
Global Learning of Neural Networks by Using Hybrid
Optimization Algorithm

Yong-Hyun Cho Seong-Jun Hong

School of Computer and Information Comm. Eng., Catholic Univ. of Daegu, 330, Kumrakri, Hayangup,
Kyungsan, Kyungbuk, 712-702, Korea(South)

Abstract
This paper proposes a global learning of neural
networks by hybrid optimization algorithm. The hybrid
algorithm combines a stochastic approximation with a
gradient descent. The stochastic approximation is first
applied for estimating an approximation point inclined
toward a global escaping from a local minimum, and
then the backpropagation(BP) algorithm is applied for
high-speed convergence as gradient descent. The
proposed method has been applied to 8-bit parity check
and 6-bit symmetry check problems, respectively. The
experimental results show that the proposed method
has superior convergence performances to the
conventional method that is BP algorithm with
randomized initial weights setting.

Keywords: Neural networks, Global learning,
Stochastic approximation, Gradient descent,
Backpropagation algorithm

1. Introduction
Neural networks (NNs), due to its massive parallelism,
have been rigorously studied as an alternative to the
conventional numerical approaches. Over the past
several years, NNs have been increasingly applied to
the identification, control of nonlinear systems, and
pattern recognitions [1]-[2]. A basic model structure for
static nonlinearities is the multilayer feedforward NN,
in which learning, i.e. estimation of weights, involves
the minimization of an output error criterion using
backpropagation (BP) [3]-[6].

Although the BP algorithm can be generalized for
more complex NN structures (e.g. recurrent NNs,
hybrid physical-neural models), which are useful in
modeling dynamic nonlinear systems, the resulting
algorithms are usually more complicated to implement
and more computationally demanding. Hence, it is
appealing to develop a more straightforward numerical
procedure for computing the gradient of the output
error criterion [5]-[6].

Most of the researches have been concentrated on

the improvement of either the convergence speed or the
convergence to the global minimum in consideration of
the weights parameter of the energy function, cooling
scheduling, the learning parameters, or the number of
hidden units, etc[3]-[7]. But there are few that consider
the initial weights setting to accelerate the speed of
convergence. And there are few that try to solve both
of the global convergence and its speed simultaneously.
If the initial synapse weights in the NNs are set close to
the global minimum, then the learning procedure will
be expected to converge quickly. Consequently the
global minimum will be found correctly with high
speed.

This paper proposes an efficient method for
improving the convergence performances of the NN by
applying a global optimization method. The global
optimization method is a hybrid of a stochastic
approximation [8] and a gradient descent method. The
approximation value inclined toward a global escaping
from a local minimum is estimated first by applying the
stochastic approximation, and then the gradient descent
of BP algorithm is applied for high-speed convergence.
The proposed algorithm has been applied to the 10
training patterns of 8-bit parity check and 6-bit
symmetry check problems, respectively. We
demonstrate the convergence performances of the
proposed algorithm compared with the conventional
method that is BP algorithm with randomized initial
synapse weights setting.

2. Estimation of initial value by
stochastic approximation

We consider the following problem of global
unconstrained optimization: minimize the
multiextremal function ƒ(x)∈Ri, x∈Rn, i.e.

)(min xf
nRx∈

(1)

A multiextremal function can be represented as a
superposition of uniextremal function(i.e., having just
one minimum) and other multiextremal function that
add some noise to the uniextremal function. The
objective of smoothing can be visualized as filtering

out the noise and performing minimization on the
smoothed uniextremal function, in order to reach the
global minimum. In general, since the minimum of the
smoothed uniextremal function does not coincide with
the global function minimum, a sequence of
minimization runs is required to zero in the
neighborhood of the global minimum [8]. The
smoothing process is performed by averaging ƒ(x) over
some region of the parameter space Rn using a proper
weighting (or smoothing) function h^(x).

Let us introduce a vector of random perturbations
η∈Rn, and add η to x. The convolution function ƒ~(x,
β) is created as follows [8].

ηηβηβ dxfhx
nRf)(),(),(^~

−= ∫ (2)

Hence:

)]([),(
~

ηβ η −= xfExf (3)

Where ƒ~(x, β) is the smoothed approximation to the
original function ƒ(x), and the kernel function h^(η, β)
is the probability density function(pdf) used to sample
η. β controls the dispersion of h^(η, β), i.e. the degree
of ƒ(x), smoothing [8].

Note that ƒ~(x, β) can be regarded as an averaged
version of ƒ(x), weighted by h^(η, β). Eη[ƒ(x- η)] is the
expectation with respect to the random variable η.
Therefore an unbiased estimator ƒ~(x, β) is the average:

∑
=

−=
1

~
)]([1),(

i

i
n xfE

N
xf ηβ (4)

Where η is sampled with the pdf h^(η, β).
The kernel function h^(η, β) should have the

following properties [8]:

- h^(η, β) = (1/ βn) h(η/β) (5)
is piecewise differentiable with respect to η.

- limβ→0 h^(η, β) = δ(η) (Dirac delta function)
 - h^(η, β) is a pdf.

Under above the conditions, limβ→0 ƒ~(x, β) = ∫Rn

δ(η) ƒ(x- η) dη = ƒ(x - 0) = ƒ(x). Several pdfs fulfill
above conditions, such as the Gaussian, uniform, and
Cauchy pdfs.

Smoothing is able to eliminate the local minima
of ƒ~(x, β), if β is sufficiently large. If β → 0, then ƒ~(x,
β) → ƒ(x). This should actually happen at the end of
optimization to provide convergence to the true
function minimum [8]. Formally, the optimization
problem can be written as:

),(min ~ βxf
nRx∈

(6)

with β → 0 as x → x*. Where x* is the global minimum
of the original function ƒ(x). One class of methods to
solve the modified problem Eq. (6) – to be called large
sample(LS) stochastic methods - can be characterized
as follows: for each new point x, a large number of
points sampled with the pdf h^(η, β) (Eq. (5)) is used to
estimate ƒ~(x, β) and its gradient ▽x ƒ~(x, β). The
number of samples used should be sufficiently large to
give small errors of the relevant estimators.
Optimization and averaging are separated in this
process. This is very inefficient [8].

Optimization and the averaging can be combined
into one iterative process, leading to much more
efficient small-sample (SS) methods of stochastic
programming. A large class of SS methods, called
stochastic approximation, is applied to stochastic
function minimization or maximization [8]. Their basic
principle of operation is that only a small number of
samples are used in each iteration to find the necessary
estimators, but all the information is being averaged
over many steps.

In function minimization, SA methods create
stochastic equivalent to the gradient methods of
nonlinear programming. The advanced algorithms are
proposed to estimate the gradient ▽x ƒ~(x, β). As the
algorithm progresses, β → 0, reducing the smoothing
degree of the ƒ(x) function, and providing convergence
to the true minimum. The SA algorithm implements a
well-defined approximation to the conjugate gradient
[1]. The value x based on the smoothed function ƒ~(x,
β) is updated, as following,

ξk = ▽x ƒ~(xk, β)
Sk = STEP / ||ξk||
dk = (1-ρk) dk-1 + ρk ξk (0≤ ρk ≤1)
ρk = (1-ρk-1) / (1+ ρk-1–R)
xk+1 = xk - Sk dk (7)

where k(1,2,…,MAXITER) is the number of iterations,
ξ is the gradient, S is a step size, d is the search
direction, ρ is the gradient averaging coefficient of ƒ~(x,
β), and R(0<R<1) is a constant controlling the rate of
change of ρk.

Therefore, we can find the global minimum of
original function ƒ(x) by iteratively performing one
cycle of the SA optimization as β → 0. This is called
the stochastic approximation with smoothing (SAS) [8].

Fig.1 is the flow chart of SA algorithm. In this Fig.
1, each new value x is performed in the direction Sk dk,
where dk is a convex combination of the previous
direction dk-1 and a new gradient ξk. Especially R is
responsible for the rate of change of ρk, that is, it
modifies the search direction dk and provides a suitable
amount of inertia of gradient direction.

Fig. 1: Flow chart of stochastic approximation (SA).

Fig. 2 is the flow chart of SAS algorithm that
repeatedly performs the SA algorithm according to a
sequence: {β0, β1, ...} → 0. We can get the global
minimum by using the SAS algorithm based on
specific sequences {β} and {NMAX}. It turned out that
the final solutions were not very sensitive to a specific
choice of theses sequences based on rough heuristic
criteria such as: low problem dimensionality requires a
smaller number of function evaluations, β should be
large at the beginning of optimization (to determine the
approximate position of the global minimum), and
small at the end of optimization (for precision) [8].

Fig. 2: Flow chart of stochastic approximation with
smoothing (SAS).

We consider the function ƒ(x) = x4 – 16x2 + 5x as

an example [8]. This function is continuous and
differentiable, and it has two distinct minima as shown
in Fig.3. The smoothed function ƒ~(x, β) is plotted to
different values of β → 0({5, 4, 3, 2, 1, 0.001, 0.0})
and MAXITER=100 for uniform pdf. We can show
that minimize the smoothed functional ƒ~(x, β) with β
→ 0 as x → x*. As shown in Fig. 3, the ƒ~(x, β) has a
uniextremal function having one minimum xI from β

=5 to β=3. That is, smoothing is able to eliminate the
local minima of ƒ~(x, β), if β is sufficiently large. If β
→ 0, then ƒ~(x, β) = ƒ(x). Above all, we can find out
that the minimum xI of uniextremal function leads
toward the global minimum x* of ƒ(x).

Fig. 3: Smoothed function ƒ~(x, β) to different β values.

On the other hand, the simulated annealing is
often explained in terms of the energy that particle has
at any given temperature [7]. A similar explanation can
be given to the smoothed approximation approach
discussed. Perturbing x can be viewed as adding some
random energy to a particle which x represents. The
larger the β, the larger the energy (i.e., the larger the
temperature in the simulated annealing), and the
broader the range of x changes. Reducing β for the
smoothed approximation approach corresponds to
temperature reduction in the simulated annealing.

Although the global minimum can be found by
repeatedly applying the SA according to a sequence:
{β0, β1, ...} → 0, there are a few problems as follows: a
specific sequences and a parameters should be
determined heuristically in each iterations, and, due to
its stochastic process, its convergence speed is rather
slower lower than that of the deterministic algorithm
and sometimes results in approximate solution.

For this reason, SAS is the stochastic algorithm as
simulated annealing. The stochastic algorithms
guarantees that converge to the global minimum, but
their convergence speed are lower than that of the
deterministic algorithms. In order to solve the
limitation of convergence speed, we present a new
optimization method that combines advantages of
stochastic algorithm and deterministic algorithms. That
is, we propose a hybrid method of SA algorithm and
gradient descent algorithm. SA algorithm is previously
applied to estimate an initial value leading to the global
minimum, and the gradient descent algorithm as
deterministic algorithm is also applied for high-speed
convergence. In Fig.3, if we utilize the minimum xI as
an initial value of gradient descent algorithm, the

global minimum of original function can be quickly
and correctly looked for rather than that find by
repeatedly applying SA according to a sequence {β}.

Fig.4 is the flow chart of proposed method. If the
other minima exist between xf (minimum of original
function by using the gradient descent algorithm) and
global minimum x*, x* can be find out by repeatedly
applying the proposed method.

Fig. 4: Flow chart of proposed method.

3. Training of neural network by the
proposed method

The basic idea in this paper is that, in applying the SA,
if we choose a large β initially, we can get a
uniextremal smoothed function ƒ~(x, β), the minimum
value xI of which can approximately point out the hill
side value of the global minimum well. In
optimization of functions and learning of NNs,
Minimization of the function ƒ(x) to variable x are
much the same as the minimization of total error
function E(W) to synapse weights W.

Accordingly, we apply the proposed method to
learn the multilayer neural network. BP algorithm is
also used in learning as a gradient descent algorithm.
SA algorithm is previously applied to estimate an
initial weights leading to the global minimum, and then
the BP algorithm is also applied for high-speed
convergence. The multilayer neural network will be
quickly learned and clearly guaranteed that converges
to a global minimum in weight space if we go about it
like this.

The proposed algorithm to improve the learning
performances of the multilayer neural network by
applying the SA and the BP algorithm can be detailed
as follows:

Step 1: Define the total error function E(W) and the
square error function Ep(W) of each of the p-th
input patterns.

E(W) = ∑p Ep(W)
Ep(W) = (1/2) ∑i (xip(W) - dip)2 (8)

Where xip(W) and dip are the physical value and
the desired value of i-th output neuron over p-
th input pattern.

Step 2: Calculate the smoothed gradient ▽wEp
~(W, β)

over the Ep(W).
Ep

~(W, β) = (1/2)[Ep
~(W+ βη) + Ep

~(W- βη)]
= (1/4)∑i [2dip

2 – 2dip(xip(W+βη)
+ xip(W-βη)) + xip

2(W+βη)
+ xip

2(W-βη)] (9)

▽wEp
~(W, β) = (1/4) ∑i [–2dip(▽wxip(W+βη)

+ ▽wxip(W-βη)) + ▽wxip
2(W+βη)

+ ▽wxip
2(W-βη)] (10)

i) For the output layer,
▽wEp

~(W,β) = (1/2)∑i [(f(∑j(Wij+βη) yjp(W))
- dip) f(∑j (Wij+βη) yjp(W)) (1
- f(∑j (Wij+βη) yjp(W)))
+ (f(∑j (Wij-βη) yjp(W))
- dip) f(∑j (Wij-βη) yjp(W)) (1
- f(∑j(Wij-βη)yjp(W)))]yjp(W) (11)

ii) For the hidden layer,
▽wEp

~(W, β) = (1/2) ∑i [(f(∑j Wij f(∑m (Wjm

- βη)omp)) - dip) f(∑j Wij f(∑m (Wjm

- βη) omp)) (1 - f(∑j Wij f(∑m (Wjm

- βη)omp))) ∑jWijf(∑m(Wjm+βη)omp)
+ (f(∑j Wij f(∑m (Wjm-βη) omp))
- dip) f(∑jWij f∑m(Wjm- βη) omp)) (1
- f(∑jWij f(∑m(Wjm-βη) omp)))
∑jWij f(∑m (Wjm-βη) omp)] omp (1

- f(∑m(Wjm+βη)omp)) (12)

Where, omp is the output from the m-th neuron
of (s-2)-th layer corresponding to the p-th
input pattern. The i, j, and m are the numbers
of the s-, (s-1)-, and (s-2)-th layer, respectively.

Step 3: Set the randomized initial synapse weights Wo.

Step 4: Estimate the synapse weights by performing SA
with a large β according to the gradient
▽wEp

~(W, β).

Step 5: Perform the conventional BP algorithm using
the synapse weights estimated in Step 4.

Step 6: If the total error function E(W) by the step 5 is
less than the tolerance limit EPV, then stop.
Otherwise go to step 4.

4. Experiments and discussions
The proposed method has been applied to the 10
patterns of 8-bit parity check and 6-bit symmetry
check problems for evaluating the convergence
performances (rate and speed).

The multilayer NN is a 3-layered, feedforward
network that is fully interconnected by layers. The
range of the initial synapse weights are randomly
chosen as [-0.5 ~ +0.5] among layers. The stopping
rule is used in each experiment so as to terminate the
calculation if all the weights do not change any more
or the total error E(W) becomes less than the tolerance
limit EPV. The dispersion control parameter β0=3.0
and the smoothing function h(η) with uniform pdf are
chosen, respectively.

The experimental results for each example are
shown in tables of 1, 2, and 3, where Nbp, and NSA are
the number of iterations of BP algorithm and SA
algorithm, respectively. Et is the final error value in
termination. tbp, and tpm are the CPU time in [sec] of
BP algorithm and proposed algorithm. In table 2,
x~ and σ are mean and standard deviation, respectively.

4.1. Parity check
Parity check refers to the use of parity bits to check that
data has been transmitted accurately. The parity bit is
added to every data unit (8 bits in this experiment) that
is transmitted. The parity bit for each unit is set so that
all bytes have an odd number of set bits. If the number
of set bits is odd, it sets the parity bit to 1. A tolerance
limit EPV for terminating the algorithm sets up 0.0001.

The input and hidden layers are constructed 8
neurons; the output layer is constructed 1 neuron. Fig.
5 shows 10 training patterns and NN’s architecture,
respectively.

Fig. 5: Training patterns and NN’s architecture of parity
check.

Table 1 shows the experimental results for the
different learning parameters (learning rate α, moment
τ). Each row represents the mean of results that only
satisfy the stopping rule with the 10 different initial

synapse weights. The learning parameters have an
influence on the convergence speed of BP algorithm,
and the proposed algorithm is influenced by the
learning parameters because it also includes the BP
algorithm for learning NN. In case of learning rate
α=0.5 and moment τ=0.9, the convergence speed is
higher than that of another learning parameters. The
convergence speed (time) of proposed algorithm is
averagely about 53.9 times higher than that of BP
algorithm with randomized initial weights setting.
We can also know that one cycle of SA algorithm
takes more time than BP algorithm. Compared with
BP algorithm of the deterministic method, SA
algorithm is by reason of stochastic method. But the
SA algorithm is executed by little iteration in the
proposed algorithm.

Table 1: Results of parity check for 10 patterns of 8-bit.

Table 2 represents mean, standard deviation, and
convergence ratio of the experimental results for the
100 trials in case of α=0.5 and τ=0.9. Especially, table
2 shows the results that satisfy the stopping rule. N, t,
and Pr are the number of iterations, the CPU time, and
the convergence ratio. As seen, the convergence rate
by the proposed algorithm is about 1.5 times and its
convergence speed (time) is about 15.5 times higher
than that of the BP algorithm, respectively. The
experimental results show that the convergence
performances of the proposed algorithm are superior
to that of the BP algorithm with randomized initial
weights setting. The standard deviation of proposed
algorithm is about 1.5 lower than that of the BP
algorithm in the CPU time. It means that the proposed
algorithm is affected less by the initial weights setting
than the BP algorithm.

Table 2: Results for 100 trials in α=0.5 and τ=0.9.

4.2. Symmetry check
This task is a problem that checks the symmetry
between (n/2) bits and the other half (n/2) bits. In this
task, a string of six bits (0 or 1) is judged for mirror
symmetry. An output of 1 indicates that the first three
digits, when reversed, match the last three digits. An
output of 0 indicates that they do not match. A
tolerance limit EPV also sets up 0.0001.

The input and hidden layers are constructed 6
neurons; the output layer is constructed 1 neuron. Fig.
6 shows 10 training patterns of 6-bit and NN’s
architecture, respectively.

Fig. 6. Training patterns and NN’s architecture of symmetry
check.

Table 3 shows also the experimental results for

the different learning parameters. Each row also
represents the mean of the results that satisfy the
stopping rule with the 2 different initial synapse
weights. The learning parameters have an influence on
the convergence speed of BP algorithm and the
proposed algorithm, respectively. In case of learning
rate α=0.5 and moment τ=0.9, the convergence speed
is higher than that of another learning parameters. The
convergence speed (time) of proposed algorithm is
averagely about 12.1 times higher than that of BP
algorithm with randomized initial weights setting. We
can also know that one cycle of SA algorithm takes
more time than BP algorithm as parity check result.

Table 3. Results of symmetry check for 10 patterns of
6-bit.

Consequently, the convergence rate and

convergence speed by the proposed method is higher
than that of BP algorithm with randomized initial

weights setting. Especially, the proposed method is
affected less by the initial weights setting.

5. Conclusions
This paper presents an efficient method for improving
the performances of the neural network by global
optimization. The method is a hybrid of a stochastic
approximation and a gradient descent method. The
approximation point inclined toward a global escaping
from a local minimum is estimated first by applying the
stochastic approximation, and then the BP algorithm is
applied for high-speed convergence.

The proposed method is applied to the 10 training
patterns of 8-bit parity check and 6-bit symmetry check
problems, respectively. The experimental results show
that the proposed method has superior convergence
performance (rate and speed) to the conventional
method that is BP algorithm with randomized initial
synapse weights setting.

Our future research is to solve on a large scale
learning problems by using neural networks of the
proposed method.

References
[1] D. P. Bertsekas and J.N. Tsitsiklis, Parallel and

Distributed Computation Numerical Method,
Prentice-Hall, London, pp. 1-50, 1989.

[2] A. Cichock and R. Unbehaun, Neural Networks
for Optimization and Signal Processing, John-
Wiley & Sons, New York, 1993.

[3] N. Baba, A New Approach for Finding the Global
Minimum of Error Function of Neural Networks.
IEEE Trans. on Neural Networks, 2: 367-373,
1989.

[4] S. Cho and T.W.S Chow, Training Multilayer
Neural Networks Using Fast Global Learning
Algorithm - Least-Squares and Penalized
Optimization Methods. Neurocomputing, 25; 115-
131, 1999.

[5] R. Moddemeijer, A Fast Heuristic Global
Learning Algorithm for Multilayer Neural
Networks. Neural Processing Letters, 9: 177-187,
1999.

[6] B. Samanta, S. Bandopadhyay, and R. Ganguli,
Comparative Evaluation of Neural Network
Learning Algorithms for Ore Grade Estimation.
Mathematical Geology, 38: 175-197, 2006.

[7] H. Szu and R. Hartley, Fast Simulated Annealing.
Physics Letters A, 122: 157-162, 1987.

[8] M.A. Styblinski and T.S. Tang, Experiments in
Nonconvex Optimization: Stochastic
Approximation with Function Smoothing and
Simulated Annealing. IEEE Trans. on Neural
Networks, 3: 467-483, 1990.

