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Abstract 
Sparse code shrinkage (SCS) has been proved to be a 
very promising method for natural image denoising, 
but it still has some drawbacks such as considerable 
complexity of computation and inevitable loss of 
image details. In this paper, we propose a new 
compensation operation and an improved shrinkage 
function to effectively combat the loss of image details 
in SCS. We also propose a new strategy of sliding 
window and non-square ICA filters to relieve the 
computational complexity of SCS in real-time system. 
Compared with ordinary SCS, our method can remain 
better performance while achieving higher efficiency 
in natural image denoising.  

Keywords: Sparse code shrinkage, Feature extraction, 
Independent component analysis, Image denoising.  

1. Introduction 
The classic experiments of Hubel and Wiesel [1] have 
suggested that neurons with line and edge selectivities 
found in primary visual cortex of cats and monkeys 
form a sparse-distributed representation of natural 
scenes, and it has been reasoned that such response 
should emerge from an unsupervised learning 
algorithm that attempts to find a factorial code of 
independent visual features. Barlow was thus let to 
propose that our visual cortical feature detectors might 
be the end result of a “redundancy reduction” process 
[2] [3], in which the activation of each feature detector 
is supposed to be as statistically independent from the 
others as possible. Such a “factorial code” potentially 
involves dependency of all orders, but most studies 
have used only the second-order statistics required for 
decorrelating the outputs of a set of feature detectors.  

A variety of Hebbian feature-learning algorithms 
for decorrelation have been proposed [4] [5]. One 
popular decorrelating solution is principal components 
analysis (PCA), but the principal components of 
natural scenes amount to a global spatial frequency 
analysis [6]. Therefore, second-order statistics alone 
do not suffice to predict the formation of localized 
edge detectors.  

Field [7] [8] has argued for the importance of 
sparse, or “minimum entropy”, coding [9], in which 
each feature detector is activated as rarely as possible. 
This has led to feature-learning algorithms [10], the 
most successful of which has been the Olshausen and 
Field [11] demonstration of the self-organization of 
local, oriented receptive fields using a sparseness 
criterion.  

Bell and Sejnowski demonstrated the ability of 
this nonlinear information maximization [12] to find 
statistically independent components to solve the 
problem of separating mixed sources. This 
“Independent Components Analysis” (ICA) problem 
[13] is equivalent to Barlow’s redundancy reduction 
problem. From a viewpoint of “projection pursuit” [14] 
[15], ICA makes the most non-Gaussian direction as 
the aim of projection pursuit. In 1996, Olshausen and 
Field [16] described that some basis-functions, 
obtained by ICA from natural images, were similar to 
response of receptive field of simple cells in visual 
cortex. Bell and Sejnowski [17] presented that the 
“independent components” of natural scenes are edge 
filters and the sparse encoding of image could be 
implemented by ICA. Zhang and Mei [18] have 
mathematically proved the relationship between ICA-
filter and simple cell’s receptive field in vision system. 

After 1999, Hyvärinen et al. proposed a method of 
sparse code shrinkage (SCS) [19] [20], which has been 
proved to be a promising method for natural image 
denoising and can achieve a better performance than 
any other traditional method. PCA and Wiener 
filtering only consider the second-order statistical 
properties in natural image data. Small wonder, sparse 
code shrinkage, using higher order moment in image 
data, will take the advantage. The wavelet transform 
depends largely on some abstract mathematical 
properties which nearly have no relation to statistical 
properties of natural data. Compared to the method of 
wavelet shrinkage [21]-[23], SCS has the important 
benefit that the features are estimated directly from 
data.  

However, SCS still has some annoying drawbacks 
in some applications. For instance, the algorithm is 
computationally demanding which may pose great 
difficulties in real-time processing. Another drawback 



is that it will inevitably lose some image edge details 
due to the adoption of soft-threshold although it 
achieves good performance in image denoising.  

In view of these problems, we present some new 
methods. On one hand, we adopt steady-transition 
threshold, instead of soft-threshold, and propose a 
compensation operation to avoid losing details in 
filtering procedure. On the other hand, we propose a 
new sliding and non-square window method to greatly 
alleviate the pressure of computation in real-time 
processing. In addition, we have been successful in 
applying our improved sparse code shrinkage method 
in the infrared video processing.  

The remainder of this paper is organized as 
follows. In Section 2, we simply introduce the ICA 
method used in this paper. In Section 3, we design a 
new compensation operation and a shrinkage function 
to improve the performance of SCS. In addition, we 
describe in Section 4 how to use a simple sliding 
window method to relieve the great complexity of 
computation. In Section 5, we conduct experiments to 
compare our method with traditional SCS method. 
Finally, we introduce in Section 6 the applications 
with our SCS method and conclude in Section 7.  

2. Independent component analysis 
ICA is one of the methods to solve linear equations 
based on stochastic vector, which is shown as Eq. (1):  

X = AS,          X∈Rm,   A∈Rm×n,   S∈Rn.      (1) 
Given a stochastic vector X = (x1, x2,..., xm)T, unknown 
matrix A and source signal vector S = (s1, s2,..., sn)T, in 
general, Eq. (1) has no solution. However, if the 
elements of S are mutually independent and non-
Gaussian distribution, and m ≥ n, we can apply an 
unsupervised neural network to solve it. If there is a 
weight matrix W that satisfies the following equation 

WX = WAS ≈ S,                          (2) 
then A and S can be derived, which W ≈ A–1 for m = n 
and W ≈ A+ for m ≠ n, A+ is pseudo-inverse matrix of 
A. Here, the row vector of W is called ICA filter. 
Accordingly, the corresponding column vectors of A 
are named ICA basis function.  

There are several algorithms to implement ICA 
method. In this paper, FastICA proposed by Hyvärinen 
[24] [25] is used, in which the stochastic vector X is 
prewhitened, normalized and the weight vectors are 
orthogonalized in process. The learning rule of the 
neural network on the ith unit is 

Wi
+ = E{x g(Wi

T x)} – E{g’(Wi
T x)} Wi ,         (3) 

Wi = Wi
+ / ||Wi

+||,                                               (4) 
where E{.} is expectation and g(u) = tanh(u), Wi

+ is 
un-normalized weight vector for the ith unit. In 
learning phase, weight vector Wi

+ of the neural 

network is updated by Eqs. (3) and (4) for learning 
image set {x(1), x(2),..., x(k)}. All weight vectors of 
the neural network are updated one by one using the 
same procedure, and then the weight matrix 
W=(W1,W2,...,Wn)T is orthogonalized by the 
following formula: 

W ← (WWT) –1/2 W.                        (5) 
When the iterations of formula (3) – (5) converge, we 
can obtain the final weight matrix W, rows of which is 
orthogonalized each other. 

3. Improving SCS 
In our experiments, we use the fixed-point FastICA 
algorithm [24] [25] to perform the estimation of ICA 
transform. After we estimate the ICA transform from 
the natural image data, we can realize the sparse 
coding of natural images. An illustration of sparse 
coding of natural image is shown in Fig. 1. We can see 
that the energy of image after ICA transform is 
concentrated on several components and other 
components are nearly close to zero, which means that 
the redundancy of natural image data is reduced. Here, 
‘normalized’ means that the image data have been 
converted to zero mean and unit variance.  

The shrinkage of sparse code is the key stage of 
image denoising. The denoising procedure of sparse 
code shrinkage (SCS) is simple: we transform the data 
into a representation with suitable properties, shrink 
the components using the shrinkage function, and 
invert the transformation.  
 

  

  
Fig. 1: Illustration of sparse coding of natural image data. 
Upper: A normalized image patch (16-by-16) reshaped into a 
256-dimensional vector. Lower: Sparse code vector of the 
image patch after ICA transform.  

3.1. Choice of shrinkage function 
Usually, there are two types of shrinkage function: 
hard-threshold and soft-threshold [26].  
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Here, λ is threshold in sparse code shrinkage.  
Hard-threshold method shrinks to zero the 

components whose absolute value is smaller than the 
threshold, and makes other components intact. It will 
bring some unexpected noise. We can notice that there 
are two broken points in the hard-threshold shrinkage 
function. Just the two broken points would associate 
with some artificial noise.  

In view of the drawback of hard-threshold, soft-
threshold method is more preferable in sparse code 
shrinkage. It shrinks to zero the components whose 
absolute value is smaller than the threshold, and 
subtract the threshold value from other components, 
which secures the global continuity in shrinkage 
function. Unfortunately, it will inevitably lose some 
details and features in the image due to the shrinkage 
of all components, particularly in the case of applying 
a great threshold value.  

In this paper, we propose the steady-transition 
threshold shrinkage function, with two transitional 
belts instead of broken points, which not only avoids 
bringing in unexpected noise but also makes large 
components untouched.  

• Steady-transition threshold   
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Here, the constant η is smaller than 1 (η ≈ 0.85).  
We also propose a smooth-transition threshold 

shrinkage function whose first-order derivative is 
continuous. But we can hardly tell any difference from 
the denoising results of steady-transition and smooth-
transition threshold. Moreover, the steady-transition 
threshold is easier to implement than the smooth one. 
So the former is preferable. Plots of different types of 
shrinkage function are shown in Fig. 2. The effect of 
using steady-transition threshold will be showed in 
Section 5.  
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Fig. 2: Plots of the shrinkage function (Threshold = 0.5). 
Upper left: Soft-threshold. Upper right: Hard-threshold. 
Lower left: Steady-transition threshold. Lower right: 
Smooth-transition threshold.  
 

3.2. Compensation operation after 
shrinkage 

However, whatever shrinkage function we choose, the 
shrinking operation will inevitably result in some loss 
of edge features in the image. So we appropriately 
compensate the components by multiplying them with 
a compensation factor β (usually 1.05 <β< 1.20, 
positive proportionate with the threshold value) before 
inverting the transformation. Butβ can not be too 
large, otherwise it will lead to the overflow of gray-
scale value of the reconstructed image. Due to the 
nonlinear nature of shrinkage function, compensation 
operation differs from simply enhancing the contrast 
level of the reconstructed image. The effectiveness of 
the compensation operation will be proved by our 
experimental results in Section 5.  

Therefore, the modified algorithm of sparse code 
shrinkage is summarized as follows:  

1. Using a set of representative noise-free data 
with the same statistical properties as the data that we 
wish to denoise, estimate the sparse coding transform 
W by first estimating the ICA transform matrix and 
then orthogonalizing it.  

2. Observing noisy vectors x(j) 
(a) Transform each vector into the sparse basis by 

Wx(j).  
(b) Apply the estimated nonlinearity g to each 

component i of each vector j: s(j) = g [Wx(j)]. 
(c) Multiply each component of each vector s(j) 

with the compensation factor β: s(j) = β× s(j). 
(d) Perform the inverse transform to each vector 

s(j) to get the denoised vectors v(j) = W–1 s(j). 
Here, the nonlinearity g is a shrinkage function.  



4. Relieving the Complexity of 
Computation 

4.1. Why SCS is computationally 
demanding? 

The denoising procedure of SCS is computationally 
demanding for the following two reasons:  

One is that the dimension of ICA transform is 
rather considerable. Usually, if the size of block 
processing for an image is N×N, the corresponding 
dimension of the transform is N. However, linear ICA 
yields the same number of basis vectors and filters as 
the number of degrees of freedom of the input. Thus, 
the dimension of SCS will soar to considerable N2, 
because each patch in size of N×N will be reshaped 
into a column vector in size of N2×1 as the input of 
ICA transform.  

Another reason is that a sliding window approach 
[20] is used to combat a blocking artifact. A simple 
way to apply SCS to images could be to divide the 
image into distinct sub-windows in size of N×N, and 
denoise each sub-window separately. This approach, 
however, ignores statistical dependencies across the 
synthetic edges, resulting in a blocking artifact. This 
problem has been solved by taking a sliding window 
approach. We do not divide the image into distinct 
windows, but denoise every possible N×N window of 
the image. We then have N2 different suggested values 
for nearly each pixel [27], and determine the final 
result as the mean of these values. Therefore, the 
complexity of computation will be greatly increased.  

4.2. Countermeasure 
Increasing the step-length of the sliding window is an 
effective way to improve the efficiency of SCS. For 
example, Let the step-length=2, then we have N2/4 
different values for each pixel. This means that the 
efficiency of SCS is improved by 4 times. In practice, 
we can hardly tell any difference between the result of 
the original approach and that of the improved method. 
If let the step-length=4, we only have N2/16 different 
values for each pixel, which means that the efficiency 
is considerably improved by 16 times, only leading to 
a slight degradation of the image quality. We show in 
Fig. 3 the denoising results of SCS using different 
step-length for sliding window.  

Non-square window approach is another way to 
further improve the efficiency of SCS. From preceding 
analysis, decreasing the window size can also simplify 
the computation. But empirically, block processing of 
too small size can not eliminate low-frequency noise 
completely. So, we propose a new non-square window 

(N/2×N) method to further relieve the computational 
complexity of SCS. Non-square ICA filter-bank has 
similar performance in denoising as square ICA filter-
bank (to be attested in Section 5) while reducing half 
dimensionality of ICA transform. An example of non-
square ICA basis is displayed in Fig. 4.  
 

  

   
Fig. 3: Denoising with different sliding window step. Upper 
left: Results of step-length=1. Upper right: Step-length=2. 
Lower left: Step-length=4. Lower right: Step-length=8. 
 

  
Fig. 4: Orthogonalized non-square ICA filters (8×16 patch).  

5. Experiments 

5.1. Image database 
For the purpose of simplicity for making comparison 
between various image denoising methods, we tested 
the performance on images which were artificially 
corrupted with noise. We chose two separate data sets, 
in order to compare the performance of the results on 
different data sets. The first set of images comprises 
natural scenes which are hoped to reflect truly natural 
images free of human-imposed structure. The second 
set is intended to represent images of the human-built 
world, which are called man-made scenes and have 
quite different statistics from the natural scenes. Our 



natural scene image dataset includes 489 images such 
as forests, mountains, insects, open landscapes and 
other natural scene images. The manmade scene image 
dataset includes 306 images such as tall-buildings, 
streets, highways, indoor-scenes or other urban scene 
images. We used the two image dataset to estimate the 
ICA transform, and picked some separate images for 
the actual denoising experiments.  

5.2. Transform estimation 
In order to estimate ICA transform, we first linearly 
normalize each image so that pixels have zero mean 
and unit variance. For the first phase, training patches 
in size of 4×8, 8×8, 8×16 and 16×16 are respectively 
selected from the images at random locations. Each 
patch is reshaped to a column vector as the input data 
of ICA networks. The matrix X is composed by 20000 
training patches. PCA method is used to whiten the 
matrix X in order to remove the correlation between 
the pixels. Then these pre-processed data are used as 
the input to the ICA algorithm showed in Section 2. 
The ICA networks are updated their weights as Eqs. 
(3)–(5) to obtain the ICA filter-banks. In addition, 
corresponding PCA transforms for each training set 
are also estimated.  

5.3. Component statistics 
Since the denoising procedure is based on the property 
that individual components in the transform domain 
have sparse distribution, it is obvious that it must be 
tested how well this requirement holds. Measuring the 
sparseness of the distributions can be done by the 
normalized kurtosis, the most widely used non-
Gaussianity measure, which is defined as  

3
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The average sparseness for each of these 
transforms (PCA, ICA and orthogonalized ICA) is 
calculated the following way: First, 3,000,000 image 
patches are selected from the image dataset which is 
used to estimate the transform. Then, these data are 
transformed using these PCA, ICA and orthogonalized 
ICA transforms respectively. The normalized kurtoses 
for each component of each transform are separately 
calculated. The mean of these component kurtoses is 
displayed in Fig. 5 for each transform of each dataset. 
Because of the sparse structure in the images, all these 
transforms show super-Gaussian distributions, indeed 
even the individual pixel values show a mildly super-
Gaussian distribution when the local mean has been 
subtracted. From the graph, it can be seen that the ICA 
transform clearly finds a sparser representation of 

natural image data than PCA transform. Also, note 
that the data obtained by the orthogonalized ICA 
transform is not quite as sparse as that obtained by the 
standard ICA transform, but it is still far more super-
Gaussian than PCA on average. It is worth noticing 
that the normalized kurtoses for non-square ICA filters 
(4×8 or 8×16) are approximately equal to the ones for 
square ICA filters (8×8 or 16×16). These figures prove 
that non-square ICA filters can also transform image 
data into a sparse representation as the square ones.  
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Fig. 5: Mean of normalized kurtosis of components for the 
different datasets and different transforms. (1) Natural 
scenes, 8×8 patch. (2) Natural scenes, 16×16 patch. (3) Man-
made scenes, 8×8 patch. (4) Man-made scenes, 16×16 patch. 
(5) Natural scenes, 4×8 patch. (6) Natural scenes, 8×16 
patch. (7) Man-made scenes, 4×8 patch. (8) Man-made 
scenes, 8×16 patch.  
 

5.4. Applying SCS to images 
A simple way to apply the method to images could be 
to divide the image into distinct 8×8 windows, and 
denoise each window separately. But this approach 
ignores statistical dependencies across the synthetic 
edges, resulting in a blocking artifact. This problem 
can be solved by taking a sliding window approach. 
We do not divide the image into distinct windows, but 
denoise every possible 8×8 window of the image. We 
then have 64 different values for nearly each pixel, and 
select the final result as the mean of these values. But 
we do not invariably have 64 different values for the 
pixels close to the image border, resulting in a “dark 
border” in the reconstructed image. Therefore, we 
solve such dark-border problem with the ‘88_table’ 
proposed in [27] as a dividing matrix.  

Because ICA transform applied to image data 
usually produces one component representing the local 
mean intensity of the pixels, which generally has a 
distribution that is not sparse and should be treated 
differently from other sparse components, we first 



subtract in all experiments the local mean, and then 
estimate the suitable sparse encoding filters for other 
components. After denoising, to restructure the image 
properly, we add the local means again. We normalize 
the local variance in an image by dividing each image 
window by its norm just as some image processing 
method. This can be done in both the ICA transform 
estimation and the denoising procedure.  

5.5. Denoising results 
Several images are randomly selected from our image 
dataset for denoising, and Gaussian noise of different 
level is added. The SCS method is subsequently 
applied using hard-threshold, soft-threshold, and our 
steady-transition threshold with a compensatory factor. 
Fig. 6 shows the denoising results of our experiments. 
Visually, the method using hard-threshold gives a 
good noise reduction while retaining the features in 
the image. But when we inspect closely, we can find 
in images some artificial noise caused by the 
discontinuity of shrinkage function. Although SCS 
with soft-threshold seems to achieve a desirable 
performance, some edge features will still diminish 
after shrinkage. The compensation operation after 
shrinkage, which is different from simply enhancing 
the contrast of reconstructed images, and the steady-
transition threshold make our results more superior 
and retain more features. It is evident that our method 
presents a sensible improvement in the quality of 
denoised images, especially in the edge preserving 
capability.  

Then, our experiments are also conducted using 
such traditional method as Wiener filter and wavelet 
shrinkage to give a comparison. There are a large 
number of different variants of the wavelet shrinkage 
method [21]-[23], differing in choice of wavelet basis 
as well as the choice of shrinkage function. No one 
choice would have made a fair comparison, and thus 
we use Matlab function wdencmp to accomplish the 
wavelet shrinkage in this paper. Our method retains 
those features which are clearly visible in the noisy 
data but cuts out anything which is probably a result of 
the noise. Some structures of denoised image are 
almost as sharp as those in the original. Thus, it 
reduces noise effectively, at the expense of sometimes 
cutting out small features (usually textures) which 
were in the original image. It is easily seen that our 
SCS method outperforms the traditional method, 
highlighting its particular effectiveness on ‘difficult’ 
images that present sharp edges and many little details. 
We give in Table 1 an objective estimation of the 
quality of the results, evaluated by means of the peak 
signal-to-noise ratio (PSNR = 20log10 (255/RMSE)), 
where RMSE is the root mean square error. For a 

comparison purpose, we show both the results using 
traditional methods and those obtained by ordinary 
SCS with soft-threshold or hard-threshold. It can be 
seen that the steady-transition threshold is better 
(increasing about 0.6db of PSNR) than the other two 
thresholds. When using the compensation operation, 
we can also improve the performance by some 0.5-
0.6(db). If we use the steady-transition threshold and 
compensation operation simultaneously, PSNR can be 
increased by some 1.2(db) on average from that of 
ordinary SCS. These experiments have attested the 
effect of our improvements for SCS.  

In addition, we have conducted experiments with 
different step-length for sliding window and non-
square ICA filters. PSNRs of them are shown in Table 
2 and Table 3 respectively. In Table 2, we can see that 
the PSNR will decrease steadily with the increase of 
step-length for sliding window. But the objective 
numerical error functions seldom tell the whole truth. 
Actually, we can hardly tell any difference between 
the denoising result with step-length=1 and that with 
step-length=2 (which have been shown in Fig. 3). 
Amazedly, we notice in Table 3 that our method using 
non-square 4×8 filters can achieve similarly good 
performance with the square 8×8 ones. But when we 
use the 4×4 filter-bank, the PSNR will be decreased 
obviously. That’s why we employ non-square ICA 
filter-bank to alleviate the computational pressure. For 
example, complexity of computation with 4×8 filters 
and step-length=2 can be decreased by eight times at 
the reduction of some 0.4db PSNR.  
 

  

   
Fig. 6: Sparse code shrinkage experiments in denoising an 
image. Upper left: The noisy image (noise level 0.5). Upper 
right: SCS with hard-threshold. Lower left: With soft-
threshold. Lower right: With steady transition threshold and 
compensating operation.  



noise 
level 0.1 0.2 0.3 0.4 0.5 

noisy 
image 32.27 26.25 22.73 20.21 18.26 

wiener 
filter 35.75 32.28 29.75 28.21 26.96 

wavelet 
shrink 35.79 31.53 29.20 27.68 26.55 

hard-thr. 
ica 35.66 31.59 29.12 28.30 27.25 

soft-thr. 
ica 35.98 31.91 29.28 28.42 27.43 

steady-thr. 
ica 36.63 32.57 30.48 29.02 27.97 

soft-thr. 
comp.ica 36.58 32.46 30.55 29.13 27.92 

steady-thr. 
comp.ica 37.10 33.16 31.13 29.63 28.62 

Table 1: PSNR(db) of different denoising method. 
 

noise 
level 

noisy 
image 

8×8 
step=1 

8×8 
step=2 

8×8 
step=4 

0.1 32.27 37.10 36.69 35.29 
0.2 26.25 33.16 32.78 31.26 
0.3 22.73 31.13 30.75 29.29 
0.4 20.21 29.63 29.18 27.61 
0.5 18.26 28.62 28.20 26.72 

Table 2: PSNR(db) of SCS with different step-length. 
 

noise 
level 

noisy 
image 8×8 4×8 4×4 6×6 

0.1 32.27 37.10 37.17 37.00 37.03 
0.2 26.25 33.16 33.22 33.06 33.17 
0.3 22.73 31.13 31.13 30.84 31.08 
0.4 20.21 29.63 29.67 29.28 29.63 
0.5 18.26 28.62 28.57 28.10 28.51 

Table 3: PSNR(db) of SCS with ICA basis of different size. 
 

6. Application 
It is clear that our method is suitable for denoising 
those images which consist of sharp object boundaries 
and little textured areas. Textures are in fact extremely 
difficult to denoise (even the human visual system 
must use a bunch of prior information to distinguish 
texture from the noise).  

Fortunately, infrared images comprise few texture 
details because the texture can’t give off much energy 
taken in by infrared sensors. More often than not, they 
possess many sharp object boundaries. So, our method 
is very suitable for the infrared image or video 
denoising. Fig. 7 shows the denoising results of some 
genuine infrared images (frames grabbed from infrared 
videos) with unknown distributed noise. In order to 
reserve the real performance of denoising, we insert 
these demo images with original size (640×480 pixels). 
When magnified, the noise and more details will be 
seen clearly. It can be seen that the noise is removed 
effectively from original images while retaining most 
of features. Especially, those interesting objects such 
as vehicles on the road are retained perfectly after the 

denoising procedure. The excellent performance may 
be attributed to both the steady-transition threshold 
shrinkage function and the compensation operation in 
sparse code shrinkage.  

Another application of our method is consumer’s 
digital photographs denoising. A photograph captured 
by a digital camera (Canon Powershot A75) with high 
sensitivity (ISO 200) is illustrated in Fig. 8. Usually, 
high sensitivity of digital camera will give rise to some 
unexpected noise. Here, we can find some annoying 
noise spread over the original picture. On the right 
hand is the corresponding picture denoised with our 
method. It is worth noting that the farina clung to the 
body of the flying bee, which might be blurred by 
other denoising method, seems to be intact after our 
denoising procedure.  
 

  

   
Fig. 7: Infrared video denoising. Left: Infrared images with 
unknown distributed noise. Right: Denoised with our ICA 
method.  
 

   
Fig. 8: Digital photograph denoising. Left: A photograph 
captured by a digital camera with high sensitivity. Right: 
Denoised with our ICA method.  
 

7. Conclusions 
Sparse coding based on ICA can be applied to image 
feature extraction, producing a filter-bank for image 
windows. As a practical application of such filters, we 
introduced the method of sparse code shrinkage (SCS). 
We also introduced our improved method using the  
shrinkage compensation and a new shrinkage function 
which restrains the loss of edge features caused by 



soft-threshold. The adoption of non-square ICA filters 
and new sliding window approach can greatly reduce 
computational complexity of SCS. The experimental 
results confirmed that our modified SCS method can 
reduce noise more effectively and efficiently without 
blurring edges or other sharp features in images. It 
performs much better than other traditional denoising 
method and outperforms the ordinary SCS method.  
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