
Operating Systems Based on Benchmark

A New Method to Measure Real-Time
Performance Parameters of Embedded

Program

Wang Jianyu
School of Transportation

Huanggang Normal University
Hubei Huanggang, China
whutliuxiaojun@126.com

Liu Xiaojun*
School of Electronic & Information

Huanggang Normal University
Hubei Huanggang, China
whutliuxiaojun@126.com

Abstract—This paper present s an improved benchmarking-
based real-time performance parameters measurement method
for embedded operating systems. A set of kernel codes of some
common used embedded application programs is selected as
workload. Some special codes are inserted in the selected
programs to control the generation of the expected test
behavior. µC/OS-Ⅱ embedded operating system are measured
by the proposed method. The obtained results are compared
with that of LMbench. The comparison result shows that the
proposed method is more precise. By the method , the real-time
performance of µC/OS-Ⅱ running on ARM architectures is
also measured. Therefore , the correctness and effectiveness of
the proposed method are further verified.

Keywords-embedded operating system; performance
measurement ; real-time performance ; benchmark program

I. INTRODUCTION
In 1989,Kar presented six key Real-Time Performance

Parameters of operating system, context switch time,
preemption time, interrupt latency, semaphore shuffling
time, deadlock breaking time, message transfer latency. In
the measurement method ,benchmark program has been
widely used in the performance assessment of computer
systems. The typical benchmark program method of
measuring system’s real-time performance parameters is
Rhealstone[1-2] and LMbench[3].The main drawback of
Rhealstonei is that the measurement condition is simple
and the measurement result is the value when the system
is at it’s best ,which cannot truly reflect real-time
performance of operating system because of the operating
system running environment is far from the truth .
LMbench just directly measure the context switch time of
task and the result is an average single value. The method
transfers control tokes among different tasks by
pipes ,realizing switch and measurement of tasks .It can
increase the reality of result by setting the number and the
space of process. The program[4] LMbench is always used
in many studies of home and abroad when measuring real-
time performance of operating systems .The other
benchmark program methods of measuring system’s real-

time performance parameters are method [5] of Hart stone
and method [6-8] presented by L Abeni and so on. The
main measurement object of Hart stone is the entire
system with hardware and software included, not the
operating system itself. Consistent with Rhealstone ,the
measurement parameters of L Abeni reflect the scheduling
and preempting performance of operating system.

This paper improves the nowadays benchmarking-
based real-time performance parameters measurement
method for embedded operating systems. The basic idea is
that a set of kernel codes of some common used embedded
application programs is selected as workload and some
special codes are inserted in the selected programs to
control the generation of the test behavior. By comparison,
with the object of µC/OS-Ⅱembedded operating
system ,the realistic measurement suggests that the
measurement result gained by using this method is more
real and accurate.

II. BENCHMARKING-BASED REAL-TIME PERFORMANCE
PARAMETERS MEASUREMENT

The chapter mainly takes context switch time, deadlock
breaking time and interrupt latency for example to
illustrate the theory and enforcement process of new
testing method because of the method for testing
preemption time and message transfer latency is similar to
context switch time ,while the method for testing
semaphore shuffling time is similar to deadlock breaking
time ..

A. The choose of workload
Embedded performance benchmark program Mibench

was designed by researchers of American’s Michigan
university[9-10]. It contains six groups of thirty five
embedded application program and every special group
represents relevant embedded application The six groups
respectively are industry control and automation ,personal
consummation ,working automation ,network ,information
security and communication .With good portability ,all
programs are open source code of C programming
language .Various kinds of application program of
Mibench is selected as workload according to testing needs.

* Corresponding Author
© 2014. The authors - Published by Atlantis Press 289

International Conference on Mechatronics, Control and Electronic Engineering (MCE 2014)

mailto:whutliuxiaojun@126.com

B. 2.2 The measurement of context switch time
Switch events are needed to be artificially made among

tasks for testing context switch time .In the condition with
no preemption ,one scheme is letting the task running at
present activate another task with specific ID, then
suspends itself.. Therefore ,the activated task is in a steady
state ,resulting in scheduling[11] .The switch process
contains a series of operations ,for example ,the storage of
present task context ,the recover of new task context and
so on. The cost of time in the process is context switch
time (TCS).Provided the ID of task running at present is
TaskID[i] and the ID of new task running next is TaskID
[i + 1].The t1 (TaskID[i + 1]) represents the moment
when the new task is activated and ,t- (TaskID[i + 1])
represent the moment when the new task begins to run. So,
t2-(TaskID [i +1]) -t1(TaskID [i + 1]) can approximately
represent the switch time between two tasks in the users’
layer. Fig.1 gives sketch map of two task’s switch process.

Figure 1. Process of task swiching

For decreasing error , choose n tasks and calculate the
average algorithm value of context switch time according
to the equation (1) below after testing the starting running
moment and the activating moment of n tasks:

1

2 1
0

1 (((1) /) ((1) /))
n

i
T t taskID i n t taskID i n

n

−

=

= + − +∑ (1)

Repeat the process K times and the context switch time
can be gotten.

Measurement control code and time counter need to be
inserted in the proper place of every task’s source code for
realizing the switch of tasks. The using ratio of CPU,
memory and so on is different in different stages of every
task, therefore , every task’s codes need analyzing and
codes are inserted into many different stages of the
program to get more and more true data. The place where
codes are selected can choose initial segment ,middle
segment and ending segment of program running .

C. The measurement of deadlock breaking time
Fig.2 shows the testing process of deadlock breaking

time .Task TaskID[0] firstly runs and enters into the
critical section then it activates task TaskID[1]. TaskID[1]
will preempt the running of TaskID[0] ,for it has the
highest priority .When TaskID[0] enters into critical
section ,due to the critical resources are occupied by
TaskID[1] ,it will suspend itself until the resources are
released. TaskID[0] continues to be scheduled to run and
activates TaskID[2 .Meanwile , ,TaskID[2] will preempt
the running of TaskID[0],for it has higher priority than
TaskID[0] .

The situation where TaskID[2] of middle priority is
running all the time whereas TaskID[1] of high priority is
suspended occurs at the same time. In the
situation ,operating system can adopt proper method
(priority inheriting, priority ceiling and so on)to break ,

deadlock .Provided ta represents the moment when
TaskID[1] tries to enter into the critical section ,tb
represents the moment when TaskID[1] successfully enters
into the critical section. Therefore ,tb-ta is the tested
deadlock breaking time .

Low priority taskID(0)

Enter the critical
region

Activate the taskID(1)

Activate the taskID(2)

Exit the critical
region

High priority taskID(1)

Suspending itself

Access the time of Ta

Enter the critical
region

Access the time of Tb

Exit the critical
region

Medium priority taskID(2)

Suspending itself

Infinite run

Suspending taskID(2)

Suspending itselfK loops

Figure 2. the flow chart for deadlock breaking time measurement

D. The measurement of interrupt latency
Interrupt latency is the time from CPU receive interrupt

requests to the first instruction of interrupt service program
begins to be executed. Write a simple interrupt service
program and fix it to relevant interrupt number . In order to
test the interrupt latency in worst situation ,the picked
workload should contain the manipulation of disk reading
and writing ,data processing ,system scheduling and so on
that might affect interrupt latency and testing control codes
are inserted into different places of these programs.
Control codes of interrupt latency measurement are
relatively simple.

//Interrupted service program
{
 ……
 Get time Ta;
 Get time Tb;
 T=Tb-Ta;
 Save(T);

}

//taskID
{ ……
 source code
 ……
 Get time(Ta);
 call int;
 ……
 source code
 ……
}

Figure 3. An example of workload for interrupt latency measurment

Fig.3 is a workload example for measuring interrupt
latency ,the call-int in it represents the function generating
interrupt ,it also can be replaced by software

290

interrupt .Provided ta is the moment of generating interrupt
request ,tb is the moment of executing interrupt service
software ,therefore ,tb-ta can be regarded as interrupt
latency .

III. THE VERIFICATION OF MEASURING METHOD
The context switch time is taken for example to

illustrate the effectiveness of method .The measuring
object is µC/OS-Ⅱem bedded operating system and the
comparison measurement adopts

The main difference of the two methods lies in this
method tries to make the running environment close to
reality，all the running tasks are kernel codes of some of
frequently used application programs. By the technology
of code inserting, which controls generation switch of
these tasks to measure and gets data in different stages of
task running .But the task of LMbench is empty
process ,these processes themselves haven’t any work
except switching each other and the measuring
environment is simple.

The platform measuring hardware is embedded
developing board with CPU of STPC2DX2,frequency of

which is 133MHz ,and memory of 64MB. Timer 0 of
8254 ,with a frequency of 12 MHz is used for increasing
the measuring accuracy .

The code of timer needs modifying for measuring
several groups of data in a time because of there is an
average value when LMbench measures context switch
time each time. Respectively choose one representative
program from six classifications of Mibench to form
workload .They are: jpeg ,fft ,pat ricia, sha,ispell and bit

count.

The measuring result is showed as table 1.

It can be seen from table 1 that the data standard
deviation gained using LMbench is much smaller ,but the
data standard deviation measured using this method is
much bigger .The data measured using this method is more
real, not only can it represent the total average value of
measurement parameters ,it also can reflect the switch time
when the operating system is in worse
situation ;furthermore , interrupt latency, task switching
time are close to the parameters provided by the tested
operating system’s developer.

Certainly ,the measured
results contain some cost of scheduling time
counter ,combined the accuracy problem of time counter
itself,

there exists some degree of error.

291

TABLE I. COMPARISON OF MEASUREMENT RESULT OF CONTEXT SWITCHING TIMES BY TWO METHODS

Method Average value(μs) Minimum value(μs) Maximum value(μs) standard deviation

LMbench 39.9505 32.0153 57.4115 4.1405

This paper 42.6541 33.2658 87.5468 6.7603

TABLE II. THE MEASUREMENT RESULT OF µC/OS-Ⅱ

Method Average value(μs) Minimum value(μs) Maximum value(μs) standard deviation

Context switch 55.1294 38.5214 125.2563 18.2543

Preemption 85.2314 67.5412 189.2563 21.5634

Interrupt latency 83.2568 65.4231 178.2563 15.6745

Semaphore shuffling 68.1234 65.1254 89.5487 8.5426

Deadlock breaking 238.5623 214.2356 398.5647 12.3568

Message transfer latency 69.5423 68.2456 123.2354 4.2536

292

ACKNOWLEDGEMENTS

The project was supported by the Electrical and
Electronic Experimental Teaching Demonstration Center
Project of Huanggang Normal University (Grant
No.zj201257).

REFERENCES

[1] Kar K P ,Porter K. Rhealstone ——— A real-time benchmarking
proposal[J] . Dr. Dobb’s Journal ,1989, (3):14.P12-19

[2] J IANG Jianhui. Performance assessment of embedded systems by
benchmarking[J]. Machinery & Electronics ,2002 , (4) :43. P-19

[3] McVoy L, Graphics S. LMbench : Portable tools for performance
analysis [C] ∥Proc USENIX 1996 technical conference. San

[4] Diego : USENIX Association ,1996 :279 - 294.
[5] L I Jiang ,DAI Shenghua. Rea1-time performance test and analysis

of Linux [J] . Computer Applications ,2005 , (25) :1679.
[6] Weiderman N. Hartstone : synthetic benchmark requirements for

hard real2time appications [C] ∥Proc Working Group on Ada
Performance Issues. Maryland :ACM SIGAda ,1990 :126 2 136.

[7] Abeni L ,Goel A , Krasic C,etal. A measurement2based analysis of
the real2time performance of Linux [C],Proc 8th IEEE real2 time
and embedded technology and applications symposium. San Jose :
IEEE Computer Society ,2002:133-142.

[8] Yaghmour K, Masters J, Gerum P, etal. Building embedded Linux
systems[M] . Cambridge :O’Reilly ,2003.

[9] Guthaus M R ,Ringenberg J S ,Ernst D ,et al. MiBench : A free
commercially representative embedded benchmark suit [C]
∥Proc 4th IEEE international workshop on workload
characteriza2 tion. Washington : IEEE Computer Society ,2001:1-
12.

[10] Sweetman D. See MIPS run[M] . 2nd ed. San
Francisco :Morgan Kaufmann , 2006.

[11] Jiang Jianhui , Tang Zhijie, A Novel Method to Measure
Real-Time Performance Parameters of Embedded
Operating Systems [J], Journal of Tongji university
(Natural Sciences), 2008,Vol.36,No.9, P:1260-1265

gaining more real measurement results ,the work improved
nowadays benchmarking-based real-time performance
parameters measurement method for embedded operating
systems. The realistic measurement result of a embedded
operating system µC/OS-Ⅱ suggests that the accuracy of
new method is increased compared to the LMbench .The
measurement of µC/OS-Ⅱ carried out on A RM platform s
further verify the effectiveness of new method and it also
get the valuable real-time performance data of operating
system. For the measurement of different parameters ,there
are different visions of source codes for different tasks in
workload ,which makes the entire program more huge,
making it less convenient to measure the embedded system
with limited resources due to benchmarking-based real-
time performance parameters measurement for embedded
operating systems needs to modify the codes of
workload .In addition, the realizing of interrupt latency
measurement method relies more on hardware and
operating system itself ,the portability is relatively worse,
so, the measurement method also needs improving
continuously.

IV. THE MEASUREMENT RESULT OF µC/OS-Ⅱ
EMBEDDED OPERATING SYSTEM

The measurement for µC/OS-Ⅱembedded operating system is
carried out on ARM platforms ,they respectively are Arm11
developing board, the main frequency of which is 600 MHz. ,the
six performance parameters measuring results are showed as
table 2.

It can be seen from the table 2 that the standard
deviation of task preemption time of the platforms is much
bigger ,the maximal value is 190μs or so. This is because
the kernel version of µC/OS-Ⅱ is of no preemption or the
preemption performance is bad.

V. CONCLUSION

Making the measurement conditions closer to the
realistic working environment of operating system for

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

	I. Introduction
	II. Benchmarking-based real-time performance parameters measurement
	A. The choose of workload
	B. 2.2 The measurement of context switch time
	C. The measurement of deadlock breaking time
	D. The measurement of interrupt latency

	III. The verification of measuring method
	IV. The measurement result of µC/OS-Ⅱ embedded operating system
	V. Conclusion
	Acknowledgements
	References

