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Abstract—The basic genetic algorithm was proposed to 

optimize the test case generation. It has been applied widely. 

Based on basic genetic algorithm, this paper proposed the 

hierarchical genetic algorithm to generate test cases. The 

hierarchical genetic algorithm divided the initial population 

into hierarchical son population and operated selection, 

crossover and mutation among son population independently. 

In the hierarchical genetic algorithm, the evolution of 

population was firstly operated between all layers, if the 

algorithm can't get the best test cases, it entered the next 

generation. Using this mechanism, the hierarchical genetic 

algorithm can avoid effectively ‘inbreeding’, ‘local 

convergence’, ‘slow convergence’ phenomenon. So it was the 

better way to generate test cases. This paper did the 

experiment using 3 benchmark program:  

triangle classification, bubble sort, the Max and Min. The 

experimental results show that the quality of test cases and 

the efficiency of generating test cases are improved markedly 

by hierarchical genetic algorithm compared with the basic 

genetic algorithm. 

Keywords-hierarchical genetic algorithm; test case; son 

population; local convergence; benchmark program 

I. INTRODUCTION  

With the continuous development of software 

technology and software scale, software testing is 

becoming increasingly important role. In software testing, 

the selection of test case is a problem for structural testing. 

The quality of test case determines whether the code error 

can be detected as expected. With the development of 

automated testing tools, at present there are a number of 

methods for generating test case automatically, such as 

finite state machine (FSM), genetic algorithm (GA) and so 

on [1]. This paper aimed to improve the basic genetic 

algorithm to optimize the test case generation. 

Genetic algorithm referenced biological mechanisms of 

natural selection and evolution and developed to 

randomize and adaptive searching algorithm [2]. In the 

1960s, John Holland proposed genetic algorithm firstly, it 

is used to solve optimization problems of the searching 

algorithm. Genetic algorithm maps the inputting data 

domain D to gene domain G by coding technology and 

determines the searching method by the generic operator 

selection, crossover, mutation and survival of the fittest. 

Because it uses populations organized search, so you can 

simultaneously search multiple areas within G [3]. The 

operator crossover and mutation can generate new entity 

in populations. So it’s more conducive to find the global 

optimal solution and avoid the local optimal solution. In 

the 1960s, after the genetic algorithm was proposed, it 

was applied in several ways. 

Although the genetic algorithm has good global 

searching capability, but in the last stage of searching 

genetic algorithm prone to "local convergence", "slow 

convergence", such that the optimal solution is not a 

global optimum. For these problems, some people solve it 

by optimizing the fitness function and some people solve 

it by optimizing the genetic operator [4]. This paper 

solves it by Hierarchical genetic algorithm. Hierarchical 

genetic algorithm divides initial population into sub-

populations to form a hierarchical tree structure, then 

operates the corresponding genetic operations on each 

layer of the tree. That takes full advantage of the excellent 

information between different layers and also avoids 

"inbreeding "phenomenon. 

 

II. RESEARCH 

Using genetic algorithm to generate test data still faces 

many shortcomings, such as ‘local convergence’, 

‘premature question’, ‘inbreeding’ phenomenon and so on. 

For different problems, people have proposed different 

solutions. These solutions are mainly divided into three 

areas: improvement of the fitness function, improvement 
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of the genetic operator, the improvement of initial 

population. 

Literature [5] mainly improved the initial population 

and proposed the genetic particle swarm algorithm. Its 

main idea was that the entire initial population was 

divided into t populations, and then chosen individual 

whose fitness value was minimum to cross-breeding 

between different groups. This way of crossing between 

populations actually controlled the Hamming distance of 

crossing individual, avoided inbreeding and helps 

maintain the diversity of population. In order to improve 

the convergence speed, in the same group individual was 

randomly chosen to cross-breeding. Before mutation this 

algorithm used elitist strategy to retain good individuals. 

Literature [6] mainly improved  the fitness function and 

genetic operators. It used the evaluation function from the 

constraints on the way to generate test data. That avoided 

the blindness of the searching data process and has the 

higher the efficiency and was unnecessary to care the 

problem that was matching of test data and the test 

sequence generation. Even there was only the evaluation 

function to provide an evaluation value to the point of the 

searching space, but also it can operate efficiently, which 

makes it  become a powerful searching algorithms. 

In Literature [7], Bui T U and Moon B R proposed the 

Hierarchical genetic algorithm(HGA). They initially 

proposed hierarchical genetic algorithm to solve the 

problem of segmentation map. Hierarchical genetic 

algorithm effectively solved the problems "local 

convergence" and "inbreeding", and is applied in different 

fields. In [8] and [9] the hierarchical genetic algorithm 

were applied in the network to optimize task scheduling 

and power transformer design, greatly improving the 

convergence rate. 

 

III. HIERARCHICAL GENETIC ALGORITHM  

A. The Base Model of HGA 

Base genetic algorithm(BGA) changed all optimization 

variables to chromosomes by encoding. These 

chromosomes formed population and operated evolution. 

Hierarchical genetic algorithm divided initial entire 

population into hierarchical sub-population. For example, 

in Figure 1 there are three layers, and each layer has two 

sub-populations, you can see the details by Fig.1: 

 

GA1

GA11 GA12

GA111 GA112 GA121 GA122

First layer

  Second layer

 Third layer

GA2

GA21 GA22

GA211 GA212 GA221 GA222

 
 

Figure 1.  The population distribution of HGA 

In Fig.1 there are two sub-populations in the first layer, 

each sub-population in the first layer has two sub-

populations in the second layer, in total there are 2*2 sub-

populations in the second layer. Each sub-population in 

the second layer has two sub-populations in the third layer, 

in total there are 2*2*2 sub-populations in the third layer. 

So, if there is K1 sub-populations in the first layer and 

there is Kn sub-populations in the (n-1)th layer. The 

number of the sub-populations in the nth layer [10] is :  

 

n

i iK
1

                                                  

 

The essence of the Hierarchical genetic algorithm is 

that the upper layer operates lower layer as sub-population. 

We took 3-layer hierarchical genetic algorithm as example 

and figure 2 is its flow char. In Fig.2 the first step is the 

initial population stratified according to Fig.1, at the same 

time, the genetic variable t=0 and define hierarchies 

counter m = 3 for circulating layers. Firstly, the 

hierarchical genetic algorithm operated selection, 

mutation, crossover in the same layer, if we can't get the 

best test case for the target path, then m-1 and enter the 

next layer to searching the best test case for target path 

and so on until you find the best test case for your target 

path. 
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Figure 2.  The flow chart of HGA 
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B. The Fitness Function of HGA 

According to specific hierarchical genetic algorithm to 

generate test cases, we choose the fitness function based 

on the Huffman coding method, which codes all paths by 

the Huffman coding, then cartridge the corresponding 

program. Finally, get the fitness function value of the 

corresponding test cases by matching method proposed by 

Ahmed. 

We signed the Tth generation of evolutionary 

population as x, x is the input data of the program testing. 

Sign the path string as f(x), the length of f(x) is |f(x)|, in 

total n testing path, fj(j=1,2,…,n) is the jth testing path. We 

can get the fitness function P(x) by calculating the 

matching value of f(x) and fj.  

The specific calculation formula is as follows:  

      
'( ) ( ( ( ))) 1)* ( )j j jP x C f x P x          

min(| ( ),| |)
'

*

1

( ) ( ( ))
jf x f

j jk jk

k

P x m d f x


      

mj-Sign the number of the same bit of the f(x)and fj; 
djk-judge whether the kth bit of f(x) and fj is the same, 

iftrue,djk=1;if false djk=0; 

cj(f(x))-the number of the continuous same bit starting 

from first bit; 

mjk-the number of same bit of f(x) and fj when finished 

the kth bit; 

we can get the matching degree of f(x) and fj by 

calculating Pj(x). 
 

C. The Genetic Operator of HGA 

a) The Encoding Method of HGA 

The base genetic algorithm has many coding methods, 

such as binary coding, real coding, gray coding, sign 

coding, natural coding. According to the hierarchical 

genetic algorithm used to generate the test case, we use 

binary coding that is used commonly in base genetic 

algorithm. Binary coding coded the individuals of the 

initial population to a binary string by binary symbols '0' 

and '1'.Using binary coding has many advantages, it 

makes the decoding and encoding more simple; At the 

same time, it makes the genetic operator selection, 

crossover, mutation more convenient. 

b) The Selection Operator of HGA 

We use simple and effective roulette wheel selection as 

selection operator and set selection probability Pc=10%, 

that said that the 10% individuals of the populations were 

selected and the 10% individuals of the populations were 

eliminated, in order to maintain the population size. 

c) The Crossover Operator of HGA 

The performance of the new populations generated by 

selection is improved, but it doesn't generate new 

chromosomes. In order to generate new chromosomes, 

genetic algorithm modeled on the way hybrid in biology, 

cross transposition on some part of the chromosome. First, 

to determine the probability Pi of crossover, 

approximately 0.8 ~ 0.95, which is about 80% ~ 95% 

individuals to perform cross, and then using the roulette 

wheel selection method, according to the fitness value 

selection is cross individual, using the method of random 

pairing of two individual selection, using the method of 

random positioning decided to cross position. 

d) The Mutation Operator of HGA 

The selection of chromosome variation and the 

determination of mutation position are all generated with 

the method of random. It’s the first to determine the 

mutation probability Pm, and in order to prevent too many 

mutations result in slow convergence speed, the Pm is 

usually small, is about 0.001 ~0.01, which is to say there 

was 1~10 of 1000 characters mutations. 

 

IV. EXPERIMENT AND APPROACH VALIDATION 

We use three benchmarks for experimental verification 

of the method. These three benchmarks are triangular 

classification, bubble sort, maximum minimum. The 

structure of these three benchmarks are varies. Depending 

to TABLE I, for each set of experiment, we used a 

hierarchical genetic algorithm and genetic algorithm 500 

times for each run under the same experimental 

environment, the initial population and the same 

parameter settings. The experimental procedures are 

written in java, running in the eclipse environment, the 

experimental parameters Settings as shown in TABLE II.       

                                                  

TABLE I.  THE INTRODUCTION OF PROGRAM 

Program Name 
Number of 

Branches 

Composition of 

Branches 

Triangle Classific

ation 

3 select 3 layer selection nested 

Bubble Sort 2 loop,1 select 2 layer loop nested 

Max and Min 1 loop, 2 select Loop nesting 2 parallel 

selection 
 

TABLE II.  THE INTRODUCTION OF PROGRAM 

 
 

V.  EXPERIMENTAL RESULT 

A. The Experiment of Triangular Classification 

Range of different data classification procedures for the 

triangle, the target path select one of the four paths, the 

path to find the target set for the termination condition. 

Laboratory records every time to find the evolution of the 

target path algebra and the average of the evolution 

algebra for 500 times. Due to the evolution of each run 

time only a few milliseconds, so only recorded the total 

evolutionary time for 500 times. As the results listed in 

table 3, the algebraic and time ratio got by hierarchical 

genetic algorithm/basic genetic algorithms. 

 

Para

meter 

Selectio

n mode 

Crossover 

mode 

Crossover 

probability 

Mutation 

mode 

Mutation 

probability 
encoding 

Value roulette 

wheel 

Single point 0.1 Single 

point 

0.4 Binary 
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TABLE III.  TEST RESULT OF TRIANGLE CLASSIFICATION 

Data 

Scope 

Size of 

Population 

The Average 

Evolution 

Generation 

Evolutionary Time

（s） 

HAG BGA 
Ratio

（%） 
HGA BGA 

Ratio

（%） 

[0,100]3 40 25.2 64.3 39.2 0.16 0.33 46.4 

[0,200]3 60 38.6 75.4 51.2 0.17 0.42 39.5 

[0,500]3 80 46.5 334.2 13.9 0.64 3.22 20.0 

[0,1000]3 150 70.9 514.7 13.8 1.23 6.89 17.8 

[0,2000]3 300 78.7 635.9 12.3 2.45 20.7 11.9 

 

The experimental results showed that: (1) With the 

increasing of the input data range, two methods to find the 

evolution of the target path test cases generation and 

evolutionary time increases, this is due to the increase of 

the input data range makes search harder．(2) For the 

different input data range, two methods of algebraic ratio 

and time ratio is different, the biggest difference between 

algebraic ratio and time ratio is 51.2% and 46.4%. That 

Indicated that this method requires only basic genetic up 

about half of the evolutionary algorithm method algebra 

and evolutionary time to find the data coverage of the 

target. (3) With the increase of the input data range, the 

time ratio is more and more small. Which show that the 

superiority of the method under the large range of input 

data is more obvious. 

B. The Experiment of Other Two Programs 

To further verify the performance of the hierarchical ge

netic algorithm, the reference to two different structures of

 the other program, select the input data [0, 1000] for the c

ase of three experiments. 

When comparing method, the population size of the thr

ee test procedures selected as shown in Table IV, the expe

riments to find the rules of the target path test data as the t

ermination conditions.record the evolution algebra and the

 general evolutionary time, the results listed in TABLE IV. 

TABLE IV.  TEST RESULT OF OTHER TWO PROGRAMS 

Program Size of 

Popu-

lation 

The average evolution 

generation 

Evolutionary time

（s） 

HGA BGA Ratio（%） HGA BGA Ratio（%） 
Max and 

Min 

200 58.3 238.4 24.5 1.245 6.34 19.6 

Bubble Sort 100 24.6 39.4 62.4 0.23 0.45 51.1 

 

As we can see from the table 4, for all the test program, 

layered algebraic average evolution of genetic algorithm a

nd evolutionary world is less than the basic genetic algorit

hm, the evolution algebra and evolutionary time scale big

gest, hierarchical genetic algorithm is 62.4% and 51.1% of

 the basic genetic algorithm, which  shows that to find the 

target path test data, the evolution of the hierarchical gene

tic algorithm and evolutionary time algebra is about half o

f the basic genetic algorithm, the results are in conformity 

with triangle classification procedures. This fully shows th

at the three benchmarks, hierarchical genetic algorithm is 

superior to the basic genetic algorithm. 

VI. CONCLUSION 

It had been an important part in software testing field 

to findeffective method for generating test cases. This pap

er on the basis of the basic genetic algorithm is proposed f

or the initial population stratification on genetic algorithm

 to improve the convergence rate. At the same time, based 

on the classification of triangle program to verify the supe

riority of hierarchical genetic algorithm, hierarchical genet

ic algorithm in terms of evolutionary time evolution algeb

ra has obvious advantages, the application of genetic algor

ithms layered can greatly improve the software testing effi

ciency. 

By coding method in a longer path and a large target pa

th, subject to different programming languages limit the le

ngth of the string, a string cannot be stored all target path 

coding, at this point, how to store the target path  is  furthe

r study. In addition, for different testing procedures are aut

omatically generated path coding and automatic stub proc

edures to improve the automation of software testing, whi

ch need to be studied further too. 
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