
A Method of Case-Based Creative Design
Ning Zhang

School of Information, Central University of Finance and Economics, Beijing 100081, P.R.China

Abstract
Case-based reasoning can be used to explain many
creative design processes since creativity stems from
using old solutions in novel ways. However the
process of case-based creative design is usually not
very efficient and not easy to implement due to the
complexity of creative design problems. This paper
presents a method to support the whole case-based
creative design process. Object-oriented techniques are
used to represent cases. Fuzzy logic and self-
organizing feature map are used to improve the
accuracy and speed of case retrieval. Constraint rules
and genetic algorithm are used to improve the validity
and speed of case combination.

Keywords: Creative design, Case-based reasoning,
Object-oriented, Self-organizing feature map, Genetic
algorithm

1. Introduction
Creative design activities can be described by
contrasting them to routine design activities. In
general, routine design repeats old designs in obvious
ways, adapting them by well-known and often-applied
adaptation strategies. Routine design assumes a
completely specified problem is given and little effort
is applied to elaborating or designing a feasible
specification. Creative design, on the other hand,
includes a process of designing the design
specification [1], going from an incomplete,
contradictory, and under-constrained description of
what needs to be designed to one with more detail,
more concrete specifications, and more clearly defined
constraints. Creative design also often includes a
process of generating and considering several
alternatives, weighing their advantages and
disadvantages, and sometimes incorporating pieces of
one into another. It involves using well-known design
pieces in unusual ways or modifying well-known
designs in unusual ways.

Since creativity stems from using old solutions in
novel ways, case-based reasoning can be used to
explain many creative design processes [2]. Research
in case-based reasoning has provided extensive
knowledge of how to reuse solutions to old problems

in new situations, how to build and search case
libraries (for exploration of design alternatives), and
how to merge and adapt cases. Many of the activities
of creative designers can be modeled by extending
designed routine problem solving processes that exist
in current case-based systems [3]-[5].

However, the process of case-based creative
design, from case representation, case retrieval to case
adaptation, is usually not very efficient and not easy to
implement due to the complexity of creative design
problems. There is not a complete and systematic
method to support case-based creative design process.
This paper aims to provide such a method to support
the whole process effectively and efficiently.

2. Object-oriented case
representation

Object-oriented case representation is particularly
suitable for complex domains [6]. Cases are
represented as collections of objects, each of which is
described by a set of attribute-value pairs. We
distinguish simple attributes, which have a simple type
like Integer or Symbol, from composite attributes,
which are objects themselves. Composite attribute
represents a directed part-of relation between the
object that defines the composite attribute and the
object to which it refers. Part-of relations can be
described in a hierarchy. A case object locates in the
first level. The objects located in the middle levels are
parts of the objects located in the higher level. The
objects located in the lowest level contain only simple
attributes.

We define a case basically as a tuple C=<N, O, B,
R> where

N: case name used to mark the case uniquely;
O: a finite set of objects which can represent this

case, O = {O1, O2, ..., Ol}, Oi is a part of the object O, i
=1, 2, ..., l; Oi = {Oi1, Oi2, ..., Oim}, Oij is a part of the
object Oi, j =1, 2, ..., m; keep doing so until the objects
only contain simple attributes, Ox = {Ox.A1, Ox.A2, ...,
Ox.An}, x may be a subscript of one to several digits,
Ak is a simple attribute of the object Ox, Ox.Ak denotes
the value of the attribute Ak in the object Ox.

B: background and environment information in
text format of the case which cannot be quantified;

R: complete solution to the case and
professionals’ evaluations in text format of the case.

3. Intelligent case retrieval
The major task of case retrieval is to compare the

new problem with each old case in the case base and
to find the most suited one for the new problem.

3.1. Similarity measurement
We use the method of assessing similarity to measure
the matching degree between the new problem and an
old case. Suppose the new problem P is represented by
the object O*, O* = {O*

1, O*
2, ..., O*

l}, and an old case
C in the case base is represented by the object O, O=
{O1, O2, ..., Ol}. The similarity between O* and O can
be computed as Eq. (1).

(1)

where Wi denotes the weight factor given to the

object Oi , ; SIM(O*
i, Oi) denotes the

similarity between the two objects O*
i and Oi , which

can be computed as Eq. (2).

(2)

where Wij denotes the weight factor given to the

object Oij , ; SIM(O*
ij, Oij) denotes the

similarity between the two objects O*
ij and Oij.

We can keep doing so until the objects only
contain simple attributes. Suppose O*

x is an object of
the new problem P, and Ox is an object of the old case
C. The similarity between them can be computed as
Eq. (3).

(3)

where Wxk denotes the weight factor given to the

simple attribute Ak, ; SIM(O*
x.Ak, Ox.Ak)

denotes the similarity between the two attribute values

O*
x.Ak and Ox.Ak, which can be computed using fuzzy

logic.

The basic idea of fuzzy logic is to fuzz absolute
membership relations in cantor sets. The membership
degree can be any value between zero and one rather
than zero or one. Membership function plays a very
important role in fuzzy logic. It uses classical
mathematical methods to express the uncertainty in
fuzzy sets.

Similar relation is a kind of fuzzy relation. The
similar relation between two elements is not just

similar or unsimilar; it should be measured by
similarity. In this paper, we treat a similar relation
between attribute values as a fuzzy relation
characterized by fuzzy set named “similar”. The
similarity is the membership degree which can be
computed using membership function as Eq. (4) shows.
 (4)
where SIM(V1, V2) denotes the similarity between the
two attribute values; R denotes the fuzzy set “similar”;
μR denotes membership function.

Simple attributes can have numeric type or
symbolic type. For numeric type, some typical
functions can be selected as membership functions. If
the input of an attribute value of the new problem
means that the corresponding attribute value of an old
case should be close to it, we can choose a
membership function which can describe the concept
“close to” well, like normal distribution function.

The attribute value should first be normalized as
Eq. (5).
 (5)

where V denotes the attribute value before
normalization; Vmax and Vmin denote the maximum
value and the minimum value of the attribute; V’
denotes the attribute value after normalization.

If Ak is an attribute which has numeric type, the
similarity between Ox.Ak and Ox

*.Ak can be computed
as Eq. (6).

 (6)

where Ox.Ak′ and Ox
*.Ak′ denote the values of

Ox.Ak and Ox
*.Ak after normalization.

If normal distribution function is selected as the
membership function, the similarity can be computed
as Eq. (7).

 (7)

The change curve of the similarity is illustrated in
Fig. 1.

Fig.1: Normal distribution membership function.

For symbolic type, the attribute can be classified

as name variable or sequence variable. The
relationship between attribute values of name variable
can be equal or unequal. If Ak is a name variable, the
similarity between Ox.Ak and Ox

*.Ak can be computed
as Eq. (8).

∑
=

×==
l

i
iii OOSIMWOOSIMS

1

**),(),(

1
1

=∑
=

l

i
iW

∑
=

×==
m

j
ijijijiii OOSIMWOOSIMS

1

**),(),(

1
1

=∑
=

m

j
ijW

∑
=

×==
n

k
kxkxxkxxx AOAOSIMWOOSIMS

1

**).,.(),(

1
1

=∑
=

n

k
xkW

minmax

'
VV

VV
−

=

Ox.Ak′ Ox
*.Ak′

μ

0

)'.,'.().,.(**
kxkxRkxkx AOAOAOAOSIM μ=

),(),(2121 VVVVSIM Rμ=

2*)'.'.(*).,.(kxkx AOAOK
kxkx eAOAOSIM −−=

 if Ox*.Ak≠Ox.Ak

 if Ox*.Ak＝Ox.Ak (8)

There is a sequential relation between the attribute
values of sequence variable. The concepts like “greater
than” or “less than” make sense. If an attribute value
V1 is in front of another attribute value V2 sequentially,
V1 is “less than” V2, which can be marked as V1<V2.

The attribute values of sequence variable are
discrete, and the similarity between them can not be
computed numerically. If the input of an attribute
value of the new problem means that the
corresponding attribute value of an old case should be
close to it, the membership degree can be given by
professionals according to their knowledge and
experience.

If Ak is a sequence variable and there are n
elements (attribute values) in the universe (Vi, i = 1, ...,
n, V1<V2<...<Vn), the similarity between each two of
them can be given by professionals. The similarity
matrix of order n is as follows.

where rij denotes the similarity between Vi and Vj,
rij =μR(Vi, Vj).

Once the similarity matrix is given, the similarity
between Ox.Ak and Ox

*.Ak can be computed as Eq. (9).

if Ox*.Ak = Vi and Ox.Ak = Vj (9)

Although our definition process of similarity
measurement is top-down, the actual computation
process of similarity measurement is bottom-up.

3.2. Hierarchical decomposition of
case retrieval

It is possible that no case is totally similar with the
new problem, i.e., the similarity between every old
case and the new problem is less than a given
threshold ε. But that does not mean all the cases are
useless to the solution of the new problem. We can
decompose the new problem hierarchically until the
old cases partially similar with the new problem are
retrieved, i.e., the similarity between some part of
every retrieved case and the corresponding part of the
new problem is greater than or equal to ε.

The collection of the old cases that are similar
with an object of the new problem is called similar
set, which is marked as Gx, where x is the subscript
of the object, and may denote zero to several digits.

Fig. 2 shows an example of the decomposition of
a new problem.

Fig. 2: Decomposition of a new problem.

There is no old case totally similar with the new
problem, so the similar set G is empty. The new
problem is decomposed to the second level. There are
some cases similar with the object O*

1 or O*
3 , so they

are elements in the similar set G1 or G3. It is
unnecessary to decompose these two parts. There is
still no old case similar with the object O*

2, so the
similar set G2 is empty. The new problem is
decomposed to the third level. There are some cases
similar with the object O*

21 or O*
22, so they are

elements in the similar set G21 or G22.
If the new problem is decomposed, different cases

in the similar sets similar with different parts of the
new problem should be combined together to solve the
new problem.

3.3. Intelligent clustering based on
self-organizing feature map

The computation process of similarity measurement is
complex and time-consuming. In order to increase the
speed of case retrieval, the old cases in the case base
are clustered based on intelligent techniques in this
paper. The search process for old cases similar to the
new problem is classified into two steps: the new
problem is first clustered to identify its class; then
similar cases are searched only from the cases in the
same class with the new problem. Therefore the
searching time can be saved greatly and the
consistency between the retrieved old case and the
new problem is further assured.

Before clustering creative design cases, which
classes can be identified and which class a case should
belong to are usually unknown. Therefore we use self-
organizing feature map (SOFM) neural network to
solve this kind of clustering problem. SOFM adopts
unsupervised learning schemes. Given outputs are not
necessary in the network. Based on the characteristics
of input patterns, the network itself can continually
modify the intensity of connection (weights) between
neuron cells according to some judgement standards to
make the distribution of weight vectors resemble the
distribution of samples in the input vector space.

A well known type of SOFM is a Kohonen
network [7]. The objective of a Kohonen network is to

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

== ×

nnnn

n

n

nnij

rrr

rrr
rrr

rR

...
............

...

...

)(

21

22221

11211

⎩
⎨
⎧

=
1
0

).,.(*
kxkx AOAOSIM

ijkxkx rAOAOSIM =).,.(*

O*

O*
1 O*

2

O*
21 O*

22

O*
3

map input vectors (patterns) of arbitrary dimension n
onto a discrete map with 1 or 2 dimensions. Patterns
close to one another in the input space should be close
to one another in the map: they should be
topologically ordered. A Kohonen network is
composed of a grid of output units and n input units.
The input pattern is fed to each output unit. The input
lines to each output unit are weighted.

The old cases should be clustered on each level
due to the possibility of decomposition of a new
problem. Here we give the implementation of any
SOFM network for each level, including the design of
input level, output level and learning algorithm.
Suppose the subscript of the objects of old cases
clustered is x, which may denote zero to several digits,
and the sample size is N.

(1) Input level
Input level represents all the simple attributes of

the object Ox. In order to simplify the network
structure, each attribute can be represented by one
input unit. Suppose the number of input units is n.

The input vector is X, which is composed of input
variables: x1, x2, ..., xn. All the input data should be
transferred into numbers because SOFM neural
network can only deal with numbers.

(2) Output level
Each unit in the output level represents a type of

sample. Generally, the units should be enough.
Suppose the number of output units is m, m >> n. For
example, m=4*4=16 (as shown in Fig. 3).

Fig. 3: The structure of Kohonen SOFM network.

The output variable of a unit is yj (j = 1, …, m).
The output value is the matching degree (similarity)
between the input vector X and the corresponding
weight vector ωj of this output unit. The value of yj can
be computed as Eq. (10).

 (10)

where SIM(X, ωj) denotes the similarity between

the input vector X and the weight vector ωj; SIM(xi,

ωij) denotes the similarity between the input variable xi

and the weight ωij; Ui is the weight factor denoting the

importance of xi, 0≤Ui≤1, and .

The computation of SIM(xi, ωij) is the same as the
computation of the similarity between attribute values
presented in part 3.1.

(3) Learning algorithm
Suppose the output unit c is the best match with

the input vector X as Eq. (11) shows.
(11)

The weight vectors ωc and ωj (j N∈ c, Nc is the
adjacent area of c) are modified.

The learning algorithm is as follows:
• Initializing ωij(0) to small random numbers (i

= 1, ..., n, j = 1, ..., m) and initializing learning
rate α(0), adjacent area Nc(0) and the times of
learning T;

• Selecting a sample Xp(t) from the samples (X1,
X2, ..., XN) as the input of the network;

• Computing the value of yj (j = 1, ..., m) based
on Eq. (10) to get the unit c as the winning
unit whose output value is the maximum value
of yj (j = 1, ..., m);

• Modifying the weights ωij as Eq. (12);

i = 1, 2, …, n (12)

• Updating α(t) and Nc(t) as Eq. (13) and Eq.
(14);

 (13)

 (14)

• Going back to step 2 and continuing above
steps until the iteration times come to T.

Each weight vector of the network represents the
center of a class after the learning process. The
network then can be used to classify the samples (old
cases) and the new problem.

4. Intelligent case combination
Case combination is not simple adding of different
parts of different cases because there are constraint
relationships between them. The combined case which
combines the most similar cases in different parts
together may not satisfy constraint relationships.
Therefore the objective of case combination is to
generate combined cases totally similar with the new
problem and satisfying constraint relationships.

4.1. Integrating constraint rules
with object-oriented case

),(),(
1

iji

n

i
ijj xSIMUXSIMy ωω ∑

=

×==

),(maxmax),(jjjjcc XSIMyXSIMy ωω ===

⎪⎩

⎪
⎨
⎧

=+

−+=+

)()1(
))()(()()1(

tt
txttt

ijij

ij
p

iijij

ωω

ωαωω
)(
)(

tNj
tNj

c

c

∉
∈

)1)(0()(
T
tt −=αα

)]1)(0([)(
T
tNINTtN cc −=

…
x1 x2 xn

Input Level

Output level

1
1

=∑
=

n

i
iU

In many creative design activities specific domain
knowledge contained in the cases is not sufficient to
cope with all requirements of an application. General
domain knowledge is often necessary. In object-
oriented case representations there may be constraint
relationships between different attributes of the same
object or different objects. These constraint
relationships are very important for verifying the
validity of an old case, a new problem or a combined
case.

Constraint rules can be used to represent
constraint relationships. We attach constraint rules to
the object classes. Within the scope of an object class,
a constraint rule has direct access to the attributes
which are defined for that class and indirect access to
the attributes of those objects which are parts of the
object the rule belongs to.

The way of defining constraint rules is: those
representing constraint relationships between different
attributes of the same object can be defined in the
object class which the object belongs to; those
representing constraint relationships between
attributes of different objects can be defined in the
object class which have access to these attributes and
have access to least number of attributes among all
such object classes. Thus constraint rules are defined
in different object classes instead of the first-level
object class which have access to all the attributes of
the case object.

A constraint rule can be defined as follows:
Rule <rule name>
 If
 <pattern 1> [and <pattern 2> […[and <pattern m>]]]
 then
 <action 1> [and <action 2> […[and <action n>]]]
End [<rule name>]
where patterns contain attributes the rule has

access to; actions maybe warning, etc.
In order to improve the speed of verifying the

validity of an old case, a new problem or a combined
case, we create a matching network of constraint rules
for each object class based on Rete network [8]. The
matching network is a rooted acyclic directed graph
which consists of a root node, some one-input pattern
nodes, and some two-input join nodes. First for each
rule and each of its patterns we create a one-input
pattern node which is connected to the root node and
attached a matching state (true or false) identifying the
pattern is satisfied or not. Then for each rule, if A1,
A2, ..., An are the pattern nodes of the rule, we
construct two-input join nodes B2, B3, ..., Bn where

B2 has its left input from A1 and its right input
from A2;

Bj has its left input from Bj-1 and its right input
from Aj, 2<j≤n.

A matching state is also attached to each join node
identifying the patterns from the root node to the join
node are satisfied or not. The matching state of Bn is
the matching state of the rule. The collection of all the
rules whose matching states are true is called conflict
set.

Suppose there are two constraint rules R1 and R2
defined in an object class and four patterns P1, P2, P3,
and P4 in the constraint rules. R1 contains P1, P2 and P3;
R2 contains P1 and P4. If P1 and P4 are satisfied, the
matching network is shown in Fig. 4. Conflict set
contains R2.

Fig. 4: A matching network of constraint rules.

The matching process based on a matching

network is efficient. On the one hand, if a pattern is
contained in several different rules, there is no need to
examine the same pattern several times for different
rules. On the other hand, if the values of some
attributes change, there is no need to reexamine all the
rules but to reexamine the patterns containing these
attributes and propagate the changes to the leaf nodes.

4.2. Hierarchical combination
On the contrary to the top-down hierarchical
decomposition of case retrieval, hierarchical
combination is bottom-up. Suppose the matching
results for a new problem P represented by an object
O* include similar sets G1, G21, G22, and G3. At first
cases contained in G21 and G22 should be combined
together to generate combined cases similar with O2

*
and stored in G2. Then cases contained in G1, G2 and
G3 should be combined together to generate combined
cases similar with O* and stored in G. In order to
verify the validity of combined cases, the matching
network of constraint rules defined in the
corresponding object class should be utilized. If the
conflict set is empty, the combined case is valid and
should be stored in the corresponding similar set.

Suppose O*
x is an object of a new problem P, and

O*
x = {O*

x1, O*
x2, ..., O*

x m}, where x is a subscript of
zero to several digits. If Gx is empty and Gxi is not
empty (i =1, 2, ..., m), the object O′x = {O′x1, O′x2, ...,

P1: ’T’ P2: ’F’ P3: ’F’ P4: ’T’

root

P12: ’F’

P123: ’F’

P14: ’T’

R1 R2

O′xm}, where O′xi G∈ xi (i =1, 2, ..., m), is called a
combined case. If O′x satisfies the constraint
relationships, it is called a valid combined case which
can be stored in Gx. If O′x is most similar with O*

x
among all valid combined cases, it is called the best
combined case.

All the cases in a similar set are ordered by the
similarity. Suppose the number of cases in Gxi is
marked as nxi, each case in Gxi is marked as O1

xi,
O2

xi, ..., or Onxi
xi according to its order, and the

similarity between Oj
xi and O*

xi is marked as Sj
xi (j = 1,

2, ..., nxi). In the process of case combination, each
valid combined case is stored in Gx and is marked as
O1

x, O2
x, ..., or Onx

x according to its generation order,

and the similarity between Ok
x and O*

x is marked as
Sk

x (k = 1, 2, ..., nx).

4.3. Enumerative algorithm of case
combination

The most simple and effective way to solve the
problem of case combination is to try every possible
combination to find all the valid combined cases and
order them by the similarity to find the best combined
case. Fig. 5 shows the enumerative algorithm which is
a recursive process where O′x is the temporary
combined case created in the process of combination.

Fig. 5: Enumerative algorithm of case combination.

The advantage of the enumerative algorithm of
case combination is that all the valid combined cases
and the best combined case can be generated. But if
there are many cases in the similar sets, the number of
combination computed by Eq. (15) will be very large
and the process will be low-efficient.

(15)

4.4. Genetic algorithm of case
combination

The basic concept of genetic algorithms is designed to
simulate processes in natural system necessary for
evolution, specifically those that follow the principles
of survival of the fittest such as reproduction,
crossover, and mutation [9]-[10].

If we treat a combined case as a chromosome and
treat parts of it as genes in the chromosome, the
problem of case combination can be solved by genetic
algorithm. The process is as follows.

(1) Defining the objective function and constraint
relationships

The objective of case combination is to generate
the best combined case, so the objective function is:

s.t. satisfies constraint relationships

represented by constraint rules

j(i) = 1, 2, ..., nxi; i = 1, 2, ..., m (16)

(2) Encoding
We encode the variables j(i) (i = 1, 2, ..., m) as

two-digit strings in the range ‘01’ to ‘99’ representing
the order in Gxi. The code for an individual
(chromosome) is the concatenation of the codes for its
different parts (genes). For example, the code for the
combined case combining all the first cases in Gxi (i =
1, 2, ..., m) together is ‘0101…01’.

(3) Generating an initial population
Each individual in the initial population is

generated randomly. The probability of generating any
two-digit strings is equal to 1/nxi. The size of the
population marked as pop_size can be defined as the
maximum value of nxi (i = 1, 2, ..., m). Each individual
should be verified according to the matching network

∑∑
==

×=×=
m

i
xi

ij
xixi

m

i

ij
xixix OOSIMWSWS

1

*)(

1

)(),(max

U
m

i

ij
xiO

1

)(}{
=

yes

O′x = O′x∪{Oj(i)
xi}

no

i≤m?

i = i+1

j(i) = 1

i = 1
O′x =Φ

k = 0

O*
x, {Gxi∣i = 1，…，m }

i = i-1

i = 0? end

O′x = O′x－{Oj(i)
xi}

no

T =Φ?

Getting conflict set T
based on the matching
network of constraint
rules defined in the
object class which O*

x
belongs to.

yes
no

j(i)≤nxi?

j(i) = j(i)+1

no

k = k+1
Ok

x = O′x
Saving Ok

x in Gx
Computing Sk

x

∏∏ = xin nC
xi

1

of constraint rules defined in the object class which
O*

x belongs to. If the conflict set is empty, the
corresponding combined case can be saved in Gx.

(4) Computing the fitness for each individual in
the initial population

The fitness of each individual is computed by Eq.
(16). The average fitness of the population is
computed as Eq. (17).

(17)

(5) Selection
The purpose of selection is to generate a new

population with higher average fitness. Selection
probability of an individual in the original population
can be computed as Eq. (18).

h = 1, 2, ..., pop_size (18)

(6) Crossover
Crossover is a process of exchanging the same

parts of two selected individuals. We adopt two-point
crossover method which selects two crossover points
and exchanges the parts between the two points. The
crossover rate marked as Pc can be assigned 0.8 which
means about eighty percent of individuals should be
crossed over to generate new individuals. All the new
individuals should be verified.

(7) Mutation
Mutation is a process of randomly altering the

individuals. The mutation rate marked as Pm can be
assigned 0.1 which means about ten percent of parts in
all individuals should be altered to generate new
individuals. All the new individuals should be verified.

(8) Computing the fitness of each individual in the
new population

The computing method is the same as (4). If the
difference between the average fitness of the new
population and the average fitness of the original
population is less than a given threshold such as 0.005,
the algorithm will be over. Otherwise the algorithm
will return to (5).

Notice that the valid combined cases are saved in
Gx instead of the final population. The advantage of
the genetic algorithm of case combination is that many
valid combined cases and the almost-best combined
case can be generated efficiently. The shortcoming is
that the best combined case and some valid combined
cases may not be generated.

For most creative design activities, case
adaptation is needed after the most similar old cases or
combined cases are found. This step is usually
executed by designers based on their knowledge and
experience.

5. Application results
The method presented in this paper has already

been applied to the domain of architectural design of
information systems, and it works well.

Architectural design is an important stage in the
process of information system (IS) development. It
generates an enforceable technical scheme based on
computer and communication systems according to
the users’ needs. Contemporary architectural design
which is mostly based on distributed computer
network environment involves various kinds of
products and techniques.

We use unified modeling language (UML) to
build an object-oriented model of architectural design
of information systems, as shown in fig.6.

Fig. 6: Object-oriented model of architectural design of information systems.

A prototype system was developed in Chinese to

implement above method in the domain. Initially more
than 50 cases had been collected and stored in the
system. They were clustered into six classes. We first

analyzed users’ needs of a new problem and inputted
its descriptions into the system. The new problem was
clustered to identify its class. Thirteen cases which
were in the same class with the new problem were

sizepopSS
sizepop

h

h
xx _/

_

1
∑=
=

∑=
=

sizepop

h

h
x

h
xh SSP

_

1
/

Physical
topology

Network
transmission

media

Network
technique

Network
operating

system

Network
server

1

1

1
1

1

1
Architectural design

Network platform

Network
connection

Network
management

Database
management

system

Database
server

General
development

tool

Web
development

tool

Multi-media
development

tool

1
1 1 1 1 1 1 1 1 1 1 1

11 1 111n1 1 1 1 1

Web
server

E-mail
server

1 1
1 1

Database platform Development platform

matched. None of them was totally similar with the
new problem. Therefore the new problem was
decomposed to the second level which included
network platform, database platform, and development
platform. For each part, similar cases were found.
After the process of case combination, two combined
cases satisfying constraint rules were obtained. The
solutions to these two combined cases were adapted to
get the final solution to the new problem. It proved to
be feasible and effective. The whole process was also
efficient.

Apparently, the effectiveness and efficiency of
this method would be more and more obvious with the
development of the scale of the case base.

Acknowledgement
This work is partially supported by Key Discipline
Foundation of Central University of Finance and
Economics.

References
[1] C.H. Tong, Knowledge-Based Circuit Design,

Ph.D. Thesis, Rutgers Technical Report LCSR-
TR-108, Laboratory for Computer Science
Research, Hill Center for the Mathematical
Sciences Busch Campus, Rutgers University,
1988.

[2] J.L. Kolodner and L. M. Wills, Paying Attention
to the Right Thing: Issues of Focus in Case-Based
Creative Design. AAAI-93, Case-Based Reasoning
Workshop, Washington D. C., pp. 19-25, 1993.

[3] P. Pu, Special Issue: Case-Based Design Systems,
Artificial Intelligence in Engineering, Design, and
Manufacturing, Cambridge University Press,
1990.

[4] M.L. Maher, M. B. Balachandran, and D. M.
Zhang, Case-Based Reasoning in Design,
Lawrence Erlbaum, 1997.

[5] B. S. Brigitte, L. Mario and H. Andre, Case-Based
Reasoning: Survey and Future Directions.
Proceedings of 5th Biannual German Conference
on Knowledge-Based Systems, Würzburg,
Germany, pp. 67-89, 1999.

[6] B.T. Juan José, A. G. C. Pedro and D. A. Belén,
An Object-Oriented Framework for Building CBR
Systems. Proceedings of the 7th European
Conference on Case-Based Reasoning, pp. 32-46,
2004.

[7] http://www.cs.bham.ac.uk/~jlw/sem2a2/Web/Koh
onen.htm.

[8] C.L. Forgy and Rete, A Fast Algorithm for the
Many Pattern/Many Object Pattern Match
Problem. Artificial Intelligence, 19: 17-37, 1982.

[9] M. Mitchell, An Introduction to Genetic
Algorithms, MIT press, 1996.

[10] G. Alicia and M. Julie, Case-Base Injection
Schemes to Case Adaptation Using Genetic
Algorithms. Proceedings of the 7th European
Conference on Case-Based Reasoning, pp. 198-
210, 2004.

