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Abstract 
This paper proposes a global learning of neural 
networks by hybrid optimization algorithm. The hybrid 
algorithm combines a stochastic approximation with a 
gradient descent. The stochastic approximation is first 
applied for estimating an approximation point inclined 
toward a global escaping from a local minimum, and 
then the backpropagation(BP) algorithm is applied for 
high-speed convergence as gradient descent. The 
proposed method has been applied to 8-bit parity check 
and 6-bit symmetry check problems, respectively. The 
experimental results show that the proposed method 
has superior convergence performances to the 
conventional method that is BP algorithm with 
randomized initial weights setting. 
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1. Introduction 
Neural networks (NNs), due to its massive parallelism, 
have been rigorously studied as an alternative to the 
conventional numerical approaches. Over the past 
several years, NNs have been increasingly applied to 
the identification, control of nonlinear systems, and 
pattern recognitions [1]-[2]. A basic model structure for 
static nonlinearities is the multilayer feedforward NN, 
in which learning, i.e. estimation of weights, involves 
the minimization of an output error criterion using 
backpropagation (BP) [3]-[6].  

Although the BP algorithm can be generalized for 
more complex NN structures (e.g. recurrent NNs, 
hybrid physical-neural models), which are useful in 
modeling dynamic nonlinear systems, the resulting 
algorithms are usually more complicated to implement 
and more computationally demanding. Hence, it is 
appealing to develop a more straightforward numerical 
procedure for computing the gradient of the output 
error criterion [5]-[6]. 

Most of the researches have been concentrated on 

the improvement of either the convergence speed or the 
convergence to the global minimum in consideration of 
the weights parameter of the energy function, cooling 
scheduling, the learning parameters, or the number of 
hidden units, etc[3]-[7]. But there are few that consider 
the initial weights setting to accelerate the speed of 
convergence. And there are few that try to solve both 
of the global convergence and its speed simultaneously.  
If the initial synapse weights in the NNs are set close to 
the global minimum, then the learning procedure will 
be expected to converge quickly. Consequently the 
global minimum will be found correctly with high 
speed. 

This paper proposes an efficient method for 
improving the convergence performances of the NN by 
applying a global optimization method. The global 
optimization method is a hybrid of a stochastic 
approximation [8] and a gradient descent method. The 
approximation value inclined toward a global escaping 
from a local minimum is estimated first by applying the 
stochastic approximation, and then the gradient descent 
of BP algorithm is applied for high-speed convergence. 
The proposed algorithm has been applied to the 10 
training patterns of 8-bit parity check and 6-bit 
symmetry check problems, respectively. We 
demonstrate the convergence performances of the 
proposed algorithm compared with the conventional 
method that is BP algorithm with randomized initial 
synapse weights setting. 

2. Estimation of initial value by 
stochastic approximation 

We consider the following problem of global 
unconstrained optimization: minimize the 
multiextremal function ƒ(x)∈Ri, x∈Rn, i.e.  

)(min xf
nRx∈

(1)

A multiextremal function can be represented as a 
superposition of uniextremal function(i.e., having just 
one minimum) and other multiextremal function that 
add some noise to the uniextremal function. The 
objective of smoothing can be visualized as filtering 



out the noise and performing minimization on the 
smoothed uniextremal function, in order to reach the 
global minimum. In general, since the minimum of the 
smoothed uniextremal function does not coincide with 
the global function minimum, a sequence of 
minimization runs is required to zero in the 
neighborhood of the global minimum [8]. The 
smoothing process is performed by averaging ƒ(x) over 
some region of the parameter space Rn using a proper 
weighting (or smoothing) function h^(x).  

Let us introduce a vector of random perturbations 
η∈Rn, and add η to x. The convolution function ƒ~(x, 
β) is created as follows [8]. 
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Hence:  
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Where ƒ~(x, β) is the smoothed approximation to the 
original function ƒ(x), and the kernel function h^(η, β)
is the probability density function(pdf) used to sample 
η. β controls the dispersion of h^(η, β), i.e. the degree 
of ƒ(x), smoothing [8]. 

Note that ƒ~(x, β) can be regarded as an averaged 
version of ƒ(x), weighted by h^(η, β). Eη[ƒ(x- η)] is the 
expectation with respect to the random variable η.
Therefore an unbiased estimator ƒ~(x, β) is the average: 

∑
=

−=
1

~
)]([1),(

i

i
n xfE

N
xf ηβ (4)

Where η is sampled with the pdf h^(η, β).  
The kernel function h^(η, β) should have the 

following properties [8]:  
 

- h^(η, β) = (1/ βn) h(η/β) (5)
is piecewise differentiable with respect to η.

- limβ→0 h^(η, β) = δ(η) (Dirac delta function) 
 - h^(η, β) is a pdf.  

 
Under above the conditions, limβ→0 ƒ~(x, β) = ∫Rn

δ(η) ƒ(x- η) dη = ƒ(x - 0) = ƒ(x). Several pdfs fulfill 
above conditions, such as the Gaussian, uniform, and 
Cauchy pdfs.  

Smoothing is able to eliminate the local minima 
of ƒ~(x, β), if β is sufficiently large. If β → 0, then ƒ~(x, 
β) → ƒ(x). This should actually happen at the end of 
optimization to provide convergence to the true 
function minimum [8]. Formally, the optimization 
problem can be written as:  

),(min ~ βxf
nRx∈
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with β → 0 as x → x*. Where x* is the global minimum 
of the original function ƒ(x). One class of methods to 
solve the modified problem Eq. (6) – to be called large 
sample(LS) stochastic methods - can be characterized 
as follows: for each new point x, a large number of 
points sampled with the pdf h^(η, β) (Eq. (5)) is used to 
estimate ƒ~(x, β) and its gradient ▽x ƒ~(x, β). The 
number of samples used should be sufficiently large to 
give small errors of the relevant estimators. 
Optimization and averaging are separated in this 
process. This is very inefficient [8].  

Optimization and the averaging can be combined 
into one iterative process, leading to much more 
efficient small-sample (SS) methods of stochastic 
programming. A large class of SS methods, called 
stochastic approximation, is applied to stochastic 
function minimization or maximization [8]. Their basic 
principle of operation is that only a small number of 
samples are used in each iteration to find the necessary 
estimators, but all the information is being averaged 
over many steps. 

In function minimization, SA methods create 
stochastic equivalent to the gradient methods of 
nonlinear programming. The advanced algorithms are 
proposed to estimate the gradient ▽x ƒ~(x, β). As the 
algorithm progresses, β → 0, reducing the smoothing 
degree of the ƒ(x) function, and providing convergence 
to the true minimum. The SA algorithm implements a 
well-defined approximation to the conjugate gradient 
[1]. The value x based on the smoothed function ƒ~(x, 
β) is updated, as following,  

ξk = ▽x ƒ~(xk, β)
Sk = STEP / ||ξk|| 
dk = (1-ρk) dk-1 + ρk ξk (0≤ ρk ≤1)  
ρk = (1-ρk-1) / (1+ ρk-1–R)  
xk+1 = xk - Sk dk (7)

where k(1,2,…,MAXITER) is the number of iterations, 
ξ is the gradient, S is a step size, d is the search 
direction, ρ is the gradient averaging coefficient of ƒ~(x, 
β), and R(0<R<1) is a constant controlling the rate of 
change of ρk.

Therefore, we can find the global minimum of 
original function ƒ(x) by iteratively performing one 
cycle of the SA optimization as β → 0. This is called 
the stochastic approximation with smoothing (SAS) [8].  

Fig.1 is the flow chart of SA algorithm. In this Fig. 
1, each new value x is performed in the direction Sk dk,
where dk is a convex combination of the previous 
direction dk-1 and a new gradient ξk. Especially R is 
responsible for the rate of change of ρk, that is, it 
modifies the search direction dk and provides a suitable 
amount of inertia of gradient direction. 



Fig. 1: Flow chart of stochastic approximation (SA). 

Fig. 2 is the flow chart of SAS algorithm that 
repeatedly performs the SA algorithm according to a 
sequence: {β0, β1, ...} → 0. We can get the global 
minimum by using the SAS algorithm based on 
specific sequences {β} and {NMAX}. It turned out that 
the final solutions were not very sensitive to a specific 
choice of theses sequences based on rough heuristic 
criteria such as: low problem dimensionality requires a 
smaller number of function evaluations, β should be 
large at the beginning of optimization (to determine the 
approximate position of the global minimum), and 
small at the end of optimization (for precision) [8].  

Fig. 2: Flow chart of stochastic approximation with 
smoothing (SAS). 

 
We consider the function ƒ(x) = x4 – 16x2 + 5x as 

an example [8]. This function is continuous and 
differentiable, and it has two distinct minima as shown 
in Fig.3. The smoothed function ƒ~(x, β) is plotted to 
different values of β → 0({5, 4, 3, 2, 1, 0.001, 0.0}) 
and MAXITER=100 for uniform pdf. We can show 
that minimize the smoothed functional ƒ~(x, β) with β
→ 0 as x → x*. As shown in Fig. 3, the ƒ~(x, β) has a 
uniextremal function having one minimum xI from β

=5 to β=3. That is, smoothing is able to eliminate the 
local minima of ƒ~(x, β), if β is sufficiently large. If β
→ 0, then ƒ~(x, β) = ƒ(x). Above all, we can find out 
that the minimum xI of uniextremal function leads 
toward the global minimum x* of ƒ(x). 

Fig. 3: Smoothed function ƒ~(x, β) to different β values. 

On the other hand, the simulated annealing is 
often explained in terms of the energy that particle has 
at any given temperature [7]. A similar explanation can 
be given to the smoothed approximation approach 
discussed. Perturbing x can be viewed as adding some 
random energy to a particle which x represents. The 
larger the β, the larger the energy (i.e., the larger the 
temperature in the simulated annealing), and the 
broader the range of x changes. Reducing β for the 
smoothed approximation approach corresponds to 
temperature reduction in the simulated annealing.  

Although the global minimum can be found by 
repeatedly applying the SA according to a sequence: 
{β0, β1, ...} → 0, there are a few problems as follows: a 
specific sequences and a parameters should be 
determined heuristically in each iterations, and, due to 
its stochastic process, its convergence speed is rather 
slower lower than that of the deterministic algorithm 
and sometimes results in approximate solution. 

For this reason, SAS is the stochastic algorithm as 
simulated annealing. The stochastic algorithms 
guarantees that converge to the global minimum, but 
their convergence speed are lower than that of the 
deterministic algorithms. In order to solve the 
limitation of convergence speed, we present a new 
optimization method that combines advantages of 
stochastic algorithm and deterministic algorithms. That 
is, we propose a hybrid method of SA algorithm and 
gradient descent algorithm. SA algorithm is previously 
applied to estimate an initial value leading to the global 
minimum, and the gradient descent algorithm as 
deterministic algorithm is also applied for high-speed 
convergence. In Fig.3, if we utilize the minimum xI as 
an initial value of gradient descent algorithm, the 



global minimum of original function can be quickly 
and correctly looked for rather than that find by 
repeatedly applying SA according to a sequence {β}. 

Fig.4 is the flow chart of proposed method. If the 
other minima exist between xf (minimum of original 
function by using the gradient descent algorithm) and 
global minimum x*, x* can be find out by repeatedly 
applying the proposed method.  

Fig. 4: Flow chart of proposed method. 

3. Training of neural network by the 
proposed method 

The basic idea in this paper is that, in applying the SA, 
if we choose a large  β initially, we can get a 
uniextremal smoothed function ƒ~(x, β), the minimum 
value xI of which can approximately point out the hill 
side value of the global minimum well. In 
optimization of functions and learning of NNs, 
Minimization of the function ƒ(x) to variable x are 
much the same as the minimization of total error 
function E(W) to synapse weights W.

Accordingly, we apply the proposed method to 
learn the multilayer neural network. BP algorithm is 
also used in learning as a gradient descent algorithm. 
SA algorithm is previously applied to estimate an 
initial weights leading to the global minimum, and then 
the BP algorithm is also applied for high-speed 
convergence. The multilayer neural network will be 
quickly learned and clearly guaranteed that converges 
to a global minimum in weight space if we go about it 
like this.  

The proposed algorithm to improve the learning 
performances of the multilayer neural network by 
applying the SA and the BP algorithm can be detailed 
as follows:  

Step 1: Define the total error function E(W) and the 
square error function Ep(W) of each of the p-th 
input patterns. 

E(W) = ∑p Ep(W)
Ep(W) = (1/2) ∑i ( xip(W) - dip )2 (8) 

Where xip(W) and dip are the physical value and 
the desired value of i-th output neuron over p-
th input pattern. 

Step 2: Calculate the smoothed gradient ▽wEp
~(W, β)

over the Ep(W). 
Ep

~(W, β) = (1/2)[ Ep
~(W+ βη) + Ep

~(W- βη) ]
= (1/4)∑i [2dip

2 – 2dip(xip(W+βη)
+ xip(W-βη)) + xip

2(W+βη)
+ xip

2(W-βη)]             (9) 

▽wEp
~(W, β) = (1/4) ∑i [–2dip(▽wxip(W+βη)

+ ▽wxip(W-βη)) + ▽wxip
2(W+βη)

+ ▽wxip
2(W-βη)]          (10) 

i) For the output layer,  
▽wEp

~(W,β) = (1/2)∑i [(f(∑j(Wij+βη) yjp(W)) 
- dip) f(∑j (Wij+βη) yjp(W)) (1 
- f(∑j (Wij+βη) yjp(W)))  
+ (f(∑j (Wij-βη) yjp(W)) 
- dip) f(∑j (Wij-βη) yjp(W)) (1 
- f(∑j(Wij-βη)yjp(W)))]yjp(W) (11) 

ii) For the hidden layer,  
▽wEp

~(W, β) = (1/2) ∑i [(f(∑j Wij f(∑m (Wjm 

- βη)omp)) - dip) f(∑j Wij f(∑m (Wjm 

- βη) omp)) (1 - f(∑j Wij f(∑m (Wjm 

- βη)omp))) ∑jWijf(∑m(Wjm+βη)omp)
+ (f(∑j Wij f(∑m (Wjm-βη) omp)) 
- dip) f(∑jWij f∑m(Wjm- βη) omp)) (1 
- f(∑jWij f(∑m(Wjm-βη) omp))) 
∑jWij f(∑m (Wjm-βη) omp)] omp (1 

- f(∑m(Wjm+βη)omp))        (12) 

Where, omp is the output from the m-th neuron 
of (s-2)-th layer corresponding to the p-th 
input pattern. The i, j, and m are the numbers 
of the s-, (s-1)-, and (s-2)-th layer, respectively. 

Step 3: Set the randomized initial synapse weights Wo.

Step 4: Estimate the synapse weights by performing SA 
with a large β according to the gradient 
▽wEp

~(W, β). 

Step 5: Perform the conventional BP algorithm using 
the synapse weights estimated in Step 4. 

Step 6: If the total error function E(W) by the step 5 is 
less than the tolerance limit EPV, then stop. 
Otherwise go to step 4. 



4. Experiments and discussions 
The proposed method has been applied to the 10 
patterns of 8-bit parity check and 6-bit symmetry 
check problems for evaluating the convergence 
performances (rate and speed).  

The multilayer NN is a 3-layered, feedforward 
network that is fully interconnected by layers. The 
range of the initial synapse weights are randomly 
chosen as [-0.5 ~ +0.5] among layers. The stopping 
rule is used in each experiment so as to terminate the 
calculation if all the weights do not change any more 
or the total error E(W) becomes less than the tolerance 
limit EPV. The dispersion control parameter β0=3.0 
and the smoothing function h(η) with uniform pdf are 
chosen, respectively. 

The experimental results for each example are 
shown in tables of 1, 2, and 3, where Nbp, and NSA are 
the number of iterations of BP algorithm and SA 
algorithm, respectively. Et is the final error value in 
termination. tbp, and tpm are the CPU time in [sec] of 
BP algorithm and proposed algorithm. In table 2, 
x~ and σ are mean and standard deviation, respectively. 

4.1. Parity check 
Parity check refers to the use of parity bits to check that 
data has been transmitted accurately. The parity bit is 
added to every data unit (8 bits in this experiment) that 
is transmitted. The parity bit for each unit is set so that 
all bytes have an odd number of set bits. If the number 
of set bits is odd, it sets the parity bit to 1. A tolerance 
limit EPV for terminating the algorithm sets up 0.0001.  

The input and hidden layers are constructed 8 
neurons; the output layer is constructed 1 neuron. Fig. 
5 shows 10 training patterns and NN’s architecture, 
respectively.  

Fig. 5: Training patterns and NN’s architecture of parity 
check. 

Table 1 shows the experimental results for the 
different learning parameters (learning rate α, moment 
τ). Each row represents the mean of results that only 
satisfy the stopping rule with the 10 different initial 

synapse weights. The learning parameters have an 
influence on the convergence speed of BP algorithm, 
and the proposed algorithm is influenced by the 
learning parameters because it also includes the BP 
algorithm for learning NN. In case of learning rate 
α=0.5 and moment τ=0.9, the convergence speed is 
higher than that of another learning parameters. The 
convergence speed (time) of proposed algorithm is 
averagely about 53.9 times higher than that of BP 
algorithm with randomized initial weights setting.  
We can also know that one cycle of SA algorithm 
takes more time than BP algorithm. Compared with 
BP algorithm of the deterministic method, SA 
algorithm is by reason of stochastic method. But the 
SA algorithm is executed by little iteration in the 
proposed algorithm.  

 

Table 1: Results of parity check for 10 patterns of 8-bit. 

Table 2 represents mean, standard deviation, and 
convergence ratio of the experimental results for the 
100 trials in case of α=0.5 and τ=0.9. Especially, table 
2 shows the results that satisfy the stopping rule. N, t, 
and Pr are the number of iterations, the CPU time, and 
the convergence ratio. As seen, the convergence rate 
by the proposed algorithm is about 1.5 times and its 
convergence speed (time) is about 15.5 times higher 
than that of the BP algorithm, respectively. The 
experimental results show that the convergence 
performances of the proposed algorithm are superior 
to that of the BP algorithm with randomized initial 
weights setting. The standard deviation of proposed 
algorithm is about 1.5 lower than that of the BP 
algorithm in the CPU time. It means that the proposed 
algorithm is affected less by the initial weights setting 
than the BP algorithm.  

 

Table 2: Results for 100 trials in α=0.5 and τ=0.9. 



4.2. Symmetry check 
This task is a problem that checks the symmetry 
between (n/2) bits and the other half (n/2) bits. In this 
task, a string of six bits (0 or 1) is judged for mirror 
symmetry. An output of 1 indicates that the first three 
digits, when reversed, match the last three digits. An 
output of 0 indicates that they do not match. A 
tolerance limit EPV also sets up 0.0001. 

The input and hidden layers are constructed 6 
neurons; the output layer is constructed 1 neuron. Fig. 
6 shows 10 training patterns of 6-bit and NN’s 
architecture, respectively.  

Fig. 6. Training patterns and NN’s architecture of symmetry 
check. 

 
Table 3 shows also the experimental results for 

the different learning parameters. Each row also 
represents the mean of the results that satisfy the 
stopping rule with the 2 different initial synapse 
weights. The learning parameters have an influence on 
the convergence speed of BP algorithm and the 
proposed algorithm, respectively. In case of learning 
rate α=0.5 and moment τ=0.9, the convergence speed 
is higher than that of another learning parameters. The 
convergence speed (time) of proposed algorithm is 
averagely about 12.1 times higher than that of BP 
algorithm with randomized initial weights setting. We 
can also know that one cycle of SA algorithm takes 
more time than BP algorithm as parity check result.  

 

Table 3. Results of symmetry check for 10 patterns of 
6-bit. 

 
Consequently, the convergence rate and 

convergence speed by the proposed method is higher 
than that of BP algorithm with randomized initial 

weights setting. Especially, the proposed method is 
affected less by the initial weights setting. 

5. Conclusions 
This paper presents an efficient method for improving 
the performances of the neural network by global 
optimization. The method is a hybrid of a stochastic 
approximation and a gradient descent method. The 
approximation point inclined toward a global escaping 
from a local minimum is estimated first by applying the 
stochastic approximation, and then the BP algorithm is 
applied for high-speed convergence.  

The proposed method is applied to the 10 training 
patterns of 8-bit parity check and 6-bit symmetry check 
problems, respectively. The experimental results show 
that the proposed method has superior convergence 
performance (rate and speed) to the conventional 
method that is BP algorithm with randomized initial 
synapse weights setting.  

Our future research is to solve on a large scale 
learning problems by using neural networks of the 
proposed method. 
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