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Abstract

Dynamic Time Warping (DTW) is one of the im-
portant distance measures for time series, however,
the exact calculation of DTW has become a bot-
tleneck. We propose an approach, named Farly
Abandon DTW (EA_DTW) to accelerate the cal-
culation. We demonstrate the idea of early aban-
don by theoretical analysis, and show the utili-
ties of EA_DTW by thorough experiments both
on synthetic and real datasets. The results show,
EA_DTW outperforms the dynamic DTW calcula-
tion in the light of process time, and is much bet-
ter when the threshold is below the real DTW dis-

tance.

Keywords: Data mining, Time series, Similarity
search, Dynamic time warping, Early abandon

1. Introduction

Time-series data naturally occur in a wide range of
applications, examples include computational biol-
ogy, astrophysics, geology, multimedia, economics,
to name a few. Therefore, there has been great re-
search efforts devote to mining time series in the
last decade. Similarity search in time series is use-
ful in its own right to explore the properties of time
series data. On one hand, similarity search is one of
the important tools for mining time series; on the
other hand, it usually acts as a subroutine in other
time series mining tasks [1], and has wide appli-
cations in clustering, classification, pattern detec-
tion, and others. Recently, searching similar time
series has been one of the hot topics in time series
mining, and various similarity search methods have
been proposed due to the ubiquitous use.

A large body of earlier work have been based on
the Euclidean distance. The distance is calculated
in a point by point manner, and works well when
the time series have the same unit of scale. How-
ever, there is an increasing awareness that Euclid-
ean distance suffers from the distortion in time axis

and shows poor accuracy in searching [2].

Recently, more and more researchers examined
the superiority of Dynamic Time Warping(DTW)
over Euclidean distance in the similar time series
search. DTW is a distance allowing stretching on
time axis, which provides a way to optimally align
time series that are intuitively more better than
Euclidean distance does, thus since it was first in-
troduced into the time series mining community by
Berndt et al. in [3], the distance has attracted great
attention. However, the calculation of DTW has
long been a research topic, though there are some
lower bounding functions to approximate the cal-
culation of DTW, as we will show later, the exact
DTW calculation is in reality unavoidable and has
become the bottleneck in the similarity search, thus
it is of urgent importance to accelerate the exact
calculation of DTW.

Overall, our contributions in this work can be
simply summarized as follows:

e We introduce the idea of early abandon in the
calculation of DTW, The early abandon has
been used in previous work for the calculation
of Euclidean, and we apply it to the calculation
of DTW.

e We propose the Early Abandon DTW
(EADTW) to accelerate the calculation of
DTW. We formally demonstrate the process
of early abandon in DTW.

e We show the superiority of EA_DTW over
plain dynamic DTW calculation by thorough
empirical experiments, and the results validate
the utility of EA_DTW.

The rest of the paper is organized as follows.
Section 2 reviews the related work, and provides a
background for our work. In Section 3 we present
the method of EA_DTW in the exact calculation
of DTW. In Section 4 we give experimental results
and make discussions about the results. Finally we
offer conclusions and future work in Section 5.



2. Related Work and Back-
grounds

2.1. Related Work

A variety of work on DTW calculation mainly fo-
cused on the following aspects:

e Calculation of DTW with dynamic program-
ming. The original calculation of DTW is a
recursive routine, and may incur many redun-
dant computations during the process. While
the real calculation of DTW is usually based
on the dynamic programming method, which
constructs a dynamic warping matrix to reuse
the already known values, and thus improves
the efficiency.

e Exact indexing based on DTW distance. Since
DTW is proved to not obey the property of
triangle inequality [1], and cannot be used to
the exactly indexing on time series sequences,
some researchers introduced the lower bound-
ing functions, such as LB_Kim [4], LB_Keogh
[1], etc, and indexed the sequences with these
functions. As the lower bounding functions are
generally fast, they gain a good efliciency in
large scale computations. The lower bounding
theorem in [5] ensured that the index meth-
ods will not incur the false negative(i.e., the
final resultset will contain all the qualified
sequences, and no qualified sequence will be
missed), however, the lowering functions may
cause the false positive(i.e., the sequences re-
turned by the index may not be the qualified
sequences, and the unqualified sequences may
be contained in the resultset). To get the exact
results, the query on the index proceeds in two
steps: the first step is to retrieval in the index
space, and find all the candidate sequences; the
second step is to refine the candidate sets of
sequences from the first step by exact calcula-
tion of DTW, and discard all the unqualified
sequences.

The work in [6] tested the indexing approaches
with thorough experiments, and the results show,
as there is a sequential scan in the second step(the
exact calculation of DTW), the efficiency is very
low, which has become a bottleneck in the query.
Thus it is desirable to devise methods to accelerate
the exact calculation of DTW.

2.2. Backgrounds
2.2.1. Some definitions

We are now in the position to give the formal defi-
nition on the problem we are considering, the sim-
ilarity search. We first define the data type we are
interested of, the time series.

Definition 1 Time Series. Time series is a
sequence of data measured by the time, denoted as
T = {t1,ta,...,tn}, where n(n > 0) is the length
of time series, i.e., |T| = n.

Definition 2 Similarity Search. Given the set
of time series sequences C' = {c1,c¢2,...,¢p}, the
query sequence ¢, the threshold e(e > 0), and the
distance measure d, find all the qualified sequences
¢ € C, such that d(q,c) <e.

There are two types of similarity searching in
time series, one is the whole sequence searching, and
the other is the subsequence searching, i.e., search-
ing all occurrence of subsequences that are qual-
ified. While it is possible to convert the subse-
quence searching into whole sequence searching by
the methods of sliding window [7], segmentation,
we consider whole sequence searching in this work.

2.2.2. Exact calculation of DTW

Suppose there are two sequences with length of m
and n, respectively:

U:ul,u2,...,um, (1)

V =v1,vg,...,0,. (2)

To align the two sequences with DTW, we can con-
struct an m*n dynamic warping matrix, where the
cell (4,7)(1 < i < m,1 < j < n) corresponds to
the aligning of data point u; and v;, and the value
in the cell is the distance between u; and v, also
called base distance. In accordance with other work
[1], we use the Euclidean distance as the base dis-
tance, i.e.,

dpase (Uiyvj) = (u; — vj)% (3)

However, other distance measures such as L1 will
not affect our discussions.

After constructing the dynamic warping ma-
trix, we can calculate a warping path W from the
cell (1,1), and to cell (m,n):

W:wl,wg,...,wc, (4)

as shown in Fig. 1, and the DTW alignment be-
tween U and V is shown in Fig. 2.
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Fig. 1: Illustration of classic DTW calculation: con-
struct a warping path from the start point to the
end point, and search for the minimal warping path,
denoted with the grey squares.
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Fig. 22 The DTW alignment between the two se-
quences.

We can formally define a mapping function f, :
(U,V) — W to represent the alignment between U
and V in the warping path W as

wk:fw(uiavj)a (5)

where 1 < k < ¢i € {1,2,...,m},j €
{1,2,...,n}, u; and v; are aligned, and the cell
(u;,v;) is the kth cell wy, in the warping path.

In the calculation of DTW, the warping path
should subject to several constraints:

e Endpoint.The warping path starts from the

beginning of both sequences, and ends to the
end of both sequences, i.e.,

w1 :fw(uhvl)vwc:fw(umvvn)' (6)

e Continuity. Neighboring cells in the warping
path are adjacent to each other(including the

diagonally adjacent cells), i.e.,

wk—fw(uiﬂvj) :>i'<i j/<j+
+1, >~ L.
Wg+1 = )w(ui’vvj')

(7)
e Monotonicity. The warping path spaces
monotonically in time, i.e.,

{wk = fuw(ui, vj)

=i<i,j<j. (8)
Wit1 = fu(ui,vj)

The DTW distance between U,V is calculated
from the optimal warping path with the minimum
distance:

DTW (U, V) = argmin(

Though a variety of techniques can be applied
to the calculation of DTW, the most established
one is the dynamic programming method. The ex-
act DTW distance can be calculated as:

DTW (U, V) =~(m,n)

7(2 - la])
(2, 7) = dpase(ui, vj) + ming v(i—1,5 —1) (10)
7(%] - 1)

7(0,0) = 0,7(0,00) = 00,7(0,0) = 00
(i=12,....m;53=1,2,...,n)

the value in cell v(i,7) can be seen as the cu-
mulative sum of values in the warping path from
cell (1,1) to (4,7), we call the cells with value of
¥4, 5)(1 < i < m,1 < j < n)as cumulative dis-
tance matriz. Fig. 3 shows an example of cumula-
tive distance matrix.

3 6 0 6 1

S 21 25 41 42
29 8 6 31 26 42
33 9 22 10 26 27

58 13 10 35 11 27
67 13 19 19 20 15

W L D N

Fig. 3: Hlustration of cumulative distance matrix
between two sequences: U = {2,5,2,5 3}V =
{0,3,6,0,6,1}. The DTW distance is 15.



2.2.3. Early Abandon Technique

Early abandon is a technique in the constraint dis-
tance calculation. Here constraint means the calcu-
lation is not for the exact distance, but for a com-
parison between distances(such as to determine one
distance is bigger than the other). The similarity
search of time series needs to check d(g,c¢) < e,
which is a comparison and if the distance exceeds
the e, the candidate sequence ¢ is not qualified,
and will be excluded in the final resultset. With
this in mind, if current calculation already ex-
ceeds the €, we should terminate, since if we have
d(q',c) > e(|¢'| < lgl,|c| < |c|), then we will come
to the conclusion that d(gq,c) > e, the sequence ¢
should not be qualified.

The work in [8] and [9] applied early abandon to
eliminate redundant calculations of Euclidean dis-
tance between sequences, the idea is illustrated in
Fig. 4. Since the calculation of Euclidean distance
is a forward step-wised process, and once the calcu-
lation exceeds the threshold, the afterward calcula-
tions will be interrupted and terminated, and re-
port no-match, thus save the computational power
and improve the efficiency.

xceeds the threshold,
interrupt the calculation.

Fig. 4: Early abandon on Euclidean distance cal-
culation.

3. Early Abandon on Exact
DTW Calculation

The exact DTW distance can be calculated with
equation (10) recursively, for two sequences of m
and n(m > 1,n > 1), respectively, we can con-
struct an m=n cumulative distance matrix, and the
value y(m,n) is the DTW distance between the se-
quences. However, it should point out that we can
apply the idea of early abandon to accelerate the
calculation. For simplicity, for the given threshold
e > 0, if the value of (3, j) > €, we call cell (i, j)
overflows.

3.1. Theoretical Analysis

Now we examine the properties of the cumulative
distance matrix.

Theorem 1 The overflow transmission theo-
rem. If the cells y(i—1,7), v(i—1,j—1), v(i,5—1)
in cumulative distance matrix overflow, then t he
cell (i, j) will overflow.

Proof.

’7(7’7 17]) > 677(7;7 17] - 1) > 677(7:5]-7 1) > €,

soming (@i —1,7—-1) > e
7(17]71)

Moreover,
dbase(“ia Uj) Z 0.

Hence, from equation (10) we have:

V(i,4) > €
the cell (¢, j) overflows.

Theorem 2 The overflow omit calculation
theorem. If the cells v(i — 1,7), v(i — 1,5 — 1),
v(i,7 — 1) in cumulative distance matriz overflow,
then the calculation of base distance dpqse(ui,v;)
can be omitted.

Proof. From theorem 1, we have the cell (i, )
will overflow without regarding what the value of
dpase(ui, vj) is, thus the value of dpese(ui, vj) takes
no effect on the overflow of (4, j) and can be omit-
ted.

From theorem 2, we know that if the cell y(i, j)
overflows, we do not have to calculate the base dis-
tance for the cell, thus save the computation.

Theorem 3 The mno transmission with re-
placement theorem. If cell v(i,j) overflows,
then replacing the value of cell v(i,j) with a value
that is above € will not affect the overflow of cell

(@, 3 >0, > j).
Proof. We prove the theorem with two cases:

e the value ~(i,;j') depends on the value of
~v(i.5). As v(i,j) > €, thus y(i,5') > € and
if replace y(4,7) with a value ¢*(e* > ¢), the
~(%',7") > € holds.

e the value y(7/, j/) has no relation with the value
of y(i,7). Surely in this case, the replacement
will not affect the overflow of cell v(¢', j').



Theorem 4 The replacement equality theo-
rem. If the cell v(i,j) overflows, then replacing
the value of cell (i, ) with a value that is above
€ will not affect the overall overflow of the DTW
distance.

Proof. Similarly, we consider the proof with two
cases:

e The minimal warping path crosses the cell
(4,7). As (4,4) > €, then from the meaning of
~ and the equation (9), we have DTW (U, V) >
€, if we replace v(i,j) with an above € value,
the same conclusion holds.

e The minimal warping path does not cross the
cell (4,7). The value in cell (4, ) will not affect
the DTW(U,V) and can be omitted. From
the theorem 3, provided that «(i,j) > €, the
replacement will not affect the overflow of re-
maining cells.

Theorem 5 The early abandon on DTW the-
orem. If cells in one row or one column of the cu-
mulative distance matriz all overflow, then we have
DTW(U,V) > e.

Proof. From the constraints on the warping path,
(6),(7) and (8), warping path is a continuous curve
from cell (1,1) to cell (m,n), thus warping path
must cross each row and column in the distance
matrix. If all cells in one row or column overflow,
then there must be a cell in the cumulative distance
matrix with the value exceeds the threshold, from
the meaning of v and the equation (9), we have
DTW(U,V) > e.

3.2. Early Abandon on DTW

From the above analysis, we know that if one cell
overflows, we can replace the value of the cell with
an on-the-fly value that is above the threshold and
save the calculation of base distance without affect-
ing the final result; furthermore, if the cells in one
row or column overflow, we should terminate the
calculation DTW, and return no-match. The idea
of early abandon on DTW is illustrated in Table
3.2.

EA_DTW returns false if the two sequence are
not matched, i.e, the distance is above the given
threshold, and returns true if they are matched. In
table 3.2, the algorithm EA_DTW constructs an msx
n matrix for the cumulative distance and initializes
the margin of the matrix(in lines 6 to 8). Lines 3
to 5 check if the first point alignment exceeds the
threshold, if so, we just cancel the calculation and

Algorithm: EA DTW
Input:
U= {uo,ula R um—l}a
V= {'U(),’Ul7 N ,’Unfl},
e: threshold for the query.
Output:
true it DTW(U,V) < ¢, otherwise false.
construct an m * n matrix M,
M[O} [O] — dbase(U/Oy UO);
if M[0][0] > € then

return false;
end if}
Initialize the M0][.] and M[.][0] with
MTi][0] «— MTi — 1][0] + dpase(ui, vo)
MI0][i] «— MI0][¢ — 1] + dpase(uo,v;)
fori=1tom—1do

over flow «— true;

for j=1ton—1do

M[i—1][j —1]
v — ming M[i — 1][j] ;
ML~ 1]

13. if v > € then
14. M]i][j] « DOUBLE_MAX;
15. else
16. MTi][] < v + dpase(ui, v5);
17. over flow «— false;
18. end if;
19. end for;
29. if over flow then
21. break;
22. end if;
23.end for;
24.if over flow then
25. return false;
26.end if;
27.return M[m — 1][n — 1] < ¢;

H = © 00 O O Wi~

—
o

Table 1: Early Abandon on DTW

return false. Lines 9 to 23 do the early abandon and
calculation of DTW, before calculating the value of
each cell, we first check if the value will overflow
according to the theorem 1, if the cell will overflow,
replace the cell value with the max possible double
value according to theorem 3 and theorem 4, and
omit the calculation of base distance according to
theorem 2, otherwise calculate the value in normal
way. Lines 19 to 22 check if the whole row overflow,
and if so, break out the loop and terminate the
further calculation according to theorem 5. The
time complexity of EA_ DTW is O(mn), where m,n
are the length of the two sequences, respectively.



4. Experimental Study

In this section, we test the improvement of
EA_DTW on the efficiency with a comprehensive
sets of experiments.

4.1. Experiment Setup

For these experiments, we used a PC and the con-
figuration is listed in Table 2.

Configuration item | Item value

Processor Intel Pentium 3-866
Operating System Ubuntu Linux 4.1.1-13
RAM 256 megabytes

Disk space 40 gigabytes

Implement language | ANSI C

Compiler GNU gce 4.1.2 20060928

Table 2: Experiment configuration

Note that in order to allow reproducibility, all
the source code and datasets are freely available,
interested readers may email the authors.

For completeness, we implemented all the
methods proposed in this work, which are the
EA_DTW, calculation of DTW with dynamic
programming(denoted as Dyn.DTW), and raw
calculation of DTW with recursive(denoted as
Raw_DTW). There are a step for construction
of cumulative distance matrix in EA_DTW and
Dyn_DTW, while this is not a must in Raw_DTW,
the method calculates the DTW in a recursive way.
We have taken great care to create high quality im-
plementations of all techniques. All approaches are
optimized as much as possible.

In our experiments, we evaluated the efficiency
of different techniques using two metrics. We mea-
sured the elapsed time as the performance metric
directly perceived by the user, and the skip_rate as
the a factor of saving computations.

- Elapsed Time. We used wall-clock time to
measure the elapsed time during the calcula-
tion. As we repeated each experiments in sev-
eral times, the resulting elapsed time is the av-
erage of the experiments with the same para-
meters configured.

- Skip Rate. The steps the EA_DTW skipped
is a factor for the improvement, we use the fol-
lowing equation to denote the skip rate during
the early abandon:

calculated_cells_number

(11)

kip_rate =1 —
swp-rate total_cells_.number

4.2. Evaluation on Random
Generated Datasets

The data sets used in this experiment were created
using a random time series generator that produces
n time series that confirm to the Simple, Uniform,
Exponent Distributions. A fraction of the data are
shown in Fig. 5.

Simple random Uniform random Exponent random
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0 20 40 60 80100120140160180200 0 20 40 60 8010012014016018(200

Fig. 5: Plotting a fraction of the random data.

We found that there were many redun-
dant calculations in RAW_DTW compared with
Dyn . DTW, and RAW_DTW showed a poor effi-
ciency, the results are shown in Table 4.2. For this
reason, we mainly compare our method, EA_DTW,
with the method Dyn_ DTW for the rest of the ex-
periments.

RAW_DTW
Simple random
Uniform random
Exponent random

Dyn DTW
7,418,316.0 | 141.8
3,929,671.3 | 140.9
251,528.6 | 130.3

Table 3: The comparison of RAW_DTW and
Dyn_DTW on elapsed time (in ms).

The comparisons of the elapsed time on the
random generated data are shown in Fig. 6, Fig. 7
and Fig. 8, respectively. As seen from the results,
the EA_DTW outperforms the dynamic calculation
of DTW in the elapsed time, the method wins in all
the threshold configurations, even when the thresh-
old exceeds the exact distance.



Result on Simple Random Data
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Fig. 6: Comparison of elapsed time on Simple Ran-

dom data, the exact DTW distance is 1.3, the size
of cumulative distance matrix is 10 * 13.

Result on Uniform Random Data

elapsed time(ms)

= dyn_DTW

4 —t— EA_DTW

1 T T T T T T T T T
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epsilon

Fig. 7: Comparison of elapsed time on Uniform
Random data, the exact DTW distance is 66.4, the
size of cumulative distance matrix is 8 « 11.

4.3. Evaluation on Real

Dataset

Our real dataset is the Synthetic Control, which
was downloaded from UCI [10]. Fig. 9 shows typi-
cal examples of the dataset.

The result of elapsed time is shown in Fig. 10.
The same trend is observed from the result. With
the same parameter configured, the EA_DTW fin-
ishes the calculation in less elapsed time, the prun-
ing power of the EA_DTW is satisfying.

With all these experiments, we also measured
the skip rate for each calculation of EA_DTW, Fig.
11 shows the results. As the interesting results in-
dicate, the skip rate becomes lower with the thresh-
old grows, and when the threshold exceeds the ex-

Result on Exponent Random Data

= dyn_DTW

—>— EA_DTW

elapsed time(ms)
o
I
&

T T T T
350 360 370 380 390

epsilon
Fig. 8: Comparison of elapsed time on Exponent

Random data, the exact DTW distance is 370.2,
the size of cumulative distance matrix is 10 * 12.

Real dataset

T T T T T
10 20

Fig. 9: Plotting a fraction of the real data.

act distance, we may have less cells to skip. How-
ever, one thing should be noted that, even when
the threshold is above the exact distance, we have
some improvement on the elapsed time, as well as
the skip rate, because we can skip the calculation
of base distance to save computations.

5. Conclusions

In this work, we examined the problem of the ex-
act calculation of DTW, and proposed a method
called EA_DTW to accelerate the calculation. The
approach adopted the idea of early abandon to
skip the unnecessary calculations. The experiments
show, EA_DTW works with less calculation time,
compared with the dynamic programming method
of DTW calculation, and the skip rate is more



Result on Real Data
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Fig. 10: Comparison of elapsed time on real data,

the exact DTW distance is 413.1, the size of cumu-
lative distance matrix is 60 * 60.

Skip Rate on different configurations
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Fig. 11: Skip rate on different configurations: the
skip rate of the first 7 epsilon configurations on each
dataset

better when the threshold specified by the user is
blow the exact distance. For future research, we
plan to apply the method to the segmented-wised
DTW calculation [11], where sequences are first
segmented before the calculation of DTW, the dif-
ference with this work is that if we will skip one
cell in the cumulative distance matrix, we may skip
more cells in the same segment, since the values of
cells in one segment are more the same.
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