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Abstract—In this study, a new scheme was presented for the 
EEG signal classification with feature selection based on one-
dimension real valued particle swarm optimization. In the 
proposed scheme, normal and abnormal EEG signals were 
decomposed into various frequency bands with one fourth-
level wavelet packet decomposition. Approximation entropy 
value of the wavelet coefficients at all nodes of the 
decomposition tree were used as a feature set to characterize 
the predictability of the EEG data within the corresponding 
frequency bands. Then, the one-dimension real valued particle 
swarm optimization algorithm was used to find the optimal 
feature subset by maximizing the classification performance of 
a support vector machine based EEG signal classifier. 
Experimental results showed that the proposed method 
improved the classification performance substantially and got 
a much less size of optimal feature subset with compared to the 
other methods. 

Keywords- EEG signals, wavelet packet decomposition, 
approximation entropy, feature selection, particle swarm 
optimization 

I. INTRODUCTION  
The electroencephalogram (EEG), a highly complex 

signal, is widely used clinically to investigate brain 
disorders [1].The process of automated diagnosis that can 
be viewed as the process of doing the classification or 
decision making of EEG signals can generally be 
subdivided into a number of disjoint processing modules 
or stages: preprocessing, feature extraction, feature 
selection, and classification [2]. In the feature extraction 
stage, numerous different methods can be used so that 
several diverse features can be extracted from the same 
raw data such as auto-correlation function [3], frequency 
domain analysis methods[4], nonlinear methods[5] and etc.  

Feature selection also constitutes a key development 
phase of pattern recognition [6]. Extensive research into 
feature selection has been carried out over the past four 
decades. The feature selection is inherently a 
combinatorial optimization problem that is a NP-hard 
problem [7]. There are many searching algorithms used to 
determine the promising feature subset candidates, such as 
exhaustive search, branch and bound search (BB), 
sequential forward selection (SFS), Tabu search (TB), 
Simulated annealing algorithm (SA), Genetic Algorithm 

(GA), Binary Particle Swarm Optimization (BPSO) and 
etc. Exhaustive search algorithm can get the optimal 
feature subset but its computing complexity increases 
exponentially with the number of original features 
increasing [7]. In recent years, stochastic searching 
algorithms for its good global search ability and relative 
lower computing complexity have been adopted to do 
feature selection. Unfortunately, all of existing stochastic 
searching based feature selection methods are also always 
falling into local optimum and cannot get optimal feature 
subset, especially when the number of original features is 
too great. 

In the literature, various studies have been considered 
related with classifying the EEG signals. While Guler et al 
obtained 96.79% classification accuracy using recurrent 
neural networks to detect the epileptic seizure from EEG 
signals [8]. Subasi obtained 95% and 93.6 classification 
accuracies using combination wavelet transform and 
mixture of experts and combination wavelet transform and 
multilayer perceptron neural network, respectively [9]. 
98.68 % accuracy was obtained using combination 
wavelet transform and ANFIS classifier by Guler et al 
[10]. Ocak obtained 94.3% and 98% classification 
accuracy by combining the wavelet transform, 
approximation entropy, genetic algorithm and LVQ 
classifier [11].  

In this paper, a novel classification method for EEG 
signals is proposed.  In this method, the features were 
extracted from the EEG signals using the wavelet packet 
decomposition (WPD) and approximate entropy (ApEn). 
This feature extraction method can extracted the nonlinear 
and non-stationary features of EEG signals effectively. 
And then one dimension real valued particle swarm 
optimization algorithm was employed to reduce the 
number of features and find the optimal feature subset by 
maximizing the classification performance of the SVM 
classifier. Experimental results demonstrated that the 
proposed method obtained 100% classification accuracy 
and only 6 features were selected for classifier training 
and testing which makes the training and testing of 
classifier more efficiently. 
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II. TECHNICAL BACKGROUND 

2.1 Wavelet packet analysis 

Wavelet packet analysis[10] is a generalized form of 
the discrete wavelet transform. In the wavelet packet 
analysis of a signal, first the signal is simultaneously 
passed through a series of low-pass (LP) and high-pass 
(HP) filters named as quadrature mirror filters. The cut-off 
frequency of these filters is one-fourth of the sampling 
frequency. The bandwidth of the filter outputs are half the 
bandwidth of the original signal, which allows for the 
down-sampling of the output signals by two without 
loosing any information according to the Nyquist theorem. 
The downsampled signals from the LP and HP filters are 
referred to as first-level approximation (A) and detail (D) 
coefficients, respectively. To get the second-level 
approximation of approximation (AA), detail of 
approximation (DA), approximation of detail (AD) and 
detail of detail (DD) coefficients, the same procedure is 
repeated for the first-level A and D coefficients. At each 
level of the decomposition, frequency resolution is 
doubled through filtering while the time resolution is 
doubled through filtering while the time resolution is 
halved by downsampling operation. 

2.2 Approximation entropy 

Approximation entropy (ApEn) derived from the 
Kolmogorov-Sinai entropy is a measure that quantifies the 
regularity of predictability of a time series or signal [11]. 
It is defined as the logarithmic likelihood that runs of 
patterns of certain length that are close to each other will 
remain close on next incremental comparisons. The first 
step in computing the approximation entropy of a time 
series, yi,i=1,2,…,N is to construct the state vectors in the 
embedding space, Rm, using the method of delays,  

2 ( 1){ , , ,..., },1 ( 1)i i i i i mx y y y y i N mτ τ τ τ+ + + −= ≤ ≤ − −  (1) 
where m and τ  are the embedding dimension and time 
delay, respectively. Next, we define for each i,  
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For fixed m, r andτ , ApEn is given by the formula 
1( , , , ) ( ) ( )m mApEn m r N r rτ += Φ − Φ                       (5) 

which is basically the logarithmic likelihood that runs of 
patterns of length m that are close ( within r ) will remain 
close on next incremental comparisons. 

2.3 The principle of Particle Swarm Optimization 

Particle swarm optimization (PSO) is an evolutionary 
computation technique developed by Kennedy and 
Eberhart in 1995 [12]. The original intent was to 
graphically simulate the graceful but unpredictable 
movements of a flock of birds. Initial simulations were 
modified to form the original version of PSO. Later, Shi 
introduced inertia weight into the particle swarm 
optimizer to produce the standard PSO. PSO is initialized 
with a population of random solutions, called ‘particles’. 
Each particle is treated as a point in an S-dimensional 
space. The ith particle is represented as Xi=(xi1, 
xi2, . . . ,xiS). The best previous position (pbest, the position 
giving the best fitness value) of any particle is recorded 
and represented as Pi= (pi1,pi2, . . . ,piS). The index of the 
best particle among all the particles in the population is 
represented by the symbol ‘gbest’. The rate of the position 
change (velocity) for particle i is represented as Vi= (vi1, 
vi2, . . . , viS). The particles are manipulated according to 
the following equation: 
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id id idx x v= +                                                    (7) 
where d = 1,2,. . . ,S, w is the inertia weight, it is a positive 
linear function of time changing according to the 
generation iteration. Suitable selection of the inertia 
weight provides a balance between global and local 
exploration, and results in needing much fewer iterations 
on average to find a sufficiently optimal solution. The 
acceleration constants c1 and c2 in Eq.(6) represent the 
weighting of the stochastic acceleration terms that pull 
each particle toward pbest and gbest positions. Low 
values allow particles to roam far from target regions 
before being tugged back, while high values result in 
abrupt movement toward, or past, target regions. rand( ) 
and Rand( ) are two random functions in the range [0, 1]. 

Particles’ velocities on each dimension are limited to a 
maximum velocity, Vmax. It determines how large steps 
through the solution space each particle is allowed to take. 
If Vmax is too small, particles may not explore sufficiently 
beyond locally good regions. They could become trapped 
in local optima. On the other hand, if Vmax is too high 
particles might fly past good solutions. 

The first part of Eq.(6) provides the “flying particles” 
with a degree of memory capability allowing the 
exploration of new search space areas. The second part is 
the “cognition” part, which represents the private thinking 
of the particle itself. The third part is the “social” part, 
which represents the collaboration among the particles. 
Eq.(6) is used to calculate the particle’s new velocity 
according to its previous velocity and the distances of its 
current position from its own best experience (position) 
and the group’s best experience. Then the particle flies 
toward a new position according to Eq.(7). The 
performance of each particle is measured according to a 
pre-defined fitness function. 
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2.4  The Principle of Support Vector Machine 

In the process of feature selection, a performance index 
or a fitness function that assesses the quality of the 
selected features in terms of classification error should be 
adopted to guide the forming of a reduced feature space. 
So a classifier will be used. Here we adopt the support 
vector machine (SVM) as the classifier [14].  

Let (xi, yi), 1≤i≤N, denote a set of training data, where 
N represents the number of training data. Each datum 
must conform to the criteria d

ix R∈  and { }1,1iy ∈ − , 
where d denotes the number of dimensions of input data. 
SVM attempts to identify a hyper-plane, which functions 
as a separating plane for classification of data, in a 
multidimensional space. The parameters w and b are given 
by  

(<w·xi >+b) =0, i=1,2,…,N                         (8) 
If a hyper-plane exists that satisfies Eq.(8), then linear 

separation is obtained. In this case, w and b can be 
rewritten as follows. Eq.(8) becomes 
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1
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Let the distance from the data point to the hyper-plane 
be 1/||w||. Among separating hyper-planes, there exists one 
optimal separating hyper-plane (OSH), and the distance 
between two support vector points on two sides of this 
hyper-plane is maximal. Because the distance between 
two support vector points is 1/||w||2, the minimal distance 
to OSH, ||w||2, may be derived from Eq.(9). 

The margin of a separating hyper-plane, calculated as 
2/||w||, determines the hyper-plane’s generalization ability. 
The OSH has the largest margin among separating hyper-
planes. ||w||2 is minimized with Eq.(9) and Lagrange’s 
polynomial. Let a denote (a1,…,aN). Combining 
Lagrange’s polynomial (in the order of N) with Eq.(9) 
produces the following equations for maximization. 
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where ai≥0 and under constraint 
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Quadratic programming method can be adopted to 

solve the above maximization problem. If a vector 
( )0 0 0

1 ,..., Na a a= satisfies the Eq.(10) in maximization, 
then the OSH expressed in terms of (w0,b0) may be 
expressed as follows: 
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where the support vector points must comply with 0 0ia ≥  
and Eq.(9). When considering expansion in constraint 
Eq.(11), the determinant function of hyper-plane is 
expressed as follows: 
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In most cases, the data are not linearly separable, and 
are consequently mapped to a higher-dimensional feature 
space. Therefore, if the data cannot be classified clearly in 

the current dimensional space, then the SVM will map 
them to a higher dimensional space for classification.  

Input data are mapped to a higher dimensional feature 
space by plotting a nonlinear curve. The OSH is 
constructed in the feature space. By constructing the 
feature space ( )xφ can be adopted in constrained Eq.(10) 
as shown below: 
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Given a symmetric and positive kernel function K(x,y), 
the existence of Mercer’s theorem can be deduced. 
Therefore, ( , ) ( ) ( )K x y x yφ φ= . Provided that the kernel 
function K satisfies Mercer’s theorem, the derived training 
algorithm is guaranteed for minimization 
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The decision function is expressed as follows: 
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III. EEG SIGNAL CLASSIFICATION WITH FEATURE 
SELECTION BASED ON ONE-DIMENSION REAL VALUED 

PARTICLE SWARM OPTIMIZATION 

3.1 Feature selection based on one-dimension real 
valued particle swarm optimization 

The original PSO technique is designed for the real-
valued optimization problems, whereas the feature 
selection only uses binary values to represent whether one 
feature is selected or not. So many researchers adopted the 
binary PSO (BPSO) [6] or proposed the improved binary 
PSO (IBPSO) [13] to do feature selection. In those works, 
a binary string is used for representing the feature set in 
which the presence of a feature is coded as “1” and the 
absence of a feature as “0”. So the binary PSO does 
searching in high dimension real-valued space in which 
every original feature is viewed as a dimension, and 
converts the searched multi-dimension real-valued result 
into a binary string to test the performance of the searched 
feature subsets in each iterations. And the computing time 
may increase substantially as the number of original 
features increasing. Furthermore, the more dimension, the 
more complicate searching space. There will be more 
local minima or maxima in the searching space, and the 
feature selection algorithms have more chances to trap 
into the local optima and cannot get the optimal feature 
subset. In this paper, one-dimension real-valued PSO for 
feature selection (ODRV_PSO) is proposed, in which the 
search space will less complicate than that of traditional 
BPSO and has less chances to trap into local optimum. 
This approach consists of the following steps. 
Step 1: The population of particles ix  is initialized, each 

particle i  having a random position t
ix  and a 

312



random velocity t
iv  within the one-dimension 

real valued space, where iteration t=0. 
Step 2: For every particle, t

ix  is coded into a binary string 
( )t

iBinaryString x  in which every bit indicates a 
feature present or not, and its fitness is evaluated. 
Here, the fitness valued is determined by an 
SVM classifier, which is defined as following 
form: 

( )

"0" ( )

t
i

t
i

fitness x classification accuracy

number of in BinaryString x
total number of original features

α

=    

     
      + ×

    

  (16) 

where α is a balance factor. 
Step 3:  For every particles i , the best solution t

ip  until 
iteration t can be obtained as the Eq. (17).    

{ }{1,2,..., }
| max ( ( ))t T T

i i iT t
p x fitness BinaryString x

∈
=  (17) 

Step 4: For all population, the global best solution t
gp  

until iteration t can be obtained as the Eq.(18). 

{ }| max ( ( ))t t t
g i ii

p p fitness BinaryString p=     (18)  

Step 5: Compute the velocity of each particle with Eq.(19). 
1

1 1 2 2( ) ( )t t t t t t
i i i i g iv v c r p x c r p x+ = + − + −         (19) 

where c1 indicates the cognition learning factor, c2 
indicates the social learning factor, r1 and r2 are 
random number uniformly distributed in U(0,1).  

Step 6: Each particle moves to the next position (or 
solution) according to Eq.(20). 

1t t t
i i ix x v+ = +                                          (20) 

Step 7:  Stop the algorithm and output BinaryString  
( )t

gp if termination criterion is satisfied; return to 
Step 2 otherwise. 

3.2  SVM classification of EEG signals with the proposed 
feature selection method 

In this study, a novel classification method for EEG 
signals is proposed and can be described as follows: 
Step1: The EEG recordings are decomposed into various 

frequency bands through a fourth-level WPD. And 
Db2 mother wavelet is used in the decomposition. 
Table 1 gives the reason why fourth-level WPD is 
used. From Table 1, we can find that the 
classification accuracy with fourth-level wavelet 
packet decomposition is much higher. That is to 
say, fourth-level wavelet packet decomposition 
can adequately extract the useful information or 
features for classification from EEG signals. 

Step2: ApEn value of the coefficients at each node of the 
decomposition structure is computed as a feature 
representing the regularity or the predictability of 
the coefficients at that node.  

Step3: ODRV_PSO algorithm searches the optimal 
feature subset. 

Step4: Training the SVM classifier with the searched 
optimal feature subsets and do the prediction with 
the well-trained SVM classifier. 

IV. EXPERIMENTAL RESULTS 

4.1 feature selection based on one dimension real valued 
particle swarm optimization 

Four datasets from the UCI Machine Learning 
Repository are used to compare the performance of the 
BPSO based feature selection algorithm with SVM 
classifier (Algorithm a) and the One-dimension real 
valued PSO based feature selection algorithm with SVM 
classifier (Algorithm b), as shown in Table 2. From Table 
2, we can find that the proposed method gets higher 
classification accuracy and obtains smaller feature subset. 
These results indicate that the proposed method can get 
the solution that is much closer to the optimal solution, i.e. 
better feature subset. 

Table 1.The experimental results of the classification based on different 
level wavelet packet decomposition and approximation entropy 

 

SVM 
training 
time  (in 
second) 

SVM 
testing time 
(in second)

Classification rate 
of normal EEG 

(%) 

Classification rate 
of Epileptic EEG 

(%) 

Two-
level 
WPD 

0.016 0.016 97.5 92 

Two-
level 
WPD 

0.016 0.026 97.7 94 

Four-
level 
WPD 

0.015 0.021 98.3 96 

Five-
level 
WPD 

0.021 0.020 96.5 94.7 

 

4.2 SVM classification of EEG signals with the proposed 
feature selection method 

Five datasets containing quasi-stationary, artifact-free 
EEG signals both in normal subjects and epileptic patients 
were put in the web by Ralph Andrzejak from the 
Epilepsy center in Bonn, Germany. Each dataset contains 
100 single channel EEG segments of 23.6 sec duration. 
The sampling rate of the data was 173.61Hz. A summary 
of the data set can be found in the reference Ref.(14).  
   Fourth-level WPD is applied to both normal and 
epileptic EEG signals. There are a total of 31 nodes in the 
wavelet decomposition structure. And ApEn values are 
computed for each node as the extracted features of EEG 
signals. Then dataset are partitioned into training dataset 
and testing set. The training dataset were used for training 
the SVM classifier and doing feature selection with three 
stochastic searching algorithms. Three stochastic 
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searching algorithms for feature selection are genetic 
algorithm (GA), binary particle swarm optimization 
(BPSO) algorithm and one-dimension real valued particle 
swarm optimization (ODRV_PSO) algorithm. And testing 
dataset is used for testing the classification rates. Table 3 
shows the classification rates of the SVM classifier with 
three feature selection algorithms. From Table 3, our 
proposed method can get 100% classification rate which 
is higher than other methods and select only 6.2 features 
which is less than other methods. This experimental result 
also shows that our proposed method can much better 
feature subset.  

Table 2.Feature selection performance and classification performance 
comparison of two algorithms using UCI datasets 

Average number of 
reduced features with 20 

runs 

Average classification 
accuracy with 20 runs (%)

Dataset 

Number 
of 

original 
features Algorithm 

a 

Algorithm 

b 

Algorithm 

a 

Algorithm

b 

Breast 

Cancer 
9 6.9±0.34 3.1±0.23 95.4±1.24 99.28±0 

Segment 

_ation 
19 6.2±0.34 3.0±0.14 92.8±2.05 95.11±0.23

Dermat 

_ology 
34 12.6±0.61 8.0±0.36 80.89±0.19 98.30±0.38

Opt 

_digits 
64 25.0±0.36 16.2±0.26 97.5±0.37 99.50±0.00

 

Table 3. Classification performance of EEG signals with three different 
feature selection algorithms 

 
Number of the 

selected 
features 

Average 
classification 

rates of normal 
EEG with 20 

runs ( % ) 

Average 
classification 

rates of epileptic 
EEG with 20 

runs (%) 

Without feature 
selection 

31 88.7±0.266 90.1±0.412 

Feature 
selection with 

GA 
11.3±0.331 95.3±0.331 98.1±0.417 

Feature 
selection with 

PSO 
12.6±0.473 98±0.442 96.6±0.256 

Feature 
selection with 
ODRV_PSO 

6.2±0.311 100±0 100±0 

 

V. CONCLUSIONS 
In this study, a new method for EEG signal 

classification is presented. In this method, wavelet packet 
decomposition and approximation entropy are used for do 

feature extraction, which will extract the nonlinear 
information from EEG signals sufficiently. And then an 
effective feature selection algorithm based on one-
dimension real valued Particle Swarm Optimization is 
proposed and applied to do feature selection of the 
extracted features of EEG signals, which will reduce the 
number of features substantially further, and improve the 
accuracy and efficiency of EEG signal classification. 
Experimental results showed that the proposed feature 
selection algorithm could get more optimal feature subset 
and the proposed classification method could effectively 
select the useful features and obtain 100% classification 
rate of EEG signals. All of these indicated that the 
proposed method was much qualified for doing feature 
selection in many applications unlimited to EEG signal 
classification. 
 

REFERENCE 
[1] R.Agarwal, J.Gotman, D.Flanagan, B.Rosenblatt, “Automatic EEG 

analysis during long-term monitoring in the ICU”, 
Electroencephalography and Clinical Neurophysiology, vol.107, 
pp.44-58, 1998. 

[2] E.D.Ubeyli, I.Guler, “Features extracted by eigenvector methods 
for detecting variability of EEG signals,” Pattern Recognition 
Letters, vol.28, pp.592-603, 2007. 

[3] L.Chen, H.Hsiao, “Feature selection to diagnose a business crisis 
by using a real GA-based support vector machine: An empirical 
study,” Expert System with Applications, vol.35, pp.1145-1155, 
2008. 

[4] L.Chuang, H.W.Chang, C.J.Tu, C.H.Yang, “Improved binary PSO 
for feature selection using gene expression data, Computational 
Biology and Chemistry, vol.32, pp.29-38, 2008. 

[5] T.M.Cover, J.M.Van Campenhout, “On the possible orderings in 
the measurement selection problem,” IEEE Transactions on 
Systems, Man and Cybernetics, vol.9, pp.657–661, 1997. 

[6] A.B.Gardner, G.A.Worrell, E.Marsh, “Human and automated 
detection of high-frequency oscillations in clinical intracranial 
EEG recordings,” Clinical Neurophysiology, vol.118, pp.1134-
1143, 2007. 

[7] N.F.Guler, E.D.Ubeyli, I.Guler, “Recurrent neural networks 
employing Lyapunov exponents for EEG signals classification,” 
Expert System with Applications, vol.29, pp.506-514, 2005. 

[8] H.Ocak, “Automatic detection of epileptic seizures in EEG using 
discrete wavelet transform and approximate entropy,” Expert 
Systems with Applications, vol.36, vol.2027-2036, 2009. 

[9]  W.Siedlecki, J.Sklansky, “On automatic feature selection,” 
International Journal of Pattern Recognition and Artificial 
Intelligence, vol.2, pp.197–220, 1988. 

[10] A.Subasi, “EEG signal classification using wavelet feature 
extraction and a mixture expert model,” Expert System with 
Applications, vol.32, pp.1084-1093, 2007. 

[11] X.Wang, J.Yang, X.Teng, W.Xia, R.Jensen, “Feature selection 
based on rough set and particle swarm optimization,” Pattern 
Recognition Letters, vol.28, pp.459-471, 2007. 

[12] S.C.Yusta, “Different metaheuristic strategies to solve the feature 
selection problem,” Pattern Recognition Letters, vol.30, pp.525-
534, 2009. 

[13] H.Zhang, G.Sun, “Feature selection using tabu search method,” 
Pattern Recognition, vol.35, pp.701-711, 2002 

[14] S.Lin, K.Ying, S.Chen, Z.Lee, “Particle swarm optimization for 
parameter determination and feature selection of support vector 
machines,” Expert System with Applications, vol.35, 1817-1824, 
2008. 

 

314


