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Abstract. Bent function plays an important role in
cryptography. It opposes an optimum resistance to linear
and differential cryptanalysis. We point out that for some
kinds of bent functions, such as Maiorana-McFarland
functions and functions with algebraic degree less than three,
they are weak in second-order differential cryptanalysis.
Thus when constructing bent functions we should use other
methods and avoid these functions. Furthermore, a bent
function can split into four bent pieces if and only if, the
corresponding second-order differential of its dual function
is 1.
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I. INTRODUCTION

In the mathematical field of combinatorics, a bent
function is a special type of Boolean function. Defined and
named in the 1960s by Oscar Rothaus in research not
published until 1976([1]), bent functions are so called
because they are as different as possible from all linear and
affine functions. They have been extensively studied for
their applications in cryptography, but have also been
applied to spread spectrum, coding theory, and
combinatorial design. The definition can be extended in
several ways, leading to different classes of generalized
bent functions keeping many of the useful properties of the
original.

In cryptography, higher-order differential cryptanalysis
is a generalization of differential cryptanalysis, an attack
against block ciphers. Developed in 1994 by Lars
Knudsen([2]), the technique has been applied to a number
of ciphers. Whereas ordinary differential cryptanalysis
analyzes the differences between two texts, the higher-
order variant considers differences between differences,
etc. It has been shown to be more powerful than a first-
order attack in some cases (see KN-Cipher).

II.
At first we give the definition of Walsh transform for

Boolean functions, which is one of the most important
tools for researching the cryptography of Boolean
functions.

Denote nB Boolean functions of n variables.

Definition 2.1. (Walsh transform) Assume ( ) nf x B .

The Walsh transform of ( )f x is an integer valued

function on 2
nF ,

2

( )
2( ) ( 1) ,

n

f x a x n
f

x F

W a a F 



  

in which ⋅ means the inner product between vectors in

2
nF . ( )fW a is called the Walsh spectrum of ( )f x on
a .

Obviously, the Walsh transform of ( )f x can also be

considered as discrete Fourier transform of ( )( 1) f x .
The nonlinearity of a Boolean function is also an

integer, which describes the minimal distance to linear and
affine functions.

Definition 2.2.(Nonlinearity) Assume ( ) nf x B , let

( )
( ) min ( ( ), ( ))

n
Hl x B

NL f d f x l x




in which

2 2( ) , ,nl x a x b a F b F    
means affine function and

2( ( ), ( )) { | ( ) ( )}n
Hd f x l x x F f x l x  

means the hamming distance between ( )f x and
( )l x , then we call ( )NL f the nonlinearity of function
( )f x .
It is easy to prove some property for Walsh transform.
Proposition 2.1. The inverse transform of Walsh

transform is

2

( ) 1( 1) ( )( 1)
2 n

a xf x
fn

a F

W a 



   .

Proposition 2.2. ( ) 2 2 ( ),( )n
f HW a d f x a x   .

Especially, ( )(0) 2 2 ( ),0n
f HW d f x  . (0)fW is

also denoted ( )fF .
Thus
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 
2

1 12 max ( )
2 n

n
f

a F
NL f W a


 

This equality implies the relationship between the
Walsh spectrum and the nonlinearity of a Boolean function.
The next equality will imply the correlation between the
Walsh spectrum values.

Proposition 2.3. (Parseval) If ( ) nf x B , then

2

2 2( ) 2
n

n
f

a F

W a


 .

it is easy to know the average value of 2 ( )fW a is 2n ,

so
2

/2max ( ) 2
n

n
f

a F
W a


 , and then we get an upper bound

of ( )NL f for nf B :
1 /2 1( ) 2 2n nNL f    .

Definition 2.3. ( ) nf x B is called bent function, if
1 /2 1( ) 2 2n nNL f    .

Notice that ( )NL f is a positive integer, so if

( ) nf x B is a bent function, then n must be even. On

the other hand, when n is even, then ( )f x is bent if and

only if
2

/2max ( ) 2
n

n
f

a F
W a


 . Thus we have the theorem

below, which is somewhere another definition of bent
functions.

Theorem 2.1. Assume ( ) nf x B , then ( )f x is bent

if and only if /2( ) 2nfW a  for all 2
na F .

Part Ⅳ will show, for all positive even n , bent
function of n variables is surely exist.

Since all the Walsh spectrum values of a bent function
( ) nf x B is /22n , ( )fW a naturally implies a

Boolean function.
Definition 2.4. Assume ( ) nf x B is a bent function.

The dual bent function of ( )f x is defined as:
/2

/2

0, ( ) 2 ;
( )

1, ( ) 2 ,

n
f

n
f

W a
f a

W a

  
 



or in short, /2 ( )( ) 2 ( 1)n f x
fW a  


.

According to Proposition 2.1, it is easy to prove:
Theorem 2.2. Assume ( ) nf x B is a bent function.

The dual function ( )f x is also bent and f f .
Besides the dual property, Theorem 2.1 also means for

bent functions, the Hamming distance to all affine
functions is either 1 /2 12 2n n  or 1 /2 12 2n n  .
Especially, if 1 /2 1( , ) 2 2n n

Hd f l    , then
1 /2 1( , 1) 2 2n n

Hd f l     and vice versa. This shows

that every bent functions has distance 1 /2 12 2n n  to
half of all affine functions and distance 1 /2 12 2n n  to
another half.

Beside linear cryptanalysis, bent function is also best
under differential cryptanalysis.

Denote ( ) ( ) ( )bD f x f x b f x   , which is called

the derivative of ( )f x in the direction of b .

Definition 2.5. ( ) nf x B is called balanced when

( ) 0f F , which means the preimage of 0 and 1 are

both 12n .
Lemma 2.1.

2

2 ( )( 1)( )
n

f
a b

b
b F

a fW D 



  F .

Proof .

2 2

2 2

2 2

2 2

2

2 ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( 1) ( 1)

( 1) ( 1)

(

( )( 1

1)

( 1) ( 1)

) .

n n

n n

n n

n n

n

f x a x f y a y
f

x F y F

f x a x f x b a x b

x F b F

f x f x b a b

x F b F

a b f x f x b

b F x F

a

b F

b
b

W a

D f

   

 

     

 

   

 

  









  

  

 

 







 

 

 

 

 F

Theorem 2.3. Assume n is even. ( ) nf x B is bent

if and only if for all 2 \{0}nb F , ( )bD f x is balanced.

Proof. If for all 2 \{0}nb F , ( ) 0bD f F , then
2 ( ) (0) 2nfW a  F for any 2

na F , thus by Theorem

2.1, ( )f x is bent. Conversely, if ( )f x is bent, then for

any 2
na F ,

2

( )( 1) 2
n

a
b

n

F

b

b

D f 



  F . According to

the theory of discrete Fourier inverse transform, we have
( ) 0bD f F when 0b  .
At the last of this part, the theorem below point out the

bent functions, after affine transform, is still bent.
Lemma 2.2. Assume ( ) nf x B , 2

n nA F  is an

invertible matrix, 2
nb F , ( )l x is an affine Boolean

function of n variables and ( ) ( ) ( )g x f Ax b l x   .

In the case of ( ) Tl x c x , ( ) ( 1) ( )
Tb y

g fW a W y  ; or

( ) 1Tl x c x  , then 1( ) ( 1) ( )
Tb y

g fW a W y  , in

which 1 ( )Ty A a c  .

Proof . In the case of ( ) Tl x c x ,
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2

1 1

2

2

2

( )

( ) ( ) ( )

( ) ( )

( )

( )

( 1)

( 1)

( 1)

( 1) ( 1) .

T T

n

T

n

T

n

T T

n

g

f Ax b c x a x

x F

f x a c A x A b

x F

f x y x b

x F

b y f x y x

x F

W a

 

  



  



 







 

 

 

  








In the case of ( ) 1Tl x c x  , the prove is similar.

According to Theorem 2.1, it is easy to get:
Theorem 2.4. Assume ( )f x is a bent function of n

variables, 2
n nA F  is an invertible matrix, 2

nb F and

( )l x is an affine Boolean function of n variables, then
( ) ( ) ( )g x f Ax b l x   is also bent. Furthermore, the

dual function of ( )g x is ( ) ( ) Tg a f y b y  and

( ) ( ) 1Tg a f y b y   in which 1 ( )Ty A a c  , in

the case of ( ) Tl x c x and ( ) 1Tl x c x  respectively.

III. DUAL BENT FUNCTION AND RESTRICTION

The properties of bent functions on 2
nF , such as the

Walsh spectrum and differentials, are clear right now.
Then it is natural to ask: how about its restriction on half of

2
nF ? Since half of 2

nF is isomorphic with 1
2
nF  , the

largest proper even dimension subspace is quarter, which
is isomorphic to 2

2
nF  . Is there a property “almost bent”

for n odd? If the restriction of a bent function on quarter
of 2

nF is “bent”, how about the other three quarter?
Furthermore, is there any relationship between restriction
and second differential, which seems not obvious?

This part will give a positive answer to all these
questions.

Definition 3.1. Assume ( ) nf x B , if there exists

 such that ( ) {0, , }fW a    for every

2
na F , then ( )f x is called plateaued functions(or

three-valued functions), which  is called the altitude of
( )f x .

According to Parseval relation, 2m  with
/ 2m n . The equivalence requires n even, this case is

the bent function. While n odd, the minimal m can reach
is ( 1) / 2n  . This kind of ( )f x is called semi-bent
functions.

According to Lemma 2.2, plateaued and semi-bent
property, similar with bent, is also affine invariant.

According to Theorem 2.4, the definition of plateaued,
bent and semi-bent functions, are easy to generalized on
Boolean function restricted on a subspace (or an affine
subspace).

Definition 3.2. Assume ( ) nf x B and 2
nE F a

subspace of dimension m .
u E
f


is called plateaued(resp.

bent, semi-bent) if there exists an isomorphism

2: mE F  , such that 1( ) ( ( ))g y f u y   is

plateaued(resp. bent, semi-bent) in mB . At here, “there
exists” is in fact equal with “for all”.

Theorem 3.1. Assume 1 1( , )n nf x x B  . Denote

0 ( ) ( ,0)f x f x and 1( ) ( ,1)f x f x , then the Walsh

spectrum of 1( , )nf x x  is:

0 1

0 1

( ,0) ( ) ( )
.

( ,1) ( ) ( )
f f f

f f f

W a W a W a

W a W a W a

 
  

Especially, if both 0 ( )f x and 1( )f x are bent on 2
nF ,

then 1( , )nf x x  is semi-bent on 1
2
nF  .

Proof.

1 1 1

1
1 2

1

1 1
2 2

1

0 1

1

( , )

( , )

( ,1)( ,0)

( , )

( 1)

( 1) ( 1)

( ) ( 1) ( ).

T
n n n

n
n

TT
n

n n

n

f n

f x x a x a x

x x F

f x a x af x a x

x F x F

a
f f

W a a

W a W a

  






 





 



 

 

 

   

  



 

The second statement is easy to prove.
Corollary 3.1. If 1( , )nf x x  in Theorem 3.1 is bent,

then both 0 ( )f x and 1( )f x are semi-bent functions on

2
nF . Furthermore, for every 2

na F , one of
0
( )fW a and

1
( )fW a is ( 1)/22 n while the other is 0.

Corollary 3.2. If 1( , )nf x x  in Theorem 3.1 is semi-

bent and one of 0 ( )f x and 1( )f x is bent, then another is
also bent.

Theorem 3.2.([3]) Let n and m be two even positive
integers. Let f be a Boolean function on

2 2 2
n m n mF F F   such that, for any element y of 2

mF ,

the function : ( , )yf x f x y on 2
nF is bent. Then f

is bent if and only if, for any element s of 2
nF , the

function : ( )s yy f s  is bent on 2
mF . In this case, the

dual of f is ( , ) ( )sf s t t  .

Theorem 3.3. Assume ( ) nf x B is bent and

2
nE F a subspace of dimension 2n  . The conditions

below are equivalent:
(1) There exists 2

nu F such that u E
f


is bent;

(2) For every 2
nu F , u E
f


is bent;
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(3) Let {0, , , }E a b a b   , then ( ) 1a bD D f x  .

Proof. Let  be an isomorphism on 2
nF which

2 1( ) { : 0}n
n nE x F x x     . Obviously E

 is an

isomorphism from E to 2
2
nF  . Consider Boolean

function 1( ) ( ( ))g y f y  on 2
nF .

(1)  (2): If 0u  , we can consider ( )f x u . So

without losing generality, let 0u  . Since 0,0 E
f f is

bent, then
1

0,0 0
( )

n ny y
g g y

  
 is bent on 2

2
nF  .

According to Theorem 2.4, ( )g y is bent on 2
nF .

According to Corollary 3.1, both
1 0

( )
ny

g y
 

and

1 1
( )

ny
g y

 
are semi-bent on 1

2
nF  .

0
( )

ny
g y


and

1
( )

ny
g y


are in the same way. According to Corollary

3.2,
1

0,1 0, 1
( )

n ny y
g g y

  
 is bent on 2

2
nF  . Thus

10,1 (0, ,0,1) E
f f

  



is bent and vice versa, since

0,1 1 2

1 1
1 2

( , ,0,1)

( (0, 0,1) ( , ,0,0)).
n

n

g g y y

f y y 


 




 



 

1
1,0 1, 0

( )
n ny y

g g y
  

 and
1

1,1 1
( )

n ny y
g g y

  
 are in

the same way, corresponding 11,0 (0, 0,1,0) E
f f

  



and

11,1 (0, 0,1,1) E
f f

  



respectively. These are all the four

2
nu E F  .

(2) (3): Consider the matrix of  , denoted by A .

According to Theorem 2.4, ( ) ( )Tg x f A x  . Since

2 1 2( ) { : 0}T T n
nE A AE A y F y y 
      ,

then 1 2 1
,

( ) ( , , , )a b n n n
i j

D D f x g y y y i y j      ,

in which 1( , , )T T
nx A y y  . Thus for all

2
1 2 2( , , ) n

ny y F 
  , 1 2( , , , , )ng y y i j  is bent on

2
2F , since the sum of four value is always 1. According to

Theorem 3.2, all the ,i jg are bent on 2
2
nF  . All the

deductions above are invertible.

IV. SECOND DERIVATIVE OF MAIORANA-MCFARLAND
FUNCTIONS

Definition 4.1.([4], [5]) The Maiorana-McFarland
functions(in short M-M functions) is defined as

(( (, )) )f x y g yx y    on
/2

2 2{( , ) | , }n nF x y x y F  with n even, in which 
is a permutation on /2

2
nF and g is any Boolean function

of variables / 2n and ⋅ means the inner product between

vectors in /2
2
nF .

Proposition 4.1. M-M function f is bent.

Proof. For any 1 2 2( , ) na a F ,

1 2

/2 /2
2 2

2 1

/2 /2
2 2

1 1
2 1 1

1 2

( ) ( )

( ) ( ( ))

( ) ( ( ))/2 /2

( , )

( 1)

( 1) ( 1)

2 ( 1) 2

n n

n n

f

x y g y a x a y

x F y F

a y g y x a y

y F x F

a a g an n

W a a




  

     

 

   

 

 

 

  

   

 

 

thus f is bent.
Corollary 4.1. The dual bent function of function

(( (, )) )f x y g yx y    is:
1 1

1 2 2 1 1( , ) ( ) ( ( )).f a a a a g a    

By Theorem 2.2, the derivatives ( , )bD f x y on all

2 \{0}nb F are balanced, however, the construction
itself implies the weakness when difference again for some
b .

Theorem 4.1. Suppose /2
2 2, {0}n na b F F   , then

( , ) 0a bD D f x y  .

Proof. Denote 1( ,0)a a and 1( ,0)b b , in which
/2

1 1 2, na b F , then

1

( , )
( ( ))

0.

a b

a

D D f x y
D b y 



V. SECOND DERIVATIVE OF BENT FUNCTIONS
ALGEBRAIC DEGREE LESS THAN THREE

In general, second-order differential cryptanalysis is
effective only for functions degree less than 2(i.e. constant,
linear, and quadratic functions). However, for bent
functions, which are best under (first-order) differential
cryptanalysis, the degree it can effectively attack can be
enlarged to less than 3.

Lemma 5.1. If the degree of ( ) nf x B is less than

k+1, then for all 2 \{0}nb F , the degree of ( )bD f x is
less than k.

Theorem 5.1. If the degree of bent function
( ) nf x B is less than 3, then for any 2 \{0}nb F ,

there exists 2 \{0, }na F b such that ( ) 1a bD D f x  .

Proof. Since ( )f x is bent, then by Theorem 2.3,

( ) 0bD f F . By Lemma 2.1,
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2

2( ) ( ) 0
n

a b b
a F

D D f D f


  F F . By Lemma 5.1,

a bD D f for all 2
na F are affine functions. Thus,

( )a bD D fF can only be three values: 2n when

0a bD D f  , 2n when 1a bD D f  , and 0 else.

0( ) (0) 2nbD D f  F F , so for satisfying the equality

of
2

( ) 0
n

a b
a F

D D f


 F , there exists 2
na F , such that

( ) 2na bD D f  F , which means 1a bD D f  .

Obviously, {0, }a b .
On the other hand, this weakness in second differential

can be used on constructing new bent functions. According

to , ( ) 1a bD D f x  implies all the four
u E
f


 is bent in

which 2
nu F and { , }E a b  . Hence we have:

Theorem 5.2. If the degree of bent function
( ) nf x B is less than 3, then the dual function ( )f x

can be split into four bent
u E
f


 on four pieces of u E

in 2
nF , in which 2

nE F is a subspace of dimension

2n  . Furthermore, the choice of E is at least
(2 1) / 3n  .

Proof. Consider the bijection between E and

2\{0} nE F  , since every \{0}E has exactly three

elements and every 2 \{0}nb F is belong to at least one

of \{0}E , then the proof is trivial.

VI. CONCLUSION

From our result, when constructing bent functions, we
should use some other methods and avoid these functions.
Some other known primary constructions of bent functions
are:

partial spreads class([5],[6]);
trace of power functions on 2

nF ([5],[7],[8]);

F of almost bent functions([9]);
restrictions of functions on a hyperplane([10]).
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