Completeness of (µ,v)-Resolution Principle of Intuitionistic Operator Fuzzy Logic

Hongliang Zheng¹ Benqiang Xu¹ Li Zou^{1,2}

¹School of Computer and Information Technology, Liaoning Normal University, Dalian 116029, P.R.China ² Intelligent Control Development Center, Southwest Jiaotong University, Chengdu 610031, P.R.China

Abstract

In this paper, a primary interpretation for intuitionistic operator fuzzy logic is presented. The concepts of (μ, v) -complementary literal and (μ, v) -similar literal about complex literals are proposed. Then the properties of (μ, v) -false and the (μ, v) -resolution method of the complex literals are discussed. Based on the concepts of (μ, v) -weak implication and (μ, v) -strong implication, the completeness of (μ, v) -resolution of intuitionistic operator fuzzy logic hold. An example is given to show that the proposed (μ, v) -resolution method is a layered resolution method.

Keywords: (μ, ν) -resolution, the completeness of (μ, ν) -resolution, intuitionistic operator fuzzy logic.

1. Introduction

Since the fuzzy logic was proposed by Zadeh^[1], many researches have studied reasoning about fuzzy logic. The resolution principle introduced by Robinson^[5] is a fundamental technique for mechanical reasoning or question-answering system ^[6]. The resolution principle of fuzzy logic was discussed by Liu on the lattice ^[7,8]. From the view of intuitionistic fuzzy logic which presented by K.Atanassov^[2,3], the truth value of fuzzy proposition can be described by two real number (μ, ν) on the closed interval [0, 1], which represents its truth degree and its false degree. Some resolution methods of many-valued logic were discussed using operator^{[11-} ^{13]}. In paper [9] the intuitionistic fuzzy degree was expressed by operator which lies on the left of fuzzy proposition atom and intuitionistic operator fuzzy logic (IOFL) was proposed on the operator lattice $L = \{(\mu, \nu) | \mu, \nu \in [0, 1], \mu + \nu \le 1\}$. The (μ, ν) -resolution principle was discussed, but it wasn't completeness. We will discuss the completeness of (μ, ν) -resolution principle in this paper.

The paper is organized as follows. In Section 2, we give primary interpretation for intuitionistic operator fuzzy logic, the (μ, ν) -weak implication and (μ, ν) -strong implication are proposed. In Section 3, the concepts of (μ, ν) -complementary literal and (μ, ν) -

similar literal about complex literals are presented and the completeness of (μ, ν) -resolution of intuitionistic operator fuzzy logic hold. An example to apply the resolution method shows in Section 4. Finally, some conclusions are given in Section 5.

2. (μ,ν)-weak implication and (μ,ν)strong implication

Definition 2.1 Assume $(\mu, v)P$ is an atom of *IOFL*,

 $V_{1}(\mu,\nu)P = \begin{cases} \mu, & \text{when } P \text{ is appoint ed } T \text{ by } I \\ \nu, & \text{when } P \text{ is appoint ed } F \text{ by } I \end{cases}$

The interpretation of *P* in this definition is two kinds: true or false ^[7-9]. The world described in this system is : any proposition *P* is certain, crisply, true or false. Because of different understanding degree, different person gives different intuitionistic fuzzy proposition. This degree is represented by operator (μ, ν) . We can interpret the operator (μ, ν) : the certainty and uncertainty of *P*, or the obverse demonstration and inverse demonstration of *P* and so on.

Definition 2.2 Let $L=\{(\mu,\nu)|\mu,\nu\in[0,1], \mu+\nu\leq 1\}$, the operation " \circ " of the operator on $(L, *, \oplus, ')$ is defined as follows: for any $(\mu_1,\nu_1), (\mu_2,\nu_2)\in L$,

 $(\mu_1, \nu_1) \circ (\mu_1, \nu_2) = ((\mu_1 + \mu_2)/2, (\nu_1 + \nu_2)/2)$

where $(\mu_1, v_1) * (\mu_1, v_2) = (\min(\mu_1, \mu_2), \max(v_1, v_2))$ $(\mu_1, v_1) \oplus (\mu_1, v_2) = (\max(\mu_1, \mu_2), \min(v_1, v_2))$ $(\mu_1, v_1)^* = (v_1, \mu_1)$

Hence L is an operator lattice.

The operator " $_{\circ}$ " can be regarded the evidence of existing *P*. The different operation can get different interpretation. We can define and take the operator according to our need.

Definition 2.3 Let *G* is a formula of *IOFL*, $\mu, \nu \in L$, assume $V_I(G)=(\mu_G, \nu_G)$, the formula *G* is called (μ, ν) -true if $\mu_G \ge \mu$ and $\nu_G \le \nu$ for an arbitrary interpretation *I*. Whereas, the formula *G* is called (μ, ν) -false if $\mu_G \le \mu$ and $\nu_G \ge \nu$.

Definition 2.4 Let *G* an *H* are formulas of *IOFL*, $\mu, \nu \in L$, *G* is called (μ, ν) -weak implicate *H* (or *H* is a weak-logical result of *G*) if $(G \rightarrow H)$ is (μ, ν) -true, denoted by $G \Rightarrow H$. **Theorem 2.1** Assume $V_I(G)=(\mu_G, \nu_G)$ and $V_I(H)=(\mu_H, \nu_H)$, $(G \rightarrow H)$ is (μ, ν) -true iff if $\mu_G > \nu$ and $\nu_G < \mu$ then $\mu_H \ge \mu$ and $\nu_H \le \nu$ for arbitrary interpretation *I*. **Proof** (<=)

 $\mu_{(G \to H)} = \mu_{(\sim G \lor H)} = \max \{ \mu_{\sim G}, \mu_H \} = \max \{ \nu_G, \mu_H \} = \mu_H \ge \mu$ and $\nu_{(G \to H)} = \nu_{(\sim G \lor H)} = \min \{ \nu_{\sim G}, \nu_H \} = \nu_H \le \nu$, hence $(G \to H)$ is (μ, ν) -true.

(=>) For an arbitrary interpretation *I*, $\mu_{(G \to H)} \ge \mu$ and $\nu_{(G \to H)} \le \nu$, if $\mu_G > \nu$ and $\nu_G < \mu$, then

 $\mu_{(G \to H)} = \mu_{(\sim G \lor H)} = \max \{ \mu_{\sim G}, \mu_H \} = \max \{ \nu_G, \mu_H \} \ge \mu$ since $\nu_G < \mu$, we have $\mu_H \ge \mu$,

 $v_{(G \to H)} = v_{(\sim G \lor H)} = \min\{v_{\sim G}, v_H\} = \min\{\mu_G, v_H\} \le v$ and $\mu_G > v$, therefore $v_H \le v$.

Definition 2.5 Assume *S* is a set of clause, $S_{PR}^{(\mu,\nu)}$ is called (μ,ν) -primary reduced set of *S*, $(\mu,\nu) \in L_{\nu}, S_{PR}^{(\mu,\nu)}$ is obtained by the method as follows: for

arbitrary $(\mu^*, \nu^*) P \in S$,

(1)while $\mu \geq 0.5, \nu \leq 0.5$, if $\nu \leq \mu^* \leq \mu$ or $\nu \leq \nu^* \leq \mu$, delete $(\mu^*, \nu^*)P$ from *S*.

(2)while $\mu \leq 0.5$, $\nu \geq 0.5$, if $\mu \leq \mu^* \leq \nu$ or $\mu \leq \nu^* \leq \nu$, delete $(\mu^*, \nu^*)P$ from *S*.

Theorem 2.2 Let C_1 and C_2 are two clauses, $\mu \ge 0.5$, $v \le 0.5$, $C_{1PR}^{(\mu,\nu)}$ and $C_{2PR}^{(\mu,\nu)}$ are (μ,ν) -primary reduced clause of C_1 , C_2 , and then

 $(C_{1PR}^{(\mu,\nu)} \land C_{2PR}^{(\mu,\nu)}) = R_{(\mu,\nu)}(C_{1PR}^{(\mu,\nu)}, C_{2PR}^{(\mu,\nu)})$

Proof. We can obtain it from definition 2.1, definition 2.2 and theorem 2.1.(omitted)

Theorem 2.3 Let C_1 and C_2 are two clauses, assume $(\mu, \nu)=(0.5, 0.5)$, and then $C_1 \wedge C_2 \Rightarrow R_{(\mu,\nu)}(C_1, C_2)$.

Proof While $(\mu, \nu) = (0.5, 0.5)$, there is $C_1 = C_{1PR}^{(\mu,\nu)}$ and $C_2 = C_{2PR}^{(\mu,\nu)}$;

From theorem 2.1 we can get $C_1 \wedge C_2 \Rightarrow R_{(\mu,\nu)}(C_1,C_2)$.

Definition 2.6 Assume *G* and *H* are two formulas of IOFL, $(\mu, \nu) \in L$, for arbitrary interpretation *I*, if $\mu_G \ge \mu$ and $\nu_G \le \nu$ there must be $\mu_H \ge \mu$ and $\nu_H \le \nu$, *G* is called (μ, ν) -strong implication *H* or *H* is a logical result of *G*, denoted $G \equiv >H$.

The following propositions are obviously.

Proposition 2.1 When μ >0.5 and ν <0.5, if G=>H then G=>H; When μ =0.5 and ν =0.5, if G=>H then G=>H.

Proposition 2.2 Let G is a formula,

(1)When $\mu \le 0.5$ and $\nu \ge 0.5$, A =>A;

 $(2)A \equiv >A$.

Proposition 2.3 Let *A*, *B*, *C* are the formulas of *IOFL* respectively,

(1)When $\mu > 0.5$ and $\nu < 0.5$, if A =>B, B =>C then A =>C;

(2) If $A \equiv >B$ and $B \equiv >C$ then $A \equiv >C$.

Proposition 2.4 Let *A*, *B*, *C* are formulas of *IOFL* (1) If A =>B and A =>C then $A =>(B \land C)$; (2) If $A \equiv >B$ and $A \equiv >C$ then $A \equiv >(B \land C)$.

Theorem 2.4 Let C_1 and C_2 are two clauses, $\mu \ge 0.5$ and $\nu \le 0.5$, and then

 $C_1 \land C_2 \equiv R_{(\mu,\nu)}(C_1,C_2).$ Corollary Let C_1 and C_2 are two clauses, $\mu \ge 0.5$

and $v \le 0.5$, for arbitrary interpretation *I*, if

 $\mu_{(C1 \land C2)} > \mu, v_{(C1 \land C2)} < v$

Then $\mu_{R_{(\mu,\nu)}(C_1,C_2)} > \mu, v_{R_{(\mu,\nu)}(C_1,C_2)} < \nu$

3. Completeness of (μ, v) -resolution principle

Definition 3.1 Let $(\mu_{11}, v_{11}) \dots (\mu_{1n}, v_{1n})P$ and $(\mu_{21}, v_{21}) \dots (\mu_{2n}, v_{2n})P$ are two literals, $(\mu, v) \in L$. Assume $V_I(\mu_{11}, v_{11}) \dots (\mu_{1n}, v_{1n})P = (\mu_1, v_1), V_I(\mu_{21}, v_{21}) \dots (\mu_{2n}, v_{2n})P = (\mu_2, v_2),$

When *P* is appointed *T*, $\mu_1 > \max(\mu, \nu)$, $\nu_1 < \min(\mu, \nu)$ and $\mu_2 < \min(\mu, \nu)$, $\nu_2 > \max(\mu, \nu)$;

When P is appointed F, $\mu_1 < \min(\mu, v)$, $v_1 > \max(\mu, v)$ and $\mu_2 > \max(\mu, v)$, $v_2 < \min(\mu, v)$.

These two literals are called (μ, ν) -complementary literals each other.

Definition 3.2 Let $(\mu_{11}, v_{11})...(\mu_{1n}, v_{1n})P$ and $(\mu_{21}, v_{21})...(\mu_{2n}, v_{2n})P$ are two litterals, $(\mu, \nu) \in L$.

Assume $V_{I}(\mu_{11}, \nu_{11})...(\mu_{1n}, \nu_{1n})P = (\mu_{1}, \nu_{1}), V_{I}(\mu_{21}, \nu_{21})...(\mu_{2n}, \nu_{2n})P = (\mu_{2}, \nu_{2})$

While *P* is appointed *T*, $\mu_1 > \max(\mu, v)$, $v_1 < \min(\mu, v)$ and $\mu_2 > \max(\mu, v)$, $v_2 < \min(\mu, v)$

While *P* is appointed *F*, $\mu_1 < \min(\mu, v)$, $v_1 > \max(\mu, v)$ and $\mu_2 < \min(\mu, v)$, $v_2 > \max(\mu, v)$

These two literals are called (μ, ν) -similar literals.

Definition 3.3 For $(\mu, v) \in L$, $(\mu^*, v^*)P$ is an arbitrary word of a clause which satisfied with

 $v \leq \mu^* \leq \mu \text{ or } v \leq v^* \leq \mu$.

This clause is called (μ, ν) -null clause, denoted by (μ, ν) - \Box .

Theorem 3.1 Let $\mu \ge 0.5$ and $\nu \le 0.5$ if a deduction that (μ, ν) - \Box can be deduced from *S* with (μ, ν) -resolution method exists, then *S* is (μ, ν) -false.

Proof. If otherwise, there will be an interpretation *I*, cause $\mu_S > \mu$ and $\nu_S < \nu$,

from theorem 2.4 there is $C_1 \wedge C_2 \equiv R_{(\mu,\nu)}(C_1,C_2)$

From proposition 2.3 and the corollary of theorem 2.4 there is

$$\mu_{(\mu,\nu)-\Box} > \mu, v_{(\mu,\nu)-\Box} < \nu,$$

It is a contradiction for definition 3.1.

Theorem 3.2^[9] For $(\mu, \nu) \in L$, if the clause set *S* is (μ, ν) -false, there must be a (μ, ν) - resolution deduction which can deduce (μ, ν) - \Box from *S*.

From theorem 3.1 and theorem 3.2 we hold as follow:

Theorem 3.3 (Completeness Theorem) Assume $\mu \ge 0.5$ and $\nu \le 0.5$, *S* is a clause set, then *S* is (μ, ν) -false iff there is a (μ, ν) -resolution deduction which can deduce (μ, ν) - \Box from *S*.

From above, in order to keep the intuitionistic property of two clauses, $(\mu, \nu)=(0.5, 0.5)$ should be taken in (μ, ν) -weak implication; While $\mu \ge 0.5$ and $\nu \le 0.5$ should be taken in (μ, ν) -strong implication, that can make the (μ, ν) -resolution formula of two clause is logical result of their parent clause.

While $\mu+\nu=1$, it can be obtained λ -weak implication and λ -strong implication of operator fuzzy logic which defined in paper ^[4].

Theorem 3.4 If the (μ, ν) -resolution deduction which can deduce (μ, ν) - \Box beginning with the clause set S, then S is both (μ, ν) -false and (ν, μ) -false.

Proof. If $(\mu, \nu) = (0.5, 0.5)$, it can prove easily.

If $\mu \ge 0.5$ and $\nu \le 0.5$, the null clause can be obtained by (μ, ν) -resolution, then *S* is (μ, ν) -false. At last we can obtained the (μ, ν) -resolution formula of two (μ, ν) -complementary literals.

Assume (μ, v) -complementary literals are $(\mu_1, v_1)P_1$ and $(\mu_2, v_2)P_2, \mu_1 > \mu$ and $v_1 < v, \ \mu_2 < v$ and $v_2 > \mu$, therefore $S \equiv > (\mu_1, v_1)P_1^{\sigma}$, $S \equiv > (\mu_2, v_2)P_2^{\sigma}$.

Hence $S \equiv >(\mu_1, \nu_1) P_1^{\sigma} \land (\mu_2, \nu_2) P_2^{\sigma}$, in which $P_1^{\sigma} = P_2^{\sigma}$.

Hence $\mu_{\rm S} < v$ and $v_{\rm S} > \mu$. Otherwise, if $\mu_{\rm S} > v$ then $(\mu_1, v_1) P {\sigma \atop 1} \land (\mu_2, v_2) P {\sigma \atop 2} > v$, but this is impossible.

From above S is (v,μ) -false.

4. Application

For instance a production rule

if A then $B(\mu^*, v^*)$

is described by formula in *IOFL* as follows:

 $(\mu^*, v^*)(A \rightarrow B)$ or $(\mu^*, v^*)(\sim A \lor B)$ in which (μ^*, v^*) is the intuitionistic fuzzy degree of this rule.

A group of production rule A and a group of fact B are known:

 $A\begin{cases} If & E_1 & then & E_2 & (0.7,0.2) \\ If & E_2 & then & E_2 & (0.9,0.1) \\ If & E_4 & then & E_5 & (0.6,0.2) \end{cases}$ $B\begin{cases} (1,0)E_4 \\ (0.8,0.1)E_5 \end{cases}$

We can prove that (0.8, 0.1) *H* will be deduced from A and B.

Use (μ, v) -resolution method, we can prove $A \land B \rightarrow (0.8, 0.1)$ H is (μ, v) -false.

 $A \wedge B \wedge \sim (0.8, 0.1)H$ can decompose the set of clause:

 $\begin{array}{l} (1)(0.7, 0.2)((0, 1)E_1 \lor (1,0)E_2) \\ (2)(0.9, 0.1)((0,)E_2 \lor (1,0)H) \\ (3)(0.6, 0.2)((0, 1)E_4 \lor (0,1)E_5 \lor (1,0)E_1) \\ (4)(1, 0)E_4 \\ (5)(0.8, 0.1)E_5 \end{array}$

(6)(0.1, 0.8)H	
Take $(\mu, \nu) = (0.6, 0.2)$, resolute with $(0.6, 0.2)$, then	
$(7)(0.6, 0.2)((1, 0) E_1)$	from (3), (4), (5)
$(8)(0.7, 0.2)((1, 0) E_2)$	from (1), (7)
(9)(0.9, 0.1)((1, 0) H)	from (2), (8)
(10)□	from (6), (9)

Therefore, because the conclusion (0.8, 0.1)H can be inferred from *A* and *B*, this theorem is (0.2, 0.6)-true. From the last it can infer \Box but not (μ, ν) - \Box , this theorem is also (0.6, 0.2)-true. Because the intuitionistic fuzzy degree of the conclusion *H* which inferred from *A* and *B* is (0.8, 0.1), this inference isn't credible completely. It is likely 0.6-true, but likely 0.2false. The intuitionisdtic fuzzy degree in this inference process is taken (0.6, 0.2).

5. Conclusions

In this paper, following the operator intuitionistic fuzzy logic ^[6] and its (μ, ν) -resolution principle we give the concepts of (μ, ν) -complementary literal and (μ, ν) -similar literal about complex literals and their properties. Based on (μ, ν) -weak implication and (μ, ν) -strong implication, the completeness of (μ, ν) -resolution of intuitionistic operator fuzzy logic hold. How to find an intuitionistic fuzzy degree using more simple and convenient algorithm is an opening problem. It provides a new kind of the uncertain reasoning. The further work is to how to use it in the expert system or decision –making.

References

- [1] L.A. Zadeh, The Concept of Linguistic Variable and its Application to Approximate Reasoning (I), *Information Sciences*, 8:199-249, 1975.
- [2] K.Atanassov. Intuitionistic Fuzzy Set. *Fuzzy sets* and System. 20:87-96, 1986.
- [3] K.Atanassov. Elements of intuitionistic fuzzy logic. Part I. *Fuzzy Set and Systems*, 95:39-52, 1998.
- [4] T.Y. Lin, Neighborhood Systems: A Qualitative Theory for Fuzzy and Rough Sets, *Advances in Machine Intelligence and Soft Computing*, Volume IV, Ed.Paul Wang, pp.132-155, 1997.
- [5] T.Y.Lin, and S. Tsumoto, Qualitative Fuzzy Sets Revisited: Granulation on the Space of Membership Functions, *The 19th International Meeting of the North American Fuzzy Information Processing Society*, pp.331-337, 2000.
- [6] J.P.Robinson., A Machine-oriented logic based on the resolution principle, *J.ACM*, 12:23-41, 1965.

- [7] X.H. Liu, Automatic Reasoning Based on Resolution Method, *Science Publishing House*, Beijing, China, pp.347~360, 1994.
- [8] X. Liu, L. Zou, Qualitative Fuzzy Logic System and Its Resolution Method, *Proceedings of International Conference on Machine Learning and Cybernetics*, pp. 2000-2004, 2004.
- [9] T. Y. Chen, L. Zou, Intuitionistic Fuzzy Logic on Operator Lattice, *BUSEFAL*, 69:107-110, 1997.
- [10] L. Zou, P. Das, Y. Xu and D. Meng, Softresolution Method of Linguistic Hedges Latticevalued First-order Logic. *Proceedings of 8th International Joint Conference on Information Science*, pp.372-376, 2005.
- [11] L. Zou, X. Liu, Y. Xu, Resolution Method of Linguistic Truth-valued Propositional Logic, International Conference on Neural Networks and Brain, pp.1996-2000, 2005.
- [12] L. Zou, J. Ma, Y. Xu, A Framework of Linguistic Truth-valued Propositional Logic Based on Lattice Implication Algebra, *Proceedings of 2006 IEEE International Conference on Granular Computing*, pp. 574-577, 2006.
- [13] L. Zou, B.H. Li, W. Wang and Y. Xu, Weighting Qualitative Fuzzy First-Order Logic and its Resolution Method, *Applied Artificial intelligenc*, pp. 103-111, 2006.