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Abstract  
In this work, a new multisensor data fusion 
architecture integrating neural network and fuzzy logic 
techniques is introduced, which has the ability of fast 
adjusting acceleration parameter and covariance of 
measurement noise of sensors. In this architecture, the 
neural network estimates acceleration and fuzzy logic 
adapts the covariance of measurement noise on-line 
and also offers degree of confidence of sensors for 
fusion. The results of simulation show that this new 
architecture can adjust maneuver parameter in nearly 
one sample time and change the covariance of 
measurement noise effectively.  

Keywords: Neural network, Fuzzy logic, Multisensor 
data fusion, Target tracking 

1. Introduction 
Recent advances in sensor technology and distributed 
computational algorithms, together with demands for 
escalating operational requirements, have contributed 
to the growing desire to deploy multiple sensors in 
various surveillance and tactical missions. With the 
growing availability and the need for multisensor 
operations, however, there is a corresponding growth 
in the complexity of these systems, mainly arising 
from the diversity of the types of sensors used and the 
special problems that may be created such as 
asynchronous data arrivals and the need to order and 
correlate these data streams to exploit the inherent 
synergy available. Thus, the fundamental question of 
interest in these scenarios is how to develop an 
efficient data fusion architecture that facilitates 
integrated processing of the large volumes of data 
arriving at typically high rates to enable the needed 
decision making, which in turn facilitates fully 
utilizing the capabilities of these sensors and realizing 
all the possible benefits from their deployment. 

In order to fuse the data from different sensors, a 
lot of fusion architectures and models have been 
brought forward. During all of those, two models have 
received most of popularity, the interacting multiple 
model (IMM) [1] introduced in 1984 and Input 
Estimation (IE) [2] model put forward by Y. T. CHAN, 
and ATC. HUN. But these two models still need to be 
improved. For example, when the target leads a 
maneuver of short term acceleration, IE model might 
loss the target, this problem was solved by Malur K. 
Sundareshan, who proposed to use the neural network 
to estimate the acceleration [3]. In 2003, Mark W. 
Owena1 and Allen R. Stubberud proposed NEKF 
IMM tracking [4] algorithm which addresses the 
disadvantage of IMM that using a high process noise 
model to hold a target through a maneuver with poor 
velocity and acceleration estimates. 

When different models are discussed, online 
variety of measurement noise should also be taken into 
consideration. There are a lot of methods [5]-[7] trying 
to address this problem. One of those useful 
technologies is to use fuzzy logic [7] to adaptively 
adjust the covariance of measurement noise on-line. 

Although the maneuver of short term acceleration 
and the variety of measurement noise have been 
discussed respectively, little work has been done to 
solve previous two issues in the same architecture. In 
that case, this study introduces a new distributed 
architecture integrating neural network and fuzzy logic. 
In this fusion system, the neural network takes data of 
different sensors as input, then exports estimate of 
acceleration to the Kalman filter and, at the same time, 
the fuzzy logic system which adjusts the covariance of 
measurement noise of sensors while providing the 
degree of confidence to fuse the results given by 
Kalman filters.  

The remainder of this paper is organized as 
follows. Section II describes the details of this fusion 
architecture. In order to test the effectiveness of this 
architecture, in section III an illustrative example is 



outlined and the results are discussed. Finally, a 
conclusion of this work is given in section IV. 

2. Description of the new data 
fusion architecture 

2.1. Kalman filter 
The Kalman filter is an optimal recursive data 
processing algorithm [8] that provides a linear, 
unbiased, and minimum error variance estimate of the 
unknown state vector n

kx ∈ℜ  at each instant 
k=1,2,…,(indexed by the subscripts) of a discrete-time 
controlled process described by linear stochastic 
difference equation: 

1k k k k k kx A x B u w+ = + +                                  (1) 

     k k k kz H x v= +                                             (2) 
where kx  is an 1n×  system state vector, kA  is an 
n n× transition matrix, ku is an 1l× vector of the 
input forcing function, kB is an n l× matrix, kw  is an 

1n×  process noise vector, kz is an 1m×  
measurement vector, kH  is an m n×  measurement 
matrix, and kv  is an 1m×  measurement noise vector. 

Both kw  and kv  are assumed to be uncorrelated 
zero-mean Gaussian white noise sequence with 
covariances, 
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where {}E ⋅  is the statistical expectation, superscript T 

denotes transpose, kQ  is the process noise covariance 

matrix and kR  is the measurement noise covariance 
matrix.  

The Kalman filter algorithm can be organized in 
two groups of equations, 

• Time update (or prediction) equations: 
   1ˆ ˆk k k k kx A x B u−

+ = +                     (6) 

1
T
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These equations project, from time step k to step 
k+1, the current state and error covariance 
estimate to obtain the a  priori (indicated by the 
super minus) estimates for the next time step.  

• Measurement update (correction) equations: 
1[ ]T T

k k k k k k kK P H H P H R− − −= +          (8) 

ˆ ˆ ˆ[ ]k k k k kx x K z H x− −= + −                     (9) 

[ ]k k k kP I K H P−= −                            (10) 

These equations incorporate a new measurement into 
a  priori estimate to obtain an improved a  posteriori 
estimate. 

In the above equations, ˆkx is an estimate of the 
system state vector kx , and kP  is the covariance 
matrix corresponding to the state estimation error 
defined by, 

 ˆ ˆ{( )( ) }T
k k k k kP E x x x x= − −                (11) 

The term ˆk kH x−  is the one-stage predicted output kz , 

and ˆ( )k k kz H x−−  is the one-stage prediction error 
sequence, also referred to as the innovation sequence 
or residual, generally denoted as r and defined as: 

 ˆ( )k k k kr z H x−= −                                     (12) 
The innovation represents the additional information 
available to the filter as a consequence of the new 
observation kz . The weighted innovation, 

ˆ[ ]k k k kK z H x−− , acts as a correction to the 

prediction estimate ˆkx−  to form the estimate ˆkx ; the 

weighting matrix kK  is commonly referred to as the 
filter gain or Kalman gain matrix. 

The Kalman filter algorithm starts with initial 
conditions at k=0 being: 0x̂− , and 0P− . With the 

progression of time, as new measurements kz  become 
available, the cycle estimation-correction of states and 
the corresponding error covariance can follow 
recursively ad infinitum. 

2.2. Neural network  
Artificial neural networks are emerging as very 
attractive alternatives to traditional methods 
(maximum likelihood techniques, nearest-neighbor 
classification, etc.) in the development of computer-
based pattern classification algorithms since they can 
learn to perform the required classification without the 
assumption of probabilistic models for the input 
patterns. This area has witnessed an explosion of 
research in the recent past and one of the important 
results is based on the celebrated Kolmogorov theorem. 
This result states that any continuous nonlinear 
mapping can be approximated as closely as desired by 
a multilayered neural network with a feedforward 
topology and sigmoidal nonlinear functions [9]-[10].  

The basic processing element (neuron) in these 
function approximating networks has an input-output 
characteristic that is obtained by forming a weighted 
sum of the several inputs received and producing an 
output that is a nonlinear function of this weighted 
sum, according to the relation: 
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where ( )iu ⋅ : ℜ→ℜ , 1, 2,..., ,i m= are the 
inputs; ( )y ⋅ : ℜ→ℜ  is output; and iw ∈ℜ , 

1, 2,..., ,i m= are the weights. Here ( )g ⋅ : ℜ→ℜ  
is an appropriately selected nonlinear activation 
function that satisfies the following conditions: 

• ( ) 0xg x >  for all x∈ℜ (first and third 
quadrant function). 

• | |lim ( ) sgn( ), 0x g x k k k→∞ = > (saturation 
function). 

• 1 1 2 2( ) / ( ) /g x x g x x≥  for all 1 2x x≤   
Commonly used activation functions are the sigmoid 
characteristics  [ . ., ( ) tanh( ), ( )e g g x x or g xλ=  

1(1 ) ]xe− −= + . The processing architecture of an 
illustrative multilayer feedforward network with one 
input layer, one output layer, and several hidden layers 
is shown in Fig. 1. In this architecture, the input layer 
has four nodes, which merely serve to fan out the 
incoming inputs to the nodes in the succeeding layer 
(viz., the first hidden layer) and the output layer has 
two nodes which merely combine the outputs from the 
nodes in the previous layer (viz., the last hidden layer). 
The hidden layers have arbitrary numbers of nodes 
that perform the nonlinear processing according to the 
rule just stated.  

Of fundamental importance for the satisfactory 
training of the neural network is the selection of an 
appropriate set of input features. By using a sufficient 
number of features in the training process, it is 
possible to build very desirable fault tolerance 
properties (robustness) to the neural network processor. 
Furthermore, since the network architecture can be 
appropriately designed to accept as inputs data 
collected from a number of different sensors, data 
fusion can be naturally accomplished. Some input 
preprocessing may, however, be needed to modify the 
available data into a form that could be 
advantageously utilized as network inputs.  

The ability of neural network to offer acceleration 
parameter on-line is proved in reference 3.  According 
to different sensors, neural network accepts different 
inputs. Selection of appropriate features can be guided 
by observation that generally has three basic entities 
that help acquire a good estimate of target maneuver. 
These are (1) intensity of acceleration, (2) direction of 
tangential velocity, and (3) initial velocity at the time 
of acceleration. Take lidar for example, suppose the 
sensor of lidar can offer target position with two 
dimensions. Two inputs [3] are available to the neural 
network extracted from the raw sensor data: 

• 1v : intensity of acceleration, defined as 
follows: 
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where ( ) [ ]x yr k r r=  is defined in Eq. 12, and 

( )xxS k  and  ( )yyS k  are the diagonal elements 
of covariance matrix: 

   ( ) ( | 1) TS k HP k k H R= − +              (15) 
• 2v : change in heading, defined as follows: 
         2 ( ) ( ) ( 1)LT LTv k k kα α= − −                 (16) 

 where ( )LT kα  and ( 1)LT kα −  are heading 
estimate computed with past data points (i.e., N 
equals to 3) at sampling instants k and (k-1) 
respectively, 
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The basis of using neural network to abstract 
acceleration parameter is that when there is no 
maneuver, the mean of innovation sequence (a group 
of data consists of past innovation value) equals to 
zero, but when there is a maneuver, it no longer equals 
to zero. The previous theory is based on the 
assumption of constant process noise and 
measurement noise, but it seems colliding with the 
purpose of adjusting the covariance of measurement 
noise on-line. This can almost be solved by using data 
from different sensors .Suppose there are several 
sensors, when measurement noise of partial sensors 
change, the acceleration parameter can still be learned 
in relatively more sampling periods comparing with 
constant measurement noise. There are many reasons 
for the change of measurement noise, for example, 
dithering of sensors, variance of environment,  
existence of clutter. So if we choose different kinds of 
sensors which have different work conditions and 
different sensitivities to bad weather like rain or fog, 
there might be only a few sensors whose measurement 
noise changed with other measurement noise of 
sensors staying invariable, in that case, neural network 
can still effectively abstract acceleration parameter. 
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Fig. 1: Multilayer feedforward neural network architecture 

2.3. Fuzzy logic system 
The main advantages of using fuzzy logic system are 
the simplicity of the approach and the capacity of 
dealing with imprecise information, and also the 
possibility of including heuristic knowledge about 
phenomenon under consideration. 

The ability of fuzzy logic system to adaptively 
adjusting the covariance of measurement noise has 
been proved in reference 7. The foundation of this 
application is named innovation-based adaptive 
estimation algorithm [11]. The basic idea behind this 
algorithm is to make the actual value of the covariance 
of the residual consistent with its theoretical value. 
The innovation sequence ( )r k  has a theoretical 
covariance ( )S k  defined in Equation 15. Given the 
availability of the innovation sequence ( )r k , its 
actual covariance ˆ

rkC  is approximated by its sample 
covariance through averaging inside a moving 
estimation window of size N, 
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where 0 1i k N= − +  is the first sample inside the 
estimation window. The window size N is chosen 
empirically to give some statistical smoothing. 

Thus, if it is found that the actual covariance of 
( )r k  has a discrepancy with its theoretical value, then 

adjustments have to be made to R  in order to correct 
this mismatch. A new variable named Degree of 
Matching (DoM) is defined to detect the discrepancy 
of ( )S k  and its actual value ˆ

rkC , 

ˆ
k k rkDoM S C= −                                       (22) 

Then a Fuzzy Inference system can be constructed to 
adjust R based on rules as follows: 

• If 0DoM ≅  (this means ( )S k and ˆ
rkC  

match almost perfectly) then maintain R  
unchanged; 

• If 0DoM > (this means ( )S k  is greater 
than its actual value ˆ

rkC  ) then decrease R ; 
• If 0DoM <  (this means ( )S k  is smaller 

than its actual value ˆ
rkC ) then increase R ; 

R  is adjusted in this way: 
 1k k kR R R−= + Δ                                       (23) 
where kRΔ  is the output of the FIS.  

When there is more than one sensor, the degree of 
confidence of sensor data can also be generated by 
FLO (fuzzy logic observer) to fuse the data. It takes 
covariance of measurement noise kR  adjusted 
according to Eq.23 and DoM as inputs and exports 
the w  (degree of confidence).The rules can be set as 
follows: 

• If | |DoM ZE=  and R ZE= , then 
w G= ; 

• If | |DoM ZE=  and R S= , then w G= ; 
• If | |DoM ZE=  and R L= , then 

w AV= ; 
• If | |DoM S=  and R ZE= , then w G= ; 
• If | |DoM S=  and R S= ,then w AV= ; 
• If | |DoM S=  and R L= ,then w P= ; 
• If | |DoM L=  and R ZE= ,then w AV= ; 
• If | |DoM L=  and R S= , then w P= ; 
• If | |DoM L=  and R L= ,then w P= ; 

where ZE means zero, S means small, L means Large, 
G means Good, AV means average, P means Poor.  
The FIS and FLO can be integrated into one system 
shown as follows: 
 

 
Fig.2 Fuzzy logic system. 
 

From fig.2, we can see Fuzzy logic system takes 
DoM as input and provides adjusted R to Kalman 
filter and w (degree of confidence) for fusion. 

2.4. New data fusion architecture 
This new data fusion architecture is constructed to 
solve the following two issues: first, learning the 
acceleration parameter of maneuver with neural 
network, especially for the fast maneuver of short term 
acceleration; second, adjusting covariance of 
measurement noise on-line with the help of fuzzy 
logic system.  The architecture is shown in figure 3. 
 



 
Fig. 3: New data fusion architecture 
 

There are three main algorithms used in this 
architecture: neural network, Kalman filter and fuzzy 
logic. Their relationships have been shown in the 
figure 3. First, all of new measurements of sensors at 
time k will be transmitted into neural network, fuzzy 
logic systems and Kalman filters. Neural network 
module will export acceleration parameter to fuzzy 
logic systems and Kalman filters.  The fuzzy logic 
systems will adjust R parameters (covariance of 
measurement noise) of the Kalman filters while 
offering corresponding degree of confidence of 
sensors to the fusion module at the same time. The 
fusion module will fuse the outputs of Kalman filters 
according to the degree of confidence. 

There are several signs in figure 3, which denote 
different meanings in the architecture as follows: 

• 1v : intensity of acceleration 1( )v k defined in 
Eq.14; 

• 2v : change in heading 2 ( )v k ,defined in    
Eq.16; 

• 3v  and nv : some other inputs to neural 
network which are used to estimate 
acceleration parameter, their detailed forms 
depend on the property of sensors.   

• ( )Z k : measurement of sensor at sampling 
time k; 

• ( )S k : covariance of innovation sequence, 
defined in Eq.15 

• a : estimate acceleration parameter at 
sampling instants k; 

• ( 1)X k − :  estimate value at sampling 
instants k-1; 

• DoM : Degree of Matching, input of fuzzy 
logic system, defined in Eq.22; 

• ( )R k : covariance of measurement noise at 
sampling instants k, one of the outputs of the 
fuzzy logic system. 

• w : degree of confidence of a sensor, one of 
the two outputs of the fuzzy logic system.. 

In this architecture, there are two modules need to 
be simply introduced: math operation module and 

fusion module. Math operation module is used to 
transfer inputs to outputs after simple mathematic 
operation. And fusion module is used to fuse outputs 
of Kalman filters to a value which is more close to the 
real value based on fusion algorithm as follows: 
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where m is the number of sensors, iw  is the degree of 

confidence of i th sensor, ˆ ( )ix k  is the estimation of 
real value at sampling instants k offered by i th 
Kalman filter, ( )X k%  is the fusion result at sampling 
instants k.  

3. Simulation and performance 
evaluation of the architecture 

In order to demonstrate the effectiveness of this 
architecture, a simulation is presented in this section. 

Suppose there are two sensors in our tracking 
system, both of them provide two dimensions 
measurement data. They have different work 
conditions and sensitivities to bad whether. The 
tracking model is linear as follows: 
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where T is sampling time. 
Neural network has four inputs and two outputs. 

The number of neutron in the hidden layer can only be 
decided after training. In order to have a good 
accuracy of estimating acceleration, we created 2000 
training data by simulation as following design: 

• Acceleration: range from 0 to 20, divided into 
20 levels; 

• Initial velocity: range from 100 to 200, 
divided into 10 levels. 

• Covariance of measurement noise: range from 
0.1 to 1, divided into 10 levels. 

 The training result shows 35 neurons are enough 
for the hidden layer. 



Fuzzy logic system consists of two parts: FIS and 
FLO. The input and output of FIS are set as fig.4. The 
input and output of FLO are set as fig.5. 

 

(a) 
 

(b) 
Fig.4: (a) Membership function for input variable DoM (b) 
Member function for output variable RΔ . 
 

(a) 
 

(b) 
 

(c) 
Fig.5: (a) Membership function for input variable DoM; (b) 
Membership function for input variable R; (c) Membership 
function for output variable w. 
 

There are two questions we need to be solved. 
First, whether can this architecture work effectively 
when short term maneuver and variety of 
measurement noise happened orderly; Second, if 
covariance of measurement noise of both sensors 
change at the same time, whether can this architecture 
work correctly. 

Two tests were outlined for the sake of answering 
the previous two questions. 

3.1. Test one  
Suppose a target is moving with the initial velocity of 
100m/s, sampling period of target tracking system is 
4s, covariance of measurement noise of both sensors is 
0.1, a short term maneuver happens at sampling 
instants 5. This maneuver consists of sharp 
acceleration of 3 2/m s  and lasting for only one 
sampling time. Then covariance of measurement noise 
of one sensor changes from 0.1 to 0.5 at sampling 
instants 10 and kept unchanged in the following 
sampling time. Simulation result of x coordinate 
position error (y coordinate position error is omitted 
because x and y coordinate have the same simulation 
conditions) is shown in fig.6 where performance of the 
new fusion architecture is compared with an 
architecture with neural network only and an 
architecture with fuzzy logic system only. The result 
shows this new fusion architecture can adjust 
acceleration parameter in nearly one sampling period 
and adaptively change the covariance of measurement 
noise in several sampling periods. On the contrary, the 
architecture with neural network only and the one with 
fuzzy logic system only lost targets when variety of 
measurement noise and maneuver happens 
respectively. 
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Fig.6: x coordinate position error of tracking system using 
three different fusion architectures. 

3.2. Test two 
Suppose a target is moving with the initial velocity of 
100 m/s, sampling period of target tracking system is 
4s, covariance of measurement noise of both sensors is 
0.1. At sampling instants 5, covariance of 
measurement noise of both sensors changes from 0.1 
to 0.5. On the purpose of comparison, we attain 
another set of data with only one sensor’s 
measurement noise changing at sampling instants 5 
from 0.1 to 0.5. Simulation result of x coordinate 
position error is shown in fig.7 which brings a bad 
news, that when the measurement noise of both two 
sensors change together, this architecture can not work 
correctly.  In order to avoid this situation, we need to 
carefully choose heterogenous sensors which have 
different working mechanics and sensitivities to bad 
weather and also install the sensors on different 
platforms. 
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Fig.7: x coordinates position error of tracking system using 
this architecture. 
 

4. Conclusions 
The main purpose of this paper is to present a new 
fusion architecture used in target tracking system 
which can solve the problem of maneuver of short 
term acceleration and adaptively adjust the covariance 
of measurement noise of sensors. The simulation 
results show this architecture can solve previous two 
issues, but also has the defection that sensors used in 
the tracking system need to be chosen carefully to 
prevent variety of measurement noise of all the 
sensors from happening at the same time. The sensors 
should have different working mechanics and 
sensitivities to bad weather and install the sensors on 
different platforms. So our next study is to find some 
algorithm to solve that problem. 
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