
Towards Natural Image Denoising by Sparse Code
Shrinkage: Improvements and Applications

Ying Yu Jian Yang Dan Xu
School of Information Science and Engineering, Yunnan University, Kunming 650091, P. R. China

Abstract
Sparse code shrinkage (SCS) has been proved to be a
very promising method for natural image denoising,
but it still has some drawbacks such as considerable
complexity of computation and inevitable loss of
image details. In this paper, we propose a new
compensation operation and an improved shrinkage
function to effectively combat the loss of image details
in SCS. We also propose a new strategy of sliding
window and non-square ICA filters to relieve the
computational complexity of SCS in real-time system.
Compared with ordinary SCS, our method can remain
better performance while achieving higher efficiency
in natural image denoising.

Keywords: Sparse code shrinkage, Feature extraction,
Independent component analysis, Image denoising.

1. Introduction
The classic experiments of Hubel and Wiesel [1] have
suggested that neurons with line and edge selectivities
found in primary visual cortex of cats and monkeys
form a sparse-distributed representation of natural
scenes, and it has been reasoned that such response
should emerge from an unsupervised learning
algorithm that attempts to find a factorial code of
independent visual features. Barlow was thus let to
propose that our visual cortical feature detectors might
be the end result of a “redundancy reduction” process
[2] [3], in which the activation of each feature detector
is supposed to be as statistically independent from the
others as possible. Such a “factorial code” potentially
involves dependency of all orders, but most studies
have used only the second-order statistics required for
decorrelating the outputs of a set of feature detectors.

A variety of Hebbian feature-learning algorithms
for decorrelation have been proposed [4] [5]. One
popular decorrelating solution is principal components
analysis (PCA), but the principal components of
natural scenes amount to a global spatial frequency
analysis [6]. Therefore, second-order statistics alone
do not suffice to predict the formation of localized
edge detectors.

Field [7] [8] has argued for the importance of
sparse, or “minimum entropy”, coding [9], in which
each feature detector is activated as rarely as possible.
This has led to feature-learning algorithms [10], the
most successful of which has been the Olshausen and
Field [11] demonstration of the self-organization of
local, oriented receptive fields using a sparseness
criterion.

Bell and Sejnowski demonstrated the ability of
this nonlinear information maximization [12] to find
statistically independent components to solve the
problem of separating mixed sources. This
“Independent Components Analysis” (ICA) problem
[13] is equivalent to Barlow’s redundancy reduction
problem. From a viewpoint of “projection pursuit” [14]
[15], ICA makes the most non-Gaussian direction as
the aim of projection pursuit. In 1996, Olshausen and
Field [16] described that some basis-functions,
obtained by ICA from natural images, were similar to
response of receptive field of simple cells in visual
cortex. Bell and Sejnowski [17] presented that the
“independent components” of natural scenes are edge
filters and the sparse encoding of image could be
implemented by ICA. Zhang and Mei [18] have
mathematically proved the relationship between ICA-
filter and simple cell’s receptive field in vision system.

After 1999, Hyvärinen et al. proposed a method of
sparse code shrinkage (SCS) [19] [20], which has been
proved to be a promising method for natural image
denoising and can achieve a better performance than
any other traditional method. PCA and Wiener
filtering only consider the second-order statistical
properties in natural image data. Small wonder, sparse
code shrinkage, using higher order moment in image
data, will take the advantage. The wavelet transform
depends largely on some abstract mathematical
properties which nearly have no relation to statistical
properties of natural data. Compared to the method of
wavelet shrinkage [21]-[23], SCS has the important
benefit that the features are estimated directly from
data.

However, SCS still has some annoying drawbacks
in some applications. For instance, the algorithm is
computationally demanding which may pose great
difficulties in real-time processing. Another drawback

is that it will inevitably lose some image edge details
due to the adoption of soft-threshold although it
achieves good performance in image denoising.

In view of these problems, we present some new
methods. On one hand, we adopt steady-transition
threshold, instead of soft-threshold, and propose a
compensation operation to avoid losing details in
filtering procedure. On the other hand, we propose a
new sliding and non-square window method to greatly
alleviate the pressure of computation in real-time
processing. In addition, we have been successful in
applying our improved sparse code shrinkage method
in the infrared video processing.

The remainder of this paper is organized as
follows. In Section 2, we simply introduce the ICA
method used in this paper. In Section 3, we design a
new compensation operation and a shrinkage function
to improve the performance of SCS. In addition, we
describe in Section 4 how to use a simple sliding
window method to relieve the great complexity of
computation. In Section 5, we conduct experiments to
compare our method with traditional SCS method.
Finally, we introduce in Section 6 the applications
with our SCS method and conclude in Section 7.

2. Independent component analysis
ICA is one of the methods to solve linear equations
based on stochastic vector, which is shown as Eq. (1):

X = AS, X∈Rm, A∈Rm×n, S∈Rn. (1)
Given a stochastic vector X = (x1, x2,..., xm)T, unknown
matrix A and source signal vector S = (s1, s2,..., sn)T, in
general, Eq. (1) has no solution. However, if the
elements of S are mutually independent and non-
Gaussian distribution, and m ≥ n, we can apply an
unsupervised neural network to solve it. If there is a
weight matrix W that satisfies the following equation

WX = WAS ≈ S, (2)
then A and S can be derived, which W ≈ A–1 for m = n
and W ≈ A+ for m ≠ n, A+ is pseudo-inverse matrix of
A. Here, the row vector of W is called ICA filter.
Accordingly, the corresponding column vectors of A
are named ICA basis function.

There are several algorithms to implement ICA
method. In this paper, FastICA proposed by Hyvärinen
[24] [25] is used, in which the stochastic vector X is
prewhitened, normalized and the weight vectors are
orthogonalized in process. The learning rule of the
neural network on the ith unit is

Wi
+ = E{x g(Wi

T x)} – E{g’(Wi
T x)} Wi , (3)

Wi = Wi
+ / ||Wi

+||, (4)
where E{.} is expectation and g(u) = tanh(u), Wi

+ is
un-normalized weight vector for the ith unit. In
learning phase, weight vector Wi

+ of the neural

network is updated by Eqs. (3) and (4) for learning
image set {x(1), x(2),..., x(k)}. All weight vectors of
the neural network are updated one by one using the
same procedure, and then the weight matrix
W=(W1,W2,...,Wn)T is orthogonalized by the
following formula:

W ← (WWT) –1/2 W. (5)
When the iterations of formula (3) – (5) converge, we
can obtain the final weight matrix W, rows of which is
orthogonalized each other.

3. Improving SCS
In our experiments, we use the fixed-point FastICA
algorithm [24] [25] to perform the estimation of ICA
transform. After we estimate the ICA transform from
the natural image data, we can realize the sparse
coding of natural images. An illustration of sparse
coding of natural image is shown in Fig. 1. We can see
that the energy of image after ICA transform is
concentrated on several components and other
components are nearly close to zero, which means that
the redundancy of natural image data is reduced. Here,
‘normalized’ means that the image data have been
converted to zero mean and unit variance.

The shrinkage of sparse code is the key stage of
image denoising. The denoising procedure of sparse
code shrinkage (SCS) is simple: we transform the data
into a representation with suitable properties, shrink
the components using the shrinkage function, and
invert the transformation.

Fig. 1: Illustration of sparse coding of natural image data.
Upper: A normalized image patch (16-by-16) reshaped into a
256-dimensional vector. Lower: Sparse code vector of the
image patch after ICA transform.

3.1. Choice of shrinkage function
Usually, there are two types of shrinkage function:
hard-threshold and soft-threshold [26].

• Hard-threshold

λ
λ

δλ <
≥

⎩
⎨
⎧

=
||
||

0
)(

x
xx

xH (6)

• Soft-threshold

λ
λλ

δλ <
≥

⎩
⎨
⎧ −

=
||
||

0
)|)(|(

)(
x
xxxsign

xS (7)

Here, λ is threshold in sparse code shrinkage.
Hard-threshold method shrinks to zero the

components whose absolute value is smaller than the
threshold, and makes other components intact. It will
bring some unexpected noise. We can notice that there
are two broken points in the hard-threshold shrinkage
function. Just the two broken points would associate
with some artificial noise.

In view of the drawback of hard-threshold, soft-
threshold method is more preferable in sparse code
shrinkage. It shrinks to zero the components whose
absolute value is smaller than the threshold, and
subtract the threshold value from other components,
which secures the global continuity in shrinkage
function. Unfortunately, it will inevitably lose some
details and features in the image due to the shrinkage
of all components, particularly in the case of applying
a great threshold value.

In this paper, we propose the steady-transition
threshold shrinkage function, with two transitional
belts instead of broken points, which not only avoids
bringing in unexpected noise but also makes large
components untouched.

• Steady-transition threshold

λ
ληλ

ηλ

η
ηλδ ηλ

>
≤<

≤

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
−

=
||

||
||

)1(
||)(

0
)(,

x
x

x

x

xxsignx (8)

Here, the constant η is smaller than 1 (η ≈ 0.85).
We also propose a smooth-transition threshold

shrinkage function whose first-order derivative is
continuous. But we can hardly tell any difference from
the denoising results of steady-transition and smooth-
transition threshold. Moreover, the steady-transition
threshold is easier to implement than the smooth one.
So the former is preferable. Plots of different types of
shrinkage function are shown in Fig. 2. The effect of
using steady-transition threshold will be showed in
Section 5.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

broken point

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

transitional belt

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

first-order derivative is continuous

Fig. 2: Plots of the shrinkage function (Threshold = 0.5).
Upper left: Soft-threshold. Upper right: Hard-threshold.
Lower left: Steady-transition threshold. Lower right:
Smooth-transition threshold.

3.2. Compensation operation after
shrinkage

However, whatever shrinkage function we choose, the
shrinking operation will inevitably result in some loss
of edge features in the image. So we appropriately
compensate the components by multiplying them with
a compensation factor β (usually 1.05 <β< 1.20,
positive proportionate with the threshold value) before
inverting the transformation. Butβ can not be too
large, otherwise it will lead to the overflow of gray-
scale value of the reconstructed image. Due to the
nonlinear nature of shrinkage function, compensation
operation differs from simply enhancing the contrast
level of the reconstructed image. The effectiveness of
the compensation operation will be proved by our
experimental results in Section 5.

Therefore, the modified algorithm of sparse code
shrinkage is summarized as follows:

1. Using a set of representative noise-free data
with the same statistical properties as the data that we
wish to denoise, estimate the sparse coding transform
W by first estimating the ICA transform matrix and
then orthogonalizing it.

2. Observing noisy vectors x(j)
(a) Transform each vector into the sparse basis by

Wx(j).
(b) Apply the estimated nonlinearity g to each

component i of each vector j: s(j) = g [Wx(j)].
(c) Multiply each component of each vector s(j)

with the compensation factor β: s(j) = β× s(j).
(d) Perform the inverse transform to each vector

s(j) to get the denoised vectors v(j) = W–1 s(j).
Here, the nonlinearity g is a shrinkage function.

4. Relieving the Complexity of
Computation

4.1. Why SCS is computationally
demanding?

The denoising procedure of SCS is computationally
demanding for the following two reasons:

One is that the dimension of ICA transform is
rather considerable. Usually, if the size of block
processing for an image is N×N, the corresponding
dimension of the transform is N. However, linear ICA
yields the same number of basis vectors and filters as
the number of degrees of freedom of the input. Thus,
the dimension of SCS will soar to considerable N2,
because each patch in size of N×N will be reshaped
into a column vector in size of N2×1 as the input of
ICA transform.

Another reason is that a sliding window approach
[20] is used to combat a blocking artifact. A simple
way to apply SCS to images could be to divide the
image into distinct sub-windows in size of N×N, and
denoise each sub-window separately. This approach,
however, ignores statistical dependencies across the
synthetic edges, resulting in a blocking artifact. This
problem has been solved by taking a sliding window
approach. We do not divide the image into distinct
windows, but denoise every possible N×N window of
the image. We then have N2 different suggested values
for nearly each pixel [27], and determine the final
result as the mean of these values. Therefore, the
complexity of computation will be greatly increased.

4.2. Countermeasure
Increasing the step-length of the sliding window is an
effective way to improve the efficiency of SCS. For
example, Let the step-length=2, then we have N2/4
different values for each pixel. This means that the
efficiency of SCS is improved by 4 times. In practice,
we can hardly tell any difference between the result of
the original approach and that of the improved method.
If let the step-length=4, we only have N2/16 different
values for each pixel, which means that the efficiency
is considerably improved by 16 times, only leading to
a slight degradation of the image quality. We show in
Fig. 3 the denoising results of SCS using different
step-length for sliding window.

Non-square window approach is another way to
further improve the efficiency of SCS. From preceding
analysis, decreasing the window size can also simplify
the computation. But empirically, block processing of
too small size can not eliminate low-frequency noise
completely. So, we propose a new non-square window

(N/2×N) method to further relieve the computational
complexity of SCS. Non-square ICA filter-bank has
similar performance in denoising as square ICA filter-
bank (to be attested in Section 5) while reducing half
dimensionality of ICA transform. An example of non-
square ICA basis is displayed in Fig. 4.

Fig. 3: Denoising with different sliding window step. Upper
left: Results of step-length=1. Upper right: Step-length=2.
Lower left: Step-length=4. Lower right: Step-length=8.

Fig. 4: Orthogonalized non-square ICA filters (8×16 patch).

5. Experiments

5.1. Image database
For the purpose of simplicity for making comparison
between various image denoising methods, we tested
the performance on images which were artificially
corrupted with noise. We chose two separate data sets,
in order to compare the performance of the results on
different data sets. The first set of images comprises
natural scenes which are hoped to reflect truly natural
images free of human-imposed structure. The second
set is intended to represent images of the human-built
world, which are called man-made scenes and have
quite different statistics from the natural scenes. Our

natural scene image dataset includes 489 images such
as forests, mountains, insects, open landscapes and
other natural scene images. The manmade scene image
dataset includes 306 images such as tall-buildings,
streets, highways, indoor-scenes or other urban scene
images. We used the two image dataset to estimate the
ICA transform, and picked some separate images for
the actual denoising experiments.

5.2. Transform estimation
In order to estimate ICA transform, we first linearly
normalize each image so that pixels have zero mean
and unit variance. For the first phase, training patches
in size of 4×8, 8×8, 8×16 and 16×16 are respectively
selected from the images at random locations. Each
patch is reshaped to a column vector as the input data
of ICA networks. The matrix X is composed by 20000
training patches. PCA method is used to whiten the
matrix X in order to remove the correlation between
the pixels. Then these pre-processed data are used as
the input to the ICA algorithm showed in Section 2.
The ICA networks are updated their weights as Eqs.
(3)–(5) to obtain the ICA filter-banks. In addition,
corresponding PCA transforms for each training set
are also estimated.

5.3. Component statistics
Since the denoising procedure is based on the property
that individual components in the transform domain
have sparse distribution, it is obvious that it must be
tested how well this requirement holds. Measuring the
sparseness of the distributions can be done by the
normalized kurtosis, the most widely used non-
Gaussianity measure, which is defined as

3
}){(
}{)(22

4

−=
sE
sEsk . (9)

The average sparseness for each of these
transforms (PCA, ICA and orthogonalized ICA) is
calculated the following way: First, 3,000,000 image
patches are selected from the image dataset which is
used to estimate the transform. Then, these data are
transformed using these PCA, ICA and orthogonalized
ICA transforms respectively. The normalized kurtoses
for each component of each transform are separately
calculated. The mean of these component kurtoses is
displayed in Fig. 5 for each transform of each dataset.
Because of the sparse structure in the images, all these
transforms show super-Gaussian distributions, indeed
even the individual pixel values show a mildly super-
Gaussian distribution when the local mean has been
subtracted. From the graph, it can be seen that the ICA
transform clearly finds a sparser representation of

natural image data than PCA transform. Also, note
that the data obtained by the orthogonalized ICA
transform is not quite as sparse as that obtained by the
standard ICA transform, but it is still far more super-
Gaussian than PCA on average. It is worth noticing
that the normalized kurtoses for non-square ICA filters
(4×8 or 8×16) are approximately equal to the ones for
square ICA filters (8×8 or 16×16). These figures prove
that non-square ICA filters can also transform image
data into a sparse representation as the square ones.

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30
Pixels
PCA
ICA
Orth.ICA

Fig. 5: Mean of normalized kurtosis of components for the
different datasets and different transforms. (1) Natural
scenes, 8×8 patch. (2) Natural scenes, 16×16 patch. (3) Man-
made scenes, 8×8 patch. (4) Man-made scenes, 16×16 patch.
(5) Natural scenes, 4×8 patch. (6) Natural scenes, 8×16
patch. (7) Man-made scenes, 4×8 patch. (8) Man-made
scenes, 8×16 patch.

5.4. Applying SCS to images
A simple way to apply the method to images could be
to divide the image into distinct 8×8 windows, and
denoise each window separately. But this approach
ignores statistical dependencies across the synthetic
edges, resulting in a blocking artifact. This problem
can be solved by taking a sliding window approach.
We do not divide the image into distinct windows, but
denoise every possible 8×8 window of the image. We
then have 64 different values for nearly each pixel, and
select the final result as the mean of these values. But
we do not invariably have 64 different values for the
pixels close to the image border, resulting in a “dark
border” in the reconstructed image. Therefore, we
solve such dark-border problem with the ‘88_table’
proposed in [27] as a dividing matrix.

Because ICA transform applied to image data
usually produces one component representing the local
mean intensity of the pixels, which generally has a
distribution that is not sparse and should be treated
differently from other sparse components, we first

subtract in all experiments the local mean, and then
estimate the suitable sparse encoding filters for other
components. After denoising, to restructure the image
properly, we add the local means again. We normalize
the local variance in an image by dividing each image
window by its norm just as some image processing
method. This can be done in both the ICA transform
estimation and the denoising procedure.

5.5. Denoising results
Several images are randomly selected from our image
dataset for denoising, and Gaussian noise of different
level is added. The SCS method is subsequently
applied using hard-threshold, soft-threshold, and our
steady-transition threshold with a compensatory factor.
Fig. 6 shows the denoising results of our experiments.
Visually, the method using hard-threshold gives a
good noise reduction while retaining the features in
the image. But when we inspect closely, we can find
in images some artificial noise caused by the
discontinuity of shrinkage function. Although SCS
with soft-threshold seems to achieve a desirable
performance, some edge features will still diminish
after shrinkage. The compensation operation after
shrinkage, which is different from simply enhancing
the contrast of reconstructed images, and the steady-
transition threshold make our results more superior
and retain more features. It is evident that our method
presents a sensible improvement in the quality of
denoised images, especially in the edge preserving
capability.

Then, our experiments are also conducted using
such traditional method as Wiener filter and wavelet
shrinkage to give a comparison. There are a large
number of different variants of the wavelet shrinkage
method [21]-[23], differing in choice of wavelet basis
as well as the choice of shrinkage function. No one
choice would have made a fair comparison, and thus
we use Matlab function wdencmp to accomplish the
wavelet shrinkage in this paper. Our method retains
those features which are clearly visible in the noisy
data but cuts out anything which is probably a result of
the noise. Some structures of denoised image are
almost as sharp as those in the original. Thus, it
reduces noise effectively, at the expense of sometimes
cutting out small features (usually textures) which
were in the original image. It is easily seen that our
SCS method outperforms the traditional method,
highlighting its particular effectiveness on ‘difficult’
images that present sharp edges and many little details.
We give in Table 1 an objective estimation of the
quality of the results, evaluated by means of the peak
signal-to-noise ratio (PSNR = 20log10 (255/RMSE)),
where RMSE is the root mean square error. For a

comparison purpose, we show both the results using
traditional methods and those obtained by ordinary
SCS with soft-threshold or hard-threshold. It can be
seen that the steady-transition threshold is better
(increasing about 0.6db of PSNR) than the other two
thresholds. When using the compensation operation,
we can also improve the performance by some 0.5-
0.6(db). If we use the steady-transition threshold and
compensation operation simultaneously, PSNR can be
increased by some 1.2(db) on average from that of
ordinary SCS. These experiments have attested the
effect of our improvements for SCS.

In addition, we have conducted experiments with
different step-length for sliding window and non-
square ICA filters. PSNRs of them are shown in Table
2 and Table 3 respectively. In Table 2, we can see that
the PSNR will decrease steadily with the increase of
step-length for sliding window. But the objective
numerical error functions seldom tell the whole truth.
Actually, we can hardly tell any difference between
the denoising result with step-length=1 and that with
step-length=2 (which have been shown in Fig. 3).
Amazedly, we notice in Table 3 that our method using
non-square 4×8 filters can achieve similarly good
performance with the square 8×8 ones. But when we
use the 4×4 filter-bank, the PSNR will be decreased
obviously. That’s why we employ non-square ICA
filter-bank to alleviate the computational pressure. For
example, complexity of computation with 4×8 filters
and step-length=2 can be decreased by eight times at
the reduction of some 0.4db PSNR.

Fig. 6: Sparse code shrinkage experiments in denoising an
image. Upper left: The noisy image (noise level 0.5). Upper
right: SCS with hard-threshold. Lower left: With soft-
threshold. Lower right: With steady transition threshold and
compensating operation.

noise
level 0.1 0.2 0.3 0.4 0.5

noisy
image 32.27 26.25 22.73 20.21 18.26

wiener
filter 35.75 32.28 29.75 28.21 26.96

wavelet
shrink 35.79 31.53 29.20 27.68 26.55

hard-thr.
ica 35.66 31.59 29.12 28.30 27.25

soft-thr.
ica 35.98 31.91 29.28 28.42 27.43

steady-thr.
ica 36.63 32.57 30.48 29.02 27.97

soft-thr.
comp.ica 36.58 32.46 30.55 29.13 27.92

steady-thr.
comp.ica 37.10 33.16 31.13 29.63 28.62

Table 1: PSNR(db) of different denoising method.

noise
level

noisy
image

8×8
step=1

8×8
step=2

8×8
step=4

0.1 32.27 37.10 36.69 35.29
0.2 26.25 33.16 32.78 31.26
0.3 22.73 31.13 30.75 29.29
0.4 20.21 29.63 29.18 27.61
0.5 18.26 28.62 28.20 26.72

Table 2: PSNR(db) of SCS with different step-length.

noise
level

noisy
image 8×8 4×8 4×4 6×6

0.1 32.27 37.10 37.17 37.00 37.03
0.2 26.25 33.16 33.22 33.06 33.17
0.3 22.73 31.13 31.13 30.84 31.08
0.4 20.21 29.63 29.67 29.28 29.63
0.5 18.26 28.62 28.57 28.10 28.51

Table 3: PSNR(db) of SCS with ICA basis of different size.

6. Application
It is clear that our method is suitable for denoising
those images which consist of sharp object boundaries
and little textured areas. Textures are in fact extremely
difficult to denoise (even the human visual system
must use a bunch of prior information to distinguish
texture from the noise).

Fortunately, infrared images comprise few texture
details because the texture can’t give off much energy
taken in by infrared sensors. More often than not, they
possess many sharp object boundaries. So, our method
is very suitable for the infrared image or video
denoising. Fig. 7 shows the denoising results of some
genuine infrared images (frames grabbed from infrared
videos) with unknown distributed noise. In order to
reserve the real performance of denoising, we insert
these demo images with original size (640×480 pixels).
When magnified, the noise and more details will be
seen clearly. It can be seen that the noise is removed
effectively from original images while retaining most
of features. Especially, those interesting objects such
as vehicles on the road are retained perfectly after the

denoising procedure. The excellent performance may
be attributed to both the steady-transition threshold
shrinkage function and the compensation operation in
sparse code shrinkage.

Another application of our method is consumer’s
digital photographs denoising. A photograph captured
by a digital camera (Canon Powershot A75) with high
sensitivity (ISO 200) is illustrated in Fig. 8. Usually,
high sensitivity of digital camera will give rise to some
unexpected noise. Here, we can find some annoying
noise spread over the original picture. On the right
hand is the corresponding picture denoised with our
method. It is worth noting that the farina clung to the
body of the flying bee, which might be blurred by
other denoising method, seems to be intact after our
denoising procedure.

Fig. 7: Infrared video denoising. Left: Infrared images with
unknown distributed noise. Right: Denoised with our ICA
method.

Fig. 8: Digital photograph denoising. Left: A photograph
captured by a digital camera with high sensitivity. Right:
Denoised with our ICA method.

7. Conclusions
Sparse coding based on ICA can be applied to image
feature extraction, producing a filter-bank for image
windows. As a practical application of such filters, we
introduced the method of sparse code shrinkage (SCS).
We also introduced our improved method using the
shrinkage compensation and a new shrinkage function
which restrains the loss of edge features caused by

soft-threshold. The adoption of non-square ICA filters
and new sliding window approach can greatly reduce
computational complexity of SCS. The experimental
results confirmed that our modified SCS method can
reduce noise more effectively and efficiently without
blurring edges or other sharp features in images. It
performs much better than other traditional denoising
method and outperforms the ordinary SCS method.

Acknowledgement
This work is partially supported by National Natural
Science Foundation of China (Grant No: 60162001).
The authors would like to thank Zhijie Zheng and
Liming Zhang for helpful comments. Correspondence
should be addressed to Jian Yang.

References
[1] D.H. Hubel and T.N. Wiesel, Receptive fields

and functional architecture of monkey striate
cortex. Journal of Physiology, 195:215-243,
1968.

[2] H.B. Barlow, Unsupervised learning. Neural
Computation, 1:295-311, 1989.

[3] J.J. Atick, Could information theory provide an
ecological theory of sensory processing?
Network, 3:213-251, 1992.

[4] E. Oja, Principal components, minor components,
and linear neural networks. Neural Networks,
5:927-935, 1992.

[5] R. Linsker, Local synaptic learning rules suffice
to maximize mutual information in a linear
network. Neural Computation, 4:691-702, 1992.

[6] P.J.B. Hancock, R.J. Baddeley, and L.S. Smith,
The principal components of natural images.
Network, 3:61-72, 1992.

[7] D.J. Field, Relations between the statistics of
natural images and the response properties of
cortical cells. Journal of the Optical Society of
America A, 412:2370-2393, 1987.

[8] D.J. Field, What is the goal of sensory coding?
Neural Computation, 6:559-601, 1994.

[9] H.B. Barlow, What is the computational goal of
the neocortex? Large-scale neuronal theories of
the brain, MIT Press, Cambridge, MA, 1994.

[10] N. Intrator, Feature extraction using an
unsupervised neural network. Neural
Computation, 4:98-107, 1992.

[11] B.A. Olshausen and D.J. Field, Natural image
statistics and efficient coding. Network:
Computation in Neural Systems, 7:333-339,
1996.

[12] A.J. Bell and T.J. Sejnowski, An information-
maximization approach to blind separation and

blind deconvolution. Neural Computation,
7:1129-1159, 1995.

[13] P. Comon, Independent component analysis, a
new concept? Signal Processing, 36:287-314,
1994.

[14] P.J. Huber, Projection pursuit. The Annals of
Statistics, 13:435-475, 1985.

[15] S. Haykin, Neural Networks A Comprehensive
Foundation, 2nd Edition, Prentice Hall, 2001.

[16] B.A. Olshausen and D.J. Field, Emergence of
simple-cell receptive field properties by learning
a sparse code for natural images. Nature,
381:607-609, 1996.

[17] A.J. Bell and T.J. Sejnowski, The ‘independent
components’ of natural scenes are edge filters.
Vision Research, 37:3327-3338, 1997.

[18] L. Zhang and J. Mei, Shaping up simple cell’s
receptive field of animal vision by ICA and its
application in navigation system. Neural
Networks, 16:609-615, 2003.

[19] A. Hyvärinen, Sparse code shrinkage: Denoising
of nongaussian data by maximum likelihood
estimation. Neural Computation, 11:1739-1768,
1999.

[20] A. Hyvärinen, P.O. Hoyer, and E. Oja, Image
denoising by sparse code shrinkage. Intelligent
Signal Processing, IEEE press, 2000.

[21] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian,
and D. Picard, Wavelet shrinkage: asymptopia?
Journal of the Royal Statistical Society ser. B,
57:301-337, 1995.

[22] D. Cho and T.D. Bui, Multivariate statistical
modeling for image denoising using wavelet
transforms. Image Communication, 20:77-89,
2005.

[23] G. Deng, D.B.H. Tay, and S. Marusic, A signal
denoising algorithm based on overcomplete
wavelet representations and Gaussian models.
Signal Processing, 87:866-876, 2007.

[24] A. Hyvärinen, Fast and robust fixed-point
algorithms for independent component analysis.
IEEE Trans. on Neural Networks, 10:626-634,
1999.

[25] A. Hyvärinen and E. Oja, Independent
component analysis: algorithms and applications.
Neural Networks, 13:411-430, 2000.

[26] D.L. Donoho and I.M. Johnstone, Threshold
selection for wavelet shrinkage of noisy data.
Proceedings of the 16th Annual International
Conference of the IEEE, 1:24-25, 1994.

[27] Ying Yu and Jian Yang, A new method of image
feature extraction and denoising based on
independent component analysis. Proceedings of
the 2006 IEEE International Conference on
Robotics and Biomimetics, pp. 380-385, 2006.

