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Abstract 

Image processing applications have played a vital role in modern life and they are required to be well tested due to 
their significance and human dependence on them. Testing of image processing application is difficult due to complex 
nature of images in terms of their generation and evaluation. The presented technique is first of its type to generate 
test images based on symbolic evaluation of program under test. The idea is based on the fact that, neighboring image 
operations are applied by selecting a segment of image pixels called a window, and iterated by sliding window over 
entire image. We imitate neighboring operations using symbolic values for the pixels rather than concrete values. The 
path constraint is extracted for each path in the program under test and solved for concrete solutions. Test images are 
generated based on solution of path constraints for each identified path. We have tested the proposed scheme on 
different programs and the results show that test images are successfully generated for each path to ensure the path 
coverage of the program under test and identifying infeasible paths. 

Keywords: symbolic execution, image generation, testing, input generation, unit testing, synthetic images  

1. Introduction 

Recently, the role of image processing applications has 
been increased remarkably such as medical imaging, 
documents digitization, bioinformatics, remote sensing 
and a number of other applications. The significance of 
decision based image systems raises need of a well-tested 
reliable system. Software testing is a vital approach to 
identify bugs, which is accomplished by software 
analysis and generation of bug causing inputs. The aim 
of software testing is to show the absence of bugs but 
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practically it only shows the bugs that manifest during the 
testing process. Furthermore, it is the most costly part of 
software development life cycle and may exceed 50% of 
overall cost [1]. Despite of its limitations and cost, 
software testing helps to improve software quality and 
reduces manual efforts to test the program.                     
        Our goal in this research is to automate the testing 
process of image processing applications. In particular, 
we seek to automatically generate test images that can 
achieve a code coverage metric such as path coverage. In 
last decade, the significance of symbolic execution [2] 
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for automatic test input generation has been revived and 
widely proved for sequential as well as concurrent 
programs written in different languages. However, 
testing of image processing applications pose different 
challenges that must be addressed.  
        Firstly, to test an image processing software, we 
deal with semantically meaningful images. In real 
systems, these images can be either specific or general. 
For example, a face recognition system requires images 
of faces and non-faces for testing, similarly classification 
of cancerous and non-cancerous tissues requires MRI 
images, and sets of similar images are required for testing 
of content based image retrieval system. Generally, these 
systems are tested using the available class of images for 
which they are meant to process and the output is 
analyzed. For example if we test a face recognition 
system we give different test images to the system and 
check whether it is capable to match them with the right 
face in the image database. However, by doing so we are 
analyzing the algorithm correctness rather than software. 
Our first observation is that, meaningful images are 
necessary for algorithm testing not for its software 
implementation. We can use synthetic images for testing 
different paths of a software and its output is analyzed 
using a test oracle. Secondly, an image is a 
multidimensional input data composed of different 
brightness levels and a 2-D grid of pixel positions; which 
makes testing process and test data generation more 
difficult. Our second observation is that, we can make use 
of a subset of image pixels for which operations are 
applied in a single iteration and repeated for the entire 
image. Thirdly, selection of a test oracle is based on 
semantics of image processing application. For example 
if a program classifies image pixels to different bands of 
gray levels then the test oracle should be based on the 
pixel ranges.  
        Manual testing is the most readily available 
technique and do not require extra resources. Image 
processing applications are tested manually using 
handcrafted or standard images. The outcome of program 
under test is analyzed manually to decide whether the 
program passes or fails. However, the problem with this 
approach is its applicability. It is a tedious job to test the 
system manually especially, when the programs under 
test have multi-dimensional input data. Exhaustive 
testing is a choice in safety critical systems [3], but in 
case of image processing applications, it is not feasible to 
test the program for all possible input images in a limited 

time. Random testing [4, 5], is a simple approach but it 
generates untargeted tests. Generally, the time required 
to process an input image is high, furthermore, untargeted 
testing lacks diversity. The requirement is to generate test 
images automatically that satisfy certain code coverage 
criterion such as path coverage in a limited time. 
        This paper presents a first effort to automatically 
generate test images using symbolic execution for testing 
of image processing applications. The proposed 
technique addresses the three challenges of testing image 
processing applications in the following way. The first 
challenge is addressed by the creating synthetic images 
based on program semantics. The proposed technique 
aims to achieve path coverage and the test images are 
generated for each identified path. The paths for which 
no input images can be generated are identified as 
infeasible paths. Testing each path of the program using 
test images enhances confidence on the quality of the 
system. The second challenge of handling large scale 
multi-dimensional data is addressed by choosing a 
window of pixels (4 neighbors, 8 neighbors etc.) as 
symbolic variables and test images are generated by 
manipulating these variables. The key idea is to exploit 
the fact that certain operations are performed on a 
window of selected pixels and these operations are 
repeated for the entire image to produce output. The third 
challenge is addressed by selecting the test oracle 
automatically using semantics of program under test. For 
a test path, the pixels of resulting image occur in a 
specific ranges of gray levels which are used as test 
oracle.  
        In this paper we extend the traditional symbolic 
execution to image processing applications by using a 
subset of pixels. We have developed a prototype tool 
IMSUIT in Matlab which can take an image processing 
function written in Matlab as input and generates test 
images automatically. To do so, we generate constraints 
on image pixels during program execution on symbolic 
values. In some cases, like pattern matching these 
constraints can be large enough, we use constraint 
simplification to boost up the speed of constraint solving. 
Path constraint is an expression with some mathematical 
and logical operations over pixel variables. For 8-bit 
pixels the value of gray levels ranging from 0 to 255. In 
symbolic execution, constraint solvers [6] are used to 
solve the constraints. We have used a simple solver based 
on random number generation as the range of pixel 
values is not high. To test the effectiveness of IMSUIT, 
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we have applied IMSUIT on distance transform, robust 
filter and different modules of optical character 
recognition (OCR) system. The result shows that for each 
path in the implementation under test, images are 
generated to achieve path coverage.  
 
This paper has three main contribution: 
 
1. A novel idea to generate test images for unit testing 

of image processing applications;   
2. Development of a working prototype IMSUIT;  
3. Experimental results showing the effectiveness on 

real image processing applications.  
 

        The paper is organized as follows. In section 2, a 
brief background of symbolic execution and neighboring 
operations is presented. In section 3, an overview of the 
approach is presented using a simple example. In section 
4, the details of the approach are discussed. In section 5, 
implementation and evaluation of the approach is 
presented using image processing applications. In section 
6, a brief discussion on synthetic images and their 
usefulness is presented. Finally, section 7 concludes the 
discussion. 

2. Background 

Validity of testing is limited to dataset used in the testing 
process whereas program proving is highly dependent on 
specifications and steps of proof used in the formal 
method. Symbolic execution [2, 7] presented four 
decades ago as a practical approach between these two 
approaches. It is an alternative way to execute and 
analyze a program than its normal execution for the 
purpose of input generation and program analysis. The 
generated input can drive an execution to a specific 
program path and for each path there can be several or no 
inputs generated by symbolic execution. The advantage 
of executing program symbolically is to achieve abstract 
interpretation for each of program execution path. During 
the execution, the associated classes of symbolic inputs 
are pruned by the constraints to get a specific subclass of 
inputs that is specifically required to execute that path. 
Depending upon path constraint, the subclasses may have 
a single concrete input, a number of concrete inputs, or 
even no concrete input. 
        Symbolic execution uses symbolic inputs instead of 
concrete inputs and eventually the values of variables are 
represented as symbolic expressions. For a selected path 

in the program, symbolic evaluation generate a path 
constraint consisting of equalities and inequalities over 
symbolic inputs [2]. The path constraint is updated for a 
branching instruction to encode the constraints on inputs 
to reach that program point [8]. In contrast to concrete 
execution, both paths of branching instructions can be 
taken in a symbolic execution. However, the generated 
path constraint must be satisfied to traverse the path. 
Whenever symbolic execution along a specific path 
terminates (normally or erroneously), the program 
constraint is solved using constraint solvers [6, 9] and 
concrete inputs are generated by the solutions of the 
inequalities. When program is executed with the 
generated input, only a specific path is traversed for a 
deterministic code. If there exist no solution to a path 
constraint then the path is infeasible or unreachable. For 
recursive programs, the symbolic execution may produce 
infinite paths which is limited by restraining the 
execution to a certain depth. The efficacy of symbolic 
execution is twofold, one is automatic generation of test 
inputs and other is high coverage. Symbolic execution 
can be used for different purposes, such as bug detection, 
program verification, debugging, maintenance, and fault 
localization [10]. 
        In contrast to classical symbolic execution, modern 
symbolic execution techniques try to decreases the 
complexity of path constraints [11 12 16], as constraint 
solving is computationally the most expensive part of 
symbolic execution. Recently, symbolic execution is 
used in combination with concrete execution [14 15 16] 
and uses program instrumentation avoiding a complete 
program interpreter required in classical symbolic 
execution. This hybrid program execution enhances 
coverage while avoiding the computational cost 
associated with full-blown symbolic execution which 
exercises all possible execution paths [15]. Techniques 
such as DART [16] instruments the program to calculate 
an input vector for the next execution during each 
execution. The input vector contains values that are the 
solution of symbolic constraints gathered from predicates 
in branch statements during the previous execution. The 
new input vector attempts to force the execution of the 
program through a new path. By repeating this process, a 
directed search attempts to force the program to sweep 
through all its feasible execution paths. Similarly, CUTE 
[17] uses dynamic symbolic execution and represents all 
possible inputs using a logical input map. It use the 
symbolic execution to generate inputs that direct a 
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program to alternate paths, and to use the concrete 
execution to guide the symbolic execution along a 
concrete path.  KLEE [11] performs a number of query 
optimizations to make them simpler so that reducing 
computational complexity of the constraint solver. 
Additionally, it represents program states compactly and 
uses search heuristics such as random path selection and 
coverage optimized search to get high code coverage. 
This makes it scalable to large programs. 
        Symbolic execution is used extensively in recent 
years for test input generation and program analysis. We 
have used the concept of symbolic evaluation to generate 
path constraints for image processing applications. These 
path constraints are solved and test images are generated 
on the basis of their solutions. 
        Typically, operations applied on images in spatial 
domain are point operations or neighboring pixels 
operations. Unlike point operations, the neighborhood 
operations perform modification of pixel value 
depending on the selected pixel and its neighboring 
pixels [18]. The neighborhood operators can be classified 
according to type of domain, type of neighborhood and 
their reclusiveness. The two types of domains consists of 
numeric or symbolic data. The numeric domain operators 
are arithmetic whereas symbolic domain operators are 
Boolean [19]. Usually, 4-connected or 8-connected 
neighborhood is used for neighboring operations. These 
neighborhood operations are useful in preprocessing 
algorithms, labelling and matching etc. We have studied 
applications using these neighborhood operations as test 
cases for generating test images with symbolic 
evaluation. 

3. Motivation Example 

We use a simple example to illustrate the working of 
IMSUIT. Consider a function binariz in Fig. 1, which 
takes an input gray scale image of 100 by 100 pixels and 
generates its binary image. The program selects a 
window of eight neighboring pixels in terms of i & j for 
a given pixel location, to take average of the window for 
smoothing purpose. The program applies thresholding to 
convert gray pixels to black and white pixels in the 
resulting image. It has two paths, one is followed when 
the average of selected window is less than a threshold 
while other is followed when the average is greater than 
or equal to given threshold. To generate test images for 
such functions, IMSUIT needs two kind of inputs, one is 
the program under test and the other is name of variables 

which are to be executed symbolically. In the above 
example, the variables p1 to p9 contain the values of eight 
neighboring pixels of a centered pixel p5 from input 
image in a single iteration. The values of p1 to p9 are 
changed iteratively for the next window of neighboring 
pixels until the whole image is traversed.  
        IMSUIT generates constraints from the program 
under test using symbolic evaluation. The program under 
test is parsed line by line and the states of the program 
variables are stored in different structures designed for 
variables, images, loops, branches. A stack is designed to 
resolve the scope of branching statements. These 
structures imitate program memory stack during 
symbolic execution. Table 1 shows the states of program 
variables executed symbolically in each step. In line 2, 
there is a simple assignment of a concrete value to a 
variable. For each simple assignment, it is evaluated that 
whether the variable on left hand side is a new variable 
or already declared. If a new variable is declared, its 
name and value are stored in the variable structure 
otherwise the value of already declared variable is 
overridden. Line 3 and 4 are also simple assignments to 
new variables. In the case of for loops, the loop condition 
must be satisfied to execute at least a single iteration. The 
loops in line 5 and 6 are nested, to execute the statements 

binariz.m 
 
1:    function    binaryImage=binarize (gray Image) 
2:    threshold=128; 
3:    [ r , c ] = size (grayImage); 
4:    binaryImage = zeros (r-2,c-2); 
5:    for  i = 2 : r - 1 
6:          for  j = 2: c - 1 
7:                p1 = grayImage (i-1,j-1); 
8:                p2 = grayImage (i-1,j);         
9:                p3 = grayImage (i-1,j+1);         
10:              p4 = grayImage (i,j-1);          
11:              p5 = grayImage (i,j);         
12:              p6 = grayImage (i,j+1);         
13:              p7 = grayImage (i+1,j-1); 
14:              p8 = grayImage (i+1,j);                                               
15:              p9 = grayImage (i+1,j+1);          
16:              avg = p1+p2+p3+p4+p5+p6+p7+p8+p9)/9; 
17:              if  ( avg < threshold ) 
18:                     binaryImage ( i -1,j-1) = 0; 
19:              else 
20:                     binaryImage (i-1,j-1) = 255; 
21:            end 
22:       end 
23:  end 

Figure 1  Example Code 
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in nested loop the conditions of both loops must be 
satisfied. So the path condition becomes:  

  
PC:           𝑖 ≤ 𝑟 − 1 &  𝑗 ≤ 𝑐 − 1                            (1) 

The statements 7 to 15 initialize the symbolic variables 
with the pixel values of input image. The variables p1 to 
p9 are treated as symbolic variables and stored in 
symbolic variable structure. The variables whose values 
are based on these symbolic variables are also treated as 
symbolic variables. In line 16, symbolic variables are 
used to compute the average and the variable avg along 
with its symbolic value are stored in symbolic variable 
structure. Equation 2 shows the value assigned to 
variable avg in symbolic terms: 
 
                                  𝑎𝑣𝑔 = ∑ 𝑃𝑥

9
𝑥=1 /9                                  (2) 

A branch splits the program execution into two paths and 
both paths are executed in symbolic execution. IMSUIT 
analyses branch conditions and generates path constraints 
for both true and false conditions. In the line 17, one path 
condition is as follows: 
 
          PC:         𝑖 ≤ 𝑟 − 1 &  𝑗 ≤ 𝑐 − 1 & 

∑ 𝑝(𝑛)9
𝑛=1

9
< 128      (3) 

 
Whereas the alternate path condition is: 

 
        ¬PC:         𝑖 ≤ 𝑟 − 1 &  𝑗 ≤ 𝑐 − 1 & 

∑ 𝑝(𝑛)9
𝑛=1

9
≥ 128     (4) 

 
The keyword end is associated to the correct scope of for 
loop or if/ elseif branch using a stack. The path conditions 
extracted from symbolic execution are solved for 
concrete values using a simple constraint solver based on 
random number generation. A pixel value can range from 
0 to 255 for an 8-bit image. A path condition is solved by 
generating arbitrary values from the range until the 
equation is satisfied. Path condition can have one specific 
solution or a number of different solutions. The above 
constraints have multiple solutions for each path ranging 
from 0~127and 128 to 255.    
        The solutions computed for the path condition are 
used to synthesize test images. For each path in the 
program under test, at least one test image is created. As 
in above case, a path has multiple solutions and to 
generate test images, IMSUIT randomizes different 
solutions of path condition into a single test image. A test 
image ensures that the program under test will follow a 
specific path when executed. This creates ease of testing 
oracle and debugging process. In above example, two test  

 

images are created to test its each path. When a test image 
is given as input to a program, the assertion should not be 
violated. In Fig 1, line 18 and 20 define the pixel values 
of output image which are used as test oracle. For 
example for path 1, when the test image is executed, all 
the pixels of resultant image must be zero and for path 2 
all the pixels of a resulting image must be 255. If there 
exists a path for which no test image can be created then 
the path is infeasible or a part of dead code. 

4. Approach 

IMSUIT takes an input program written as a set of 
statements, which consists of assignments, branching 
statements and loops. An assignment statement can be a 
simple or a mathematical equation. The assignment 
statement assigns the value evaluated from right hand 
side to a variable on left hand side. The assignment can 
be through a function call, a simple digit, variable, or 
equation. The branching statements have a Boolean 
expression followed by statements and then termination  

Table 1  Symbolic States 
line avg thre

sh 
r c i j Pc 

1 ? ? ? ? ? ? ? 

2 ? 128 ? ? ? ? ? 

3 ? 128 100 ? ? ? ? 

4 ? 128 100 100 ? ? ? 

5 ? 128 100 100 2 ? i≤r-1 

6 ? 128 100 100 2 2 i≤r-1&j≤c-1 

7~1
5 

? 128 100 100 2 2 i≤r-1&j≤c-1 

16 ∑ 𝑝(𝑛)9
𝑛=1

9
 

128 100 100 2 2 i≤r-1&j≤c-1 

17 ∑ 𝑝(𝑛)9
𝑛=1

9
 

128 100 100 2 2 i≤r-1&j≤c-1 
& 
∑ 𝑝(𝑛)9

𝑛=1

9
<128 

18       The pixel of output image is assigned 0 

19 ∑ 𝑝(𝑛)9
𝑛=1

9
 

128 100 100 2 2 i≤r-1&j≤c-1 
& 
∑ 𝑝(𝑛)9

𝑛=1

9
≥12

8 
20      The pixel of output image is assigned 255 

 

Published by Atlantis Press 
Copyright: the authors 

139



Tahir et al.  
 

 

of its scope. A branch condition can be a simple 
consisting of single condition or complex consisting of 
multiple concatenated conditions. There can be 
statements for a false condition of a Boolean expression 
as well. A loop statement have a loop variable with a start 
value and a terminating value. Inside the loop, there are 
statements and then termination of its scope. IMSUIT 
aims to extract program paths according to above 
program structures and generates test images for each 
path.  
        To execute program symbolically we need to know 
about the program constructs and semantics. Fig.3 shows 
an overview of IMSUIT algorithm. A test program is 
taken as input with a list of variables required to execute 
symbolically. The program is read line by line and passed 
to a symbolic evaluator to extract necessary information 
required to execute the program symbolically. Stacks and 
structures are used to store the program states are updated 
using the extracted information. After parsing and 
updating program state, the statement is executed 
symbolically and path constraint is updated. Once the 
program is processed, path constraints for different paths 
are extracted. These path constraints can be complex, 
which are simplified to expedite constraint solver as it is 
computationally most expensive part of symbolic 
execution. To find concrete solutions, the simplified path 
constraint are passed to a constraint solver. The concrete 

solutions are used to generate test images. Whereas, if the 
path constraint cannot be solved then the path is 
infeasible. The infeasible paths are reported to the user.  
        In symbolic evaluation, information in the program 
under test is extracted and analyzed without executing it. 
The aim of symbolic evaluation is to extract semantics of 
the program structure. Different structures are designed 
to store program states e.g. variables, symbolic variables, 
images, loops and branches. A stack is designed to 
resolve the scope of loops and branching statements. The 
symbolic evaluator takes a statement from the program 
under test and a list of symbolic variables. Fig. 3 shows  

Input:          Program Line 
                      Symbolic variables 
Output:       Update structures and stack 
                         
1:        symbolicEvaluator(line, symb_vars) 

2:              ignore spaces & comments     

3:              Token =  getToken(line) 

4:             if Token ∈ keyword 

5:                    Parse line  

6:                    Update corresponding structure 

7:                   Update Stack  

8:            else 

9:                    if Token ∈  reservedWords 

10:                        Parse line  

11:                 else 

12:                       check the assignment 

13:                       if assignment == fucntionCall 

14:                               Parse function call  

15:                               Update Corresponding Structure 

16:                       else 

17:                               if assignment == simple 

18:                                        if  LHS ∈ variable structure   

19:                                                override variable value 

20:                                        else 

21:                                                new varriable initialized 

22:                                                 write to structure variable  

23:                                        end 

24:                               else 

25:                                        assignment == equation 

26:                                        parse RHS of equation 

27:                                        write to LHS variable structure 

28:                               end 

29:                       end 

29:                 end 

30:          end 
 

Figure 3 Symbolic Evaluator 

Input:        Test Program 
                    Symbolic Variables 
Output:     Test Images 

 
IMSUIT (program, symb_varb) 

 
1:     line =  getLine( ); 
2:      While line ≠ Null 
3:               SymbolicEvaluator(line, symb_varb) 
4:               writeLogFile ( ) 
5:               const =   symbolicExecuter( ) 
6:               line =  getLine( ); 
7:      endWhile 
8:      simp_constraint =  simplifier(const) 
9:      solutions =  constraintSolver(sim_const) 
10:    if solution ≠ NULL 
11:             testImages = generateImages(solutions) 
12:     else 
13:             report infeasible paths 
14:      end 
 

Figure 2 Algorithm 
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how symbolic evaluator works. Firstly, the string token 
of the statement is examined for keywords specific to 
programming language e.g. if, else, for etc. If the token is 
a keyword then the line is parsed according to the 
expected values specific to that keyword. For example, if 
the keyword is if then symbolic evaluator expects a 
Boolean expression after if keyword. Secondly, if the 
token is not a keyword then it is checked for a reserved  
word specific to the programming language e.g. in 
Matlab clc, figure etc. These reserved words do not 
contribute in symbolic execution but only used to display 
images, close files etc. Thirdly, if the token is not a 
reserved word, then the statement is checked for an 
assignment statement by expecting an assignment 
operator. The right hand side of the equation can be a 
function call whose output is assigned to the variable on 
the left hand side. Otherwise, the statement can be either 
a simple assignment having a digit or variable on right 
hand side or an equation consisting of variables, digits 
and operators whose value is computed and assigned to 
the variable on left hand side. The variable states are 
updated in the variables structure accordingly. Branches 
are important in symbolic execution. When an if or elseif 
keyword is found, its Boolean condition is parsed which 
can be a simple or combinations of several conditions. 
The multiple conditions are concatenated using logical 
AND or OR operators. Condition variables and logical 
operators are stored to a structure which is maintained for 
branch statements. As discussed earlier, symbolic 
execution follows both paths of a branch, for this purpose 
the false condition is also computed and stored to the 
conditions structure along with the true condition. In 

nested branches, the true condition of parent is 
concatenated with the child. Whereas in case of elseif the 
false condition of the parent if condition is concatenated 
with the child’s Boolean condition. These branch 
conditions are used to update the path constraint in 
symbolic execution. The condition variables are mostly 
the symbolic variables or variables computed using 
symbolic variables because the conditions are usually 
applied to classify pixels or function of pixels. Loops 
have a Boolean condition to execute the loop iterations 
and its termination. The loop condition is also 
concatenated with the path condition after extracting 
from the statement. Whenever a condition or a branch 
occurs, the stack is updated to resolve their scope.  
        For an assignment statement, if the type is a simple 
assignment then the variable at left hand side is either a 
new variable or already declared. Whenever a variable is 
parsed, it is searched in the existing structure of variables. 
The right hand side of equation is also parsed if it is a 
number then the value is written to the value field of the 
variable structure. But if the right hand side is a variable 
then the value of the variable is extracted from variable 
structure and copied to the variable on the left hand side 
in its value field in variables structure. If the equation is 
a mathematical or logical then the equation is parsed for 
its each operand and operator. The equation is stored in 
terms of variables and symbolic variables which are 
evaluated during symbolic execution. At the same time, 
the variables are checked if they are symbolic then the 
values are stored to symbolic variable structure. The 
symbolic variables are usually the pixels of images on 
which different operations are performed. They are 
initialized by the image pixels and then their symbolic 
values are changed during execution. The variables 
whose values are computed using symbolic variables are 
also treated as symbolic variables and their symbolic 
values are stored in symbolic variable structure. 
        After extracting the information by symbolic 
evaluation, the statement is executed symbolically. 
During symbolic evaluation, a message is also generated 
for symbolic execution containing the semantics 
information. For example, semantic information is 
generated for different statements such as branch, simple 
assignment, image read, symbolic variable override etc. 
and specific flags are set. The symbolic evaluator finds 
the flag and performs the corresponding task. Symbolic 
evaluator executes the program on symbolic value rather 
than concrete values. Whenever it finds a branch it 

Input:     Constraint 
Output:  Solution to Constraint 
 
1:      constraintSolver(constraint) 

2:          get the symbolic variables  

3:          while (¬satisfied)          

4:                         generate a set of random numbers 

5:                         set symbolic variables values 

6:                         solve the constraint 

7:                         if constraint is solved        

8:                                      satisfied = 1     

9:                         end if 

10:        end while 

 

Figure 4 Constraint Solver 
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follows both the paths. The path constraint is also 
updated for each branching statement execution. The 
condition of a for loop is similar to an if condition. Path 
conditions are generated for each path aggregating all the 
branch conditions over symbolic variables. The path 
condition can be a sequence of concatenated logical and 
mathematical statements. In some cases, the path 
condition can be simplified. Constraint solving is  
computationally the most expensive part of the system. 
By simplifying the path condition we can make it faster. 
We use a constraint simplifier for constraint 
simplification.  
        A constraint solver checks whether a path condition 
can be solved for concrete value. We have developed a 
constraint solver shown in Fig. 4, based on random 
number generation. Usually the symbolic variables are 
pixels whose values are stored in 8-bit variables ranging 
from 0 to 255. Range of random numbers is small and a 
random number generator based solver can find the 
concrete solution for a path constraint quickly. Once the 
solution to the path condition is computed, it is used to 
generate test images. Multiple images can be generated if 
there exists multiple solutions to the path constraint. A 
single image containing different concrete solutions can 
also be generated. These test images are given as input to 
program under test and the output of the program is 
evaluated. For example, in global thresholding the pixel 
value of gray image is checked. If pixel is less than 128, 
then pixel of the resulting binarized image is assigned 0 
otherwise 255. There exist multiple solutions to their path 
conditions. The multiple solutions are randomized in the 
test images. When the test image of path 1 is executed the 

resulting image is all black. Whereas when the test image 
for path 2 is executed the resulting image is all white.   

5. Results 

We have developed a tool IMSUIT in Matlab to generate 
test images for functions written in Matlab. It consists of 
2000 lines of code. IMSUIT is tested on different 
functions and modules, Table 1 shows the results of test 
images created and their paths.  
        IMSUIT is tested on different modules and 
functions to show its applicability and effectiveness. The 
first function is Robust filtering, which removes salt and 
pepper noise from input image. The program has three 
different paths which classify input pixels on the basis of 
minimum and maximum values of 8-neighboring pixels. 
There can be different combinations of the neighboring 
pixels to fulfill the path constraints. For first path, the 
value of current pixel is greater than the maximum value 
of the 8-neighbors. Figure 5(A) shows the test image 
generated by IMSUIT and the plot shows the difference 
between the generated input test image and the resultant 
output image. The values in the plot are all positive which 
shows that the corresponding value of pixel is greater 
than the maximum value of the neighboring pixels. This 
path represents white noise removal in the image. For the 
second path, the current pixel value is replaced with the 
minimum value of neighboring window if the value is 
less than the minimum value. Figure 5(B) shows the test 
image created for this path and the plot shows the 
difference of generated input test image and the resultant 
output image. All the values are negative in the plot 
which shows that the value of center pixel in a 3x3 
window of input image is less than the corresponding 
vale of output image. The plots in 5(A) and 5(B) shows 
the spread of different input combinations generated 
randomly for satisfying path constraint. The second path 
represents black noise removal in the image. For the third 
case, if the pixel is between minimum and maximum 
values of the neighboring pixels then the value of current 
image remains same. Figure 5(C) shows the test image 
generated for this path and plot shows that there is no 
difference between input and output image. In this way 
we can test the input program for different combinations 
of inputs and images are generated for each path of the 
program under test. 
        The second function Distance Transform finds 
distance of current white pixel with the nearest black 
pixel in a window of 25x25 pixels. Figure 6 (C) shows a  

Table 2 Results of Modules of OCR 

Sr. Function Lines 

of 

Code 

No of 

Paths 

No Test 

Images 

1 Robust Filtering 56 3 3 

2 Distance 
Transform 

95 7 7 

3 Global Threshold 31 2 2 
4 Smooth 

Threshold 
64 4 4 

5 OCR Alphabets 164 27 27 
6 OCR Numbers 106 11 11 
7 OCR Special 

Characters 
106 27 27 
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Figure 5 Test Images and Evaluation of Robust Filtering Application 
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Figure 6  Distance Transform (Qausi) and Test Images Generated 
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table of Qausi Distance to compute distance transform. 
There are 7 different paths in the program for the given 
distances. Figure 6 (A) shows a hand crafted 10x10 test 
image and Figure 6 (B) shows its distance transform 
image using different color map. The distance is scaled 
from 0 to 2.8. The pixels having distance greater than 2.8 
are classified as 3. Figure 6 (D) to 6 (J) shows the seven 
test images generated for each path. In each image 
different possible combinations of the solution for path 
constraint are generated randomly by IMSUIT. When 
these images are given as input to the program under test, 
the resulting image have a single value of the distance 
computed. In this way we can generate different size of 
images by using IMSUIT whereas the manual generation 
of such images is a very tedious and difficult task.  
        The third function is global threshold, which 
binarizes the given image using a threshold values. This 
function has two paths and to test we need at least one 
image for each path. There exist 128 different solutions 
to both path constraint. The first image created has 
random values of pixels less than or equal to 128 and the 
second has random values greater than 128. When the 
first test image is given as input to the function, its output 
is all black pixels. Whereas the output of second image is 
all white pixels. Violation of the test oracle points to a 
bug in the function. The fourth function smooth threshold 
binarizes the input image and also eliminate noise, which 
causes problems in character recognition. This function 
uses three different bands of pixel values to binarize input 
image. It uses 8 neighbors of a centered pixel and 
computes their average. The average is compared to the 
three different thresholds. These 9 pixels are considered 
symbolic variables in the execution. The function have 
four different paths and for each path a test image is 
created. The fifth function is OCR Alphabets which 
searches alphabet patterns of 25x25 pixels in the given 
image. This function has 27 paths and 27 images are 
generated for each path. The sixth function is OCR 
Numbers which searches number patterns in the given 
test image. IMSUIT generates test image for numbers 
using the path constraints. It has 11 paths and 11 test 
images are generated to test this function. The seventh 
function is OCR special characters which searches 
special character patterns in the input image. There are 
26 different paths for this function and 26 test images are 
generated to test them. 
        Fig. 7 shows the input images generated for 
alphabets, numbers and special characters. Fig. 8 shows  

a gray scale image on the left side which is pre-processed 
using smooth threshold function. Smoothing effects are 
clearly visible in the binarized image at the top right of 
the figure. Alphabets and numbers are clearly visible in 
the image and this image is ready to be given as input to  
OCR alphabets, OCR numbers and OCR special 
characters. However, test images are required covering 
all paths which can be difficult in some cases. Using 
IMSUIT we can generate test images and also we can 
control variation in the test images for testing purposes 
and analyzing the performance of the program under test. 

6. Discussion  

Synthetic image generation is a research tool which is 
extensively used in image processing testing and 
evaluation [20, 21]. A synthetic database allows the 
economical generation of images, which represent 
scenarios that are difficult or impossible to obtain in real 
data and provides a direct control of image parameters 
[22]. Synthetic images are also used for testing of image 
processing applications [23 24]. However, it is difficult 

 
Figure 7 Test Image Generated for OCR 

                      

 
 

Figure 8 Binarized Image 
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to produce test images and evaluate their test results. An 
intuitive way to generate a test image, is to randomly 
select independent values of each pixel called random 
binary image model [24]. For a binary image, the pixel 
values are selected with some probability for black and 
white pixels. Boolean model [25] is introduced by 
random points into which random grains are translated. 
The number of random points follows a Poisson 
distribution. 
        To test image operations, Mayer [23] applied 
models from stochastic geometry for random input 
generation and used statistical heuristics to compare the 
results. In image processing and such other complex 
input systems the exact output of a program under test 
cannot be verified. Despite of its limitations the statistical 
oracle can be used to verify some statistical 
characteristics of the actual test results. In case of a 
failure, there are multiple test cases required to identify 
the bug. The scheme is useful to generate random tests 
for basic image operations such as dilation and erosion 
but the limitation of the approach is that statistical oracle 
requires a couple of test cases to decide a pass or fail. 
Furthermore, the approach cannot check all the 
characteristics of the output and only works if statements 
about the statistical distribution of the test result is 
possible, which limits the applicability of the approach. 
In his extended work, Mayer [24] presents assessment of 
models that can be used for random test data generation 
and presented a method to generate additional test cases. 
The validation is performed using mutation analysis for 
a concrete image processing operation. 
        The techniques discussed are for specific algorithms 
and their use is limited to binary images as they are using 
binary models. IMSUIT is extending testing goals to gray 
scale images and the programs where arithmetic, and 
logical operations are applied on neighboring windows. 
It allows automatic generation of test images and 
different random combinations of the solutions of path 
constraint.  

7. Conclusion 

Testing a program with the help of test data is a basic way 
to check the functionality of the program under test. In 
this paper, we have used segmental symbolic evaluation 
for the generation of test images for image processing 
applications and demonstrated its usefulness with the 
help of real programs. This is the first effort to generate 
test images automatically for unit testing of image 

processing modules. The tool IMSUIT, is a prototype 
tool developed for Matlab programs however, it can be 
implemented for other programming languages. IMSUIT 
is capable of taking input function and generating test 
images for all of its paths using symbolic evaluation and 
reporting the infeasible paths. We have developed a 
simple constraint solver based on random number 
generation. The path constraints generated for image 
processing systems comprise of pixels as symbolic 
variables and their values ranges from 0 to 255 for 8-bit 
images. This fact makes possible the use of a simple 
solver. The result shows that it has successfully created 
test images for each program path. 
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