the three benchmarks, hierarchical genetic algorithm is

superior to the basic genetic algorithm.

VI. CONCLUSION

It had been an important part in software testing field

to findeffective method for generating test cases. This pap

er on the basis of the basic genetic algorithm is proposed f

or the initial population stratification on genetic algorithm

 to improve the convergence rate. At the same time, based

on the classification of triangle program to verify the supe

riority of hierarchical genetic algorithm, hierarchical genet

ic algorithm in terms of evolutionary time evolution algeb

ra has obvious advantages, the application of genetic algor

ithms layered can greatly improve the software testing effi

ciency.

By coding method in a longer path and a large target pa

th, subject to different programming languages limit the le

ngth of the string, a string cannot be stored all target path

coding, at this point, how to store the target path is furthe

r study. In addition, for different testing procedures are aut

omatically generated path coding and automatic stub proc

edures to improve the automation of software testing, whi

ch need to be studied further too.

ACKNOWLEDGMENT

This work was supported by the Key Project of
National Defense Basic Research Program of China (Grant
No. B1120132031).

REFERENCES

[1] M. J. D. Powell, “The BOBYQA algorithm for bound constrained
optimization without derivatives”, Technical report,Department
 of Applied Mathematics and Theoretical
Physics, Cambridge University, Cambridge, UK, 2009.

[2] M. Nehrir , C. Wang , K. Strunz , H. Aki , R. Ramakumar , J. Bing ,
Z. Miao and Z. Salameh. “A review of hybridzrenewable/
alternative energy systems for electric power generation:
Configurations, control, and applications”. IEEE Trans.
Sustainable Energy, vol. 2, no. 4, pp. 392-403,2011.

[3] D. E. Goldberg. “Genetic algorithms in search, optimization and
machine learning”. MA:Addison-wesley Publishing
Company,1989.

[4] T. N. Bui, B. R. Moon. “Genetic algorithm and graph partitioning”.
IEEE Trans on Computer, 1996, 45(7): 841-855.

[5] X. P. Luo，W. Wei. “General discussion on convergence of
immune genetic algorithm”. Journal of Zhejiang University
(EngineeringScience), December 2005, 39(12): 2006-2011.

[6] J. C. Lin, P. L. Yeh. “Using Genetic Algorithms for Test Case
Generation in Path Testing”. IEEE Transactions on software
Engineer, 2000.

[7] V. Rajappa, A. Biradar, S. Panda. “Efficient Software Test Case
Generation Using Genetic Algorithm Based Graph Theory”. First
International Conference on Emerging Trends in Engineering and
Technology, 2008.

[8] X. B. Tan, L. X. Cheng, X. M. Xu. “Test Data Generation Using
Annealing Immune Genetic Algorithm”. Fifth International
Joint Conference on INC, IMS and IDC.

[9] M. A. Ahamed, I. Herma. “GA-based multiple paths test data
generator”. Computer & Operations Reaearch, 2008, 35(10): 3107-
3124.

[10] B. F. Jones, D. E. Eyres, H. Sthamer. “A strategy for using genetic
algorithms to automate branch and fault-based testing”. The
Computer Journal, 1998, 41(2): 98-107.

265

