

Test Image Generation using Segmental

Symbolic Evaluation

Tahir Jameel*

Department of Computer Science and Engineering, Beihang University
Beijing 100000, China

Mengxiang Lin

Department of Computer Science and Engineering, Beihang University
Beijing 100000, China

E-mail: mxlin@nlsde.buaa.edu.cn
www. .ev.buaa.edu.cn

Abstract

Image processing applications have played a vital role in modern life and they are required to be well tested due to
their significance and human dependence on them. Testing of image processing application is difficult due to complex
nature of images in terms of their generation and evaluation. The presented technique is first of its type to generate
test images based on symbolic evaluation of program under test. The idea is based on the fact that, neighboring image
operations are applied by selecting a segment of image pixels called a window, and iterated by sliding window over
entire image. We imitate neighboring operations using symbolic values for the pixels rather than concrete values. The
path constraint is extracted for each path in the program under test and solved for concrete solutions. Test images are
generated based on solution of path constraints for each identified path. We have tested the proposed scheme on
different programs and the results show that test images are successfully generated for each path to ensure the path
coverage of the program under test and identifying infeasible paths.

Keywords: symbolic execution, image generation, testing, input generation, unit testing, synthetic images

1. Introduction

Recently, the role of image processing applications has
been increased remarkably such as medical imaging,
documents digitization, bioinformatics, remote sensing
and a number of other applications. The significance of
decision based image systems raises need of a well-tested
reliable system. Software testing is a vital approach to
identify bugs, which is accomplished by software
analysis and generation of bug causing inputs. The aim
of software testing is to show the absence of bugs but

*State Key Lab of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing 10000, China
tahirjameel8@gmail.com

practically it only shows the bugs that manifest during the
testing process. Furthermore, it is the most costly part of
software development life cycle and may exceed 50% of
overall cost [1]. Despite of its limitations and cost,
software testing helps to improve software quality and
reduces manual efforts to test the program.
 Our goal in this research is to automate the testing
process of image processing applications. In particular,
we seek to automatically generate test images that can
achieve a code coverage metric such as path coverage. In
last decade, the significance of symbolic execution [2]

International Journal of Networked and Distributed Computing, Vol. 2, No. 3 (August 2014), 135-147

Published by Atlantis Press
Copyright: the authors

135

Tahir et al.

for automatic test input generation has been revived and
widely proved for sequential as well as concurrent
programs written in different languages. However,
testing of image processing applications pose different
challenges that must be addressed.
 Firstly, to test an image processing software, we
deal with semantically meaningful images. In real
systems, these images can be either specific or general.
For example, a face recognition system requires images
of faces and non-faces for testing, similarly classification
of cancerous and non-cancerous tissues requires MRI
images, and sets of similar images are required for testing
of content based image retrieval system. Generally, these
systems are tested using the available class of images for
which they are meant to process and the output is
analyzed. For example if we test a face recognition
system we give different test images to the system and
check whether it is capable to match them with the right
face in the image database. However, by doing so we are
analyzing the algorithm correctness rather than software.
Our first observation is that, meaningful images are
necessary for algorithm testing not for its software
implementation. We can use synthetic images for testing
different paths of a software and its output is analyzed
using a test oracle. Secondly, an image is a
multidimensional input data composed of different
brightness levels and a 2-D grid of pixel positions; which
makes testing process and test data generation more
difficult. Our second observation is that, we can make use
of a subset of image pixels for which operations are
applied in a single iteration and repeated for the entire
image. Thirdly, selection of a test oracle is based on
semantics of image processing application. For example
if a program classifies image pixels to different bands of
gray levels then the test oracle should be based on the
pixel ranges.
 Manual testing is the most readily available
technique and do not require extra resources. Image
processing applications are tested manually using
handcrafted or standard images. The outcome of program
under test is analyzed manually to decide whether the
program passes or fails. However, the problem with this
approach is its applicability. It is a tedious job to test the
system manually especially, when the programs under
test have multi-dimensional input data. Exhaustive
testing is a choice in safety critical systems [3], but in
case of image processing applications, it is not feasible to
test the program for all possible input images in a limited

time. Random testing [4, 5], is a simple approach but it
generates untargeted tests. Generally, the time required
to process an input image is high, furthermore, untargeted
testing lacks diversity. The requirement is to generate test
images automatically that satisfy certain code coverage
criterion such as path coverage in a limited time.
 This paper presents a first effort to automatically
generate test images using symbolic execution for testing
of image processing applications. The proposed
technique addresses the three challenges of testing image
processing applications in the following way. The first
challenge is addressed by the creating synthetic images
based on program semantics. The proposed technique
aims to achieve path coverage and the test images are
generated for each identified path. The paths for which
no input images can be generated are identified as
infeasible paths. Testing each path of the program using
test images enhances confidence on the quality of the
system. The second challenge of handling large scale
multi-dimensional data is addressed by choosing a
window of pixels (4 neighbors, 8 neighbors etc.) as
symbolic variables and test images are generated by
manipulating these variables. The key idea is to exploit
the fact that certain operations are performed on a
window of selected pixels and these operations are
repeated for the entire image to produce output. The third
challenge is addressed by selecting the test oracle
automatically using semantics of program under test. For
a test path, the pixels of resulting image occur in a
specific ranges of gray levels which are used as test
oracle.
 In this paper we extend the traditional symbolic
execution to image processing applications by using a
subset of pixels. We have developed a prototype tool
IMSUIT in Matlab which can take an image processing
function written in Matlab as input and generates test
images automatically. To do so, we generate constraints
on image pixels during program execution on symbolic
values. In some cases, like pattern matching these
constraints can be large enough, we use constraint
simplification to boost up the speed of constraint solving.
Path constraint is an expression with some mathematical
and logical operations over pixel variables. For 8-bit
pixels the value of gray levels ranging from 0 to 255. In
symbolic execution, constraint solvers [6] are used to
solve the constraints. We have used a simple solver based
on random number generation as the range of pixel
values is not high. To test the effectiveness of IMSUIT,

Published by Atlantis Press
Copyright: the authors

136

 Test Image Generation sing Segmental Evaluation

we have applied IMSUIT on distance transform, robust
filter and different modules of optical character
recognition (OCR) system. The result shows that for each
path in the implementation under test, images are
generated to achieve path coverage.

This paper has three main contribution:

1. A novel idea to generate test images for unit testing

of image processing applications;
2. Development of a working prototype IMSUIT;
3. Experimental results showing the effectiveness on

real image processing applications.

 The paper is organized as follows. In section 2, a
brief background of symbolic execution and neighboring
operations is presented. In section 3, an overview of the
approach is presented using a simple example. In section
4, the details of the approach are discussed. In section 5,
implementation and evaluation of the approach is
presented using image processing applications. In section
6, a brief discussion on synthetic images and their
usefulness is presented. Finally, section 7 concludes the
discussion.

2. Background

Validity of testing is limited to dataset used in the testing
process whereas program proving is highly dependent on
specifications and steps of proof used in the formal
method. Symbolic execution [2, 7] presented four
decades ago as a practical approach between these two
approaches. It is an alternative way to execute and
analyze a program than its normal execution for the
purpose of input generation and program analysis. The
generated input can drive an execution to a specific
program path and for each path there can be several or no
inputs generated by symbolic execution. The advantage
of executing program symbolically is to achieve abstract
interpretation for each of program execution path. During
the execution, the associated classes of symbolic inputs
are pruned by the constraints to get a specific subclass of
inputs that is specifically required to execute that path.
Depending upon path constraint, the subclasses may have
a single concrete input, a number of concrete inputs, or
even no concrete input.
 Symbolic execution uses symbolic inputs instead of
concrete inputs and eventually the values of variables are
represented as symbolic expressions. For a selected path

in the program, symbolic evaluation generate a path
constraint consisting of equalities and inequalities over
symbolic inputs [2]. The path constraint is updated for a
branching instruction to encode the constraints on inputs
to reach that program point [8]. In contrast to concrete
execution, both paths of branching instructions can be
taken in a symbolic execution. However, the generated
path constraint must be satisfied to traverse the path.
Whenever symbolic execution along a specific path
terminates (normally or erroneously), the program
constraint is solved using constraint solvers [6, 9] and
concrete inputs are generated by the solutions of the
inequalities. When program is executed with the
generated input, only a specific path is traversed for a
deterministic code. If there exist no solution to a path
constraint then the path is infeasible or unreachable. For
recursive programs, the symbolic execution may produce
infinite paths which is limited by restraining the
execution to a certain depth. The efficacy of symbolic
execution is twofold, one is automatic generation of test
inputs and other is high coverage. Symbolic execution
can be used for different purposes, such as bug detection,
program verification, debugging, maintenance, and fault
localization [10].
 In contrast to classical symbolic execution, modern
symbolic execution techniques try to decreases the
complexity of path constraints [11 12 16], as constraint
solving is computationally the most expensive part of
symbolic execution. Recently, symbolic execution is
used in combination with concrete execution [14 15 16]
and uses program instrumentation avoiding a complete
program interpreter required in classical symbolic
execution. This hybrid program execution enhances
coverage while avoiding the computational cost
associated with full-blown symbolic execution which
exercises all possible execution paths [15]. Techniques
such as DART [16] instruments the program to calculate
an input vector for the next execution during each
execution. The input vector contains values that are the
solution of symbolic constraints gathered from predicates
in branch statements during the previous execution. The
new input vector attempts to force the execution of the
program through a new path. By repeating this process, a
directed search attempts to force the program to sweep
through all its feasible execution paths. Similarly, CUTE
[17] uses dynamic symbolic execution and represents all
possible inputs using a logical input map. It use the
symbolic execution to generate inputs that direct a

Published by Atlantis Press
Copyright: the authors

137

Tahir et al.

program to alternate paths, and to use the concrete
execution to guide the symbolic execution along a
concrete path. KLEE [11] performs a number of query
optimizations to make them simpler so that reducing
computational complexity of the constraint solver.
Additionally, it represents program states compactly and
uses search heuristics such as random path selection and
coverage optimized search to get high code coverage.
This makes it scalable to large programs.
 Symbolic execution is used extensively in recent
years for test input generation and program analysis. We
have used the concept of symbolic evaluation to generate
path constraints for image processing applications. These
path constraints are solved and test images are generated
on the basis of their solutions.
 Typically, operations applied on images in spatial
domain are point operations or neighboring pixels
operations. Unlike point operations, the neighborhood
operations perform modification of pixel value
depending on the selected pixel and its neighboring
pixels [18]. The neighborhood operators can be classified
according to type of domain, type of neighborhood and
their reclusiveness. The two types of domains consists of
numeric or symbolic data. The numeric domain operators
are arithmetic whereas symbolic domain operators are
Boolean [19]. Usually, 4-connected or 8-connected
neighborhood is used for neighboring operations. These
neighborhood operations are useful in preprocessing
algorithms, labelling and matching etc. We have studied
applications using these neighborhood operations as test
cases for generating test images with symbolic
evaluation.

3. Motivation Example

We use a simple example to illustrate the working of
IMSUIT. Consider a function binariz in Fig. 1, which
takes an input gray scale image of 100 by 100 pixels and
generates its binary image. The program selects a
window of eight neighboring pixels in terms of i & j for
a given pixel location, to take average of the window for
smoothing purpose. The program applies thresholding to
convert gray pixels to black and white pixels in the
resulting image. It has two paths, one is followed when
the average of selected window is less than a threshold
while other is followed when the average is greater than
or equal to given threshold. To generate test images for
such functions, IMSUIT needs two kind of inputs, one is
the program under test and the other is name of variables

which are to be executed symbolically. In the above
example, the variables p1 to p9 contain the values of eight
neighboring pixels of a centered pixel p5 from input
image in a single iteration. The values of p1 to p9 are
changed iteratively for the next window of neighboring
pixels until the whole image is traversed.
 IMSUIT generates constraints from the program
under test using symbolic evaluation. The program under
test is parsed line by line and the states of the program
variables are stored in different structures designed for
variables, images, loops, branches. A stack is designed to
resolve the scope of branching statements. These
structures imitate program memory stack during
symbolic execution. Table 1 shows the states of program
variables executed symbolically in each step. In line 2,
there is a simple assignment of a concrete value to a
variable. For each simple assignment, it is evaluated that
whether the variable on left hand side is a new variable
or already declared. If a new variable is declared, its
name and value are stored in the variable structure
otherwise the value of already declared variable is
overridden. Line 3 and 4 are also simple assignments to
new variables. In the case of for loops, the loop condition
must be satisfied to execute at least a single iteration. The
loops in line 5 and 6 are nested, to execute the statements

binariz.m

1: function binaryImage=binarize (gray Image)
2: threshold=128;
3: [r , c] = size (grayImage);
4: binaryImage = zeros (r-2,c-2);
5: for i = 2 : r - 1
6: for j = 2: c - 1
7: p1 = grayImage (i-1,j-1);
8: p2 = grayImage (i-1,j);
9: p3 = grayImage (i-1,j+1);
10: p4 = grayImage (i,j-1);
11: p5 = grayImage (i,j);
12: p6 = grayImage (i,j+1);
13: p7 = grayImage (i+1,j-1);
14: p8 = grayImage (i+1,j);
15: p9 = grayImage (i+1,j+1);
16: avg = p1+p2+p3+p4+p5+p6+p7+p8+p9)/9;
17: if (avg < threshold)
18: binaryImage (i -1,j-1) = 0;
19: else
20: binaryImage (i-1,j-1) = 255;
21: end
22: end
23: end

Figure 1 Example Code

Published by Atlantis Press
Copyright: the authors

138

 Test Image Generation sing Segmental Evaluation

in nested loop the conditions of both loops must be
satisfied. So the path condition becomes:

PC: 𝑖 ≤ 𝑟 − 1 & 𝑗 ≤ 𝑐 − 1 (1)

The statements 7 to 15 initialize the symbolic variables
with the pixel values of input image. The variables p1 to
p9 are treated as symbolic variables and stored in
symbolic variable structure. The variables whose values
are based on these symbolic variables are also treated as
symbolic variables. In line 16, symbolic variables are
used to compute the average and the variable avg along
with its symbolic value are stored in symbolic variable
structure. Equation 2 shows the value assigned to
variable avg in symbolic terms:

 𝑎𝑣𝑔 = ∑ 𝑃𝑥

9
𝑥=1 /9 (2)

A branch splits the program execution into two paths and
both paths are executed in symbolic execution. IMSUIT
analyses branch conditions and generates path constraints
for both true and false conditions. In the line 17, one path
condition is as follows:

 PC: 𝑖 ≤ 𝑟 − 1 & 𝑗 ≤ 𝑐 − 1 &

∑ 𝑝(𝑛)9
𝑛=1

9
< 128 (3)

Whereas the alternate path condition is:

 ¬PC: 𝑖 ≤ 𝑟 − 1 & 𝑗 ≤ 𝑐 − 1 &

∑ 𝑝(𝑛)9
𝑛=1

9
≥ 128 (4)

The keyword end is associated to the correct scope of for
loop or if/ elseif branch using a stack. The path conditions
extracted from symbolic execution are solved for
concrete values using a simple constraint solver based on
random number generation. A pixel value can range from
0 to 255 for an 8-bit image. A path condition is solved by
generating arbitrary values from the range until the
equation is satisfied. Path condition can have one specific
solution or a number of different solutions. The above
constraints have multiple solutions for each path ranging
from 0~127and 128 to 255.
 The solutions computed for the path condition are
used to synthesize test images. For each path in the
program under test, at least one test image is created. As
in above case, a path has multiple solutions and to
generate test images, IMSUIT randomizes different
solutions of path condition into a single test image. A test
image ensures that the program under test will follow a
specific path when executed. This creates ease of testing
oracle and debugging process. In above example, two test

images are created to test its each path. When a test image
is given as input to a program, the assertion should not be
violated. In Fig 1, line 18 and 20 define the pixel values
of output image which are used as test oracle. For
example for path 1, when the test image is executed, all
the pixels of resultant image must be zero and for path 2
all the pixels of a resulting image must be 255. If there
exists a path for which no test image can be created then
the path is infeasible or a part of dead code.

4. Approach

IMSUIT takes an input program written as a set of
statements, which consists of assignments, branching
statements and loops. An assignment statement can be a
simple or a mathematical equation. The assignment
statement assigns the value evaluated from right hand
side to a variable on left hand side. The assignment can
be through a function call, a simple digit, variable, or
equation. The branching statements have a Boolean
expression followed by statements and then termination

Table 1 Symbolic States
line avg thre

sh
r c i j Pc

1 ? ? ? ? ? ? ?

2 ? 128 ? ? ? ? ?

3 ? 128 100 ? ? ? ?

4 ? 128 100 100 ? ? ?

5 ? 128 100 100 2 ? i≤r-1

6 ? 128 100 100 2 2 i≤r-1&j≤c-1

7~1
5

? 128 100 100 2 2 i≤r-1&j≤c-1

16 ∑ 𝑝(𝑛)9
𝑛=1

9

128 100 100 2 2 i≤r-1&j≤c-1

17 ∑ 𝑝(𝑛)9
𝑛=1

9

128 100 100 2 2 i≤r-1&j≤c-1
&
∑ 𝑝(𝑛)9

𝑛=1

9
<128

18 The pixel of output image is assigned 0

19 ∑ 𝑝(𝑛)9
𝑛=1

9

128 100 100 2 2 i≤r-1&j≤c-1
&
∑ 𝑝(𝑛)9

𝑛=1

9
≥12

8
20 The pixel of output image is assigned 255

Published by Atlantis Press
Copyright: the authors

139

Tahir et al.

of its scope. A branch condition can be a simple
consisting of single condition or complex consisting of
multiple concatenated conditions. There can be
statements for a false condition of a Boolean expression
as well. A loop statement have a loop variable with a start
value and a terminating value. Inside the loop, there are
statements and then termination of its scope. IMSUIT
aims to extract program paths according to above
program structures and generates test images for each
path.
 To execute program symbolically we need to know
about the program constructs and semantics. Fig.3 shows
an overview of IMSUIT algorithm. A test program is
taken as input with a list of variables required to execute
symbolically. The program is read line by line and passed
to a symbolic evaluator to extract necessary information
required to execute the program symbolically. Stacks and
structures are used to store the program states are updated
using the extracted information. After parsing and
updating program state, the statement is executed
symbolically and path constraint is updated. Once the
program is processed, path constraints for different paths
are extracted. These path constraints can be complex,
which are simplified to expedite constraint solver as it is
computationally most expensive part of symbolic
execution. To find concrete solutions, the simplified path
constraint are passed to a constraint solver. The concrete

solutions are used to generate test images. Whereas, if the
path constraint cannot be solved then the path is
infeasible. The infeasible paths are reported to the user.
 In symbolic evaluation, information in the program
under test is extracted and analyzed without executing it.
The aim of symbolic evaluation is to extract semantics of
the program structure. Different structures are designed
to store program states e.g. variables, symbolic variables,
images, loops and branches. A stack is designed to
resolve the scope of loops and branching statements. The
symbolic evaluator takes a statement from the program
under test and a list of symbolic variables. Fig. 3 shows

Input: Program Line
 Symbolic variables
Output: Update structures and stack

1: symbolicEvaluator(line, symb_vars)

2: ignore spaces & comments

3: Token = getToken(line)

4: if Token ∈ keyword

5: Parse line

6: Update corresponding structure

7: Update Stack

8: else

9: if Token ∈ reservedWords

10: Parse line

11: else

12: check the assignment

13: if assignment == fucntionCall

14: Parse function call

15: Update Corresponding Structure

16: else

17: if assignment == simple

18: if LHS ∈ variable structure

19: override variable value

20: else

21: new varriable initialized

22: write to structure variable

23: end

24: else

25: assignment == equation

26: parse RHS of equation

27: write to LHS variable structure

28: end

29: end

29: end

30: end

Figure 3 Symbolic Evaluator

Input: Test Program
 Symbolic Variables
Output: Test Images

IMSUIT (program, symb_varb)

1: line = getLine();
2: While line ≠ Null
3: SymbolicEvaluator(line, symb_varb)
4: writeLogFile ()
5: const = symbolicExecuter()
6: line = getLine();
7: endWhile
8: simp_constraint = simplifier(const)
9: solutions = constraintSolver(sim_const)
10: if solution ≠ NULL
11: testImages = generateImages(solutions)
12: else
13: report infeasible paths
14: end

Figure 2 Algorithm

Published by Atlantis Press
Copyright: the authors

140

 Test Image Generation sing Segmental Evaluation

how symbolic evaluator works. Firstly, the string token
of the statement is examined for keywords specific to
programming language e.g. if, else, for etc. If the token is
a keyword then the line is parsed according to the
expected values specific to that keyword. For example, if
the keyword is if then symbolic evaluator expects a
Boolean expression after if keyword. Secondly, if the
token is not a keyword then it is checked for a reserved
word specific to the programming language e.g. in
Matlab clc, figure etc. These reserved words do not
contribute in symbolic execution but only used to display
images, close files etc. Thirdly, if the token is not a
reserved word, then the statement is checked for an
assignment statement by expecting an assignment
operator. The right hand side of the equation can be a
function call whose output is assigned to the variable on
the left hand side. Otherwise, the statement can be either
a simple assignment having a digit or variable on right
hand side or an equation consisting of variables, digits
and operators whose value is computed and assigned to
the variable on left hand side. The variable states are
updated in the variables structure accordingly. Branches
are important in symbolic execution. When an if or elseif
keyword is found, its Boolean condition is parsed which
can be a simple or combinations of several conditions.
The multiple conditions are concatenated using logical
AND or OR operators. Condition variables and logical
operators are stored to a structure which is maintained for
branch statements. As discussed earlier, symbolic
execution follows both paths of a branch, for this purpose
the false condition is also computed and stored to the
conditions structure along with the true condition. In

nested branches, the true condition of parent is
concatenated with the child. Whereas in case of elseif the
false condition of the parent if condition is concatenated
with the child’s Boolean condition. These branch
conditions are used to update the path constraint in
symbolic execution. The condition variables are mostly
the symbolic variables or variables computed using
symbolic variables because the conditions are usually
applied to classify pixels or function of pixels. Loops
have a Boolean condition to execute the loop iterations
and its termination. The loop condition is also
concatenated with the path condition after extracting
from the statement. Whenever a condition or a branch
occurs, the stack is updated to resolve their scope.
 For an assignment statement, if the type is a simple
assignment then the variable at left hand side is either a
new variable or already declared. Whenever a variable is
parsed, it is searched in the existing structure of variables.
The right hand side of equation is also parsed if it is a
number then the value is written to the value field of the
variable structure. But if the right hand side is a variable
then the value of the variable is extracted from variable
structure and copied to the variable on the left hand side
in its value field in variables structure. If the equation is
a mathematical or logical then the equation is parsed for
its each operand and operator. The equation is stored in
terms of variables and symbolic variables which are
evaluated during symbolic execution. At the same time,
the variables are checked if they are symbolic then the
values are stored to symbolic variable structure. The
symbolic variables are usually the pixels of images on
which different operations are performed. They are
initialized by the image pixels and then their symbolic
values are changed during execution. The variables
whose values are computed using symbolic variables are
also treated as symbolic variables and their symbolic
values are stored in symbolic variable structure.
 After extracting the information by symbolic
evaluation, the statement is executed symbolically.
During symbolic evaluation, a message is also generated
for symbolic execution containing the semantics
information. For example, semantic information is
generated for different statements such as branch, simple
assignment, image read, symbolic variable override etc.
and specific flags are set. The symbolic evaluator finds
the flag and performs the corresponding task. Symbolic
evaluator executes the program on symbolic value rather
than concrete values. Whenever it finds a branch it

Input: Constraint
Output: Solution to Constraint

1: constraintSolver(constraint)

2: get the symbolic variables

3: while (¬satisfied)

4: generate a set of random numbers

5: set symbolic variables values

6: solve the constraint

7: if constraint is solved

8: satisfied = 1

9: end if

10: end while

Figure 4 Constraint Solver

Published by Atlantis Press
Copyright: the authors

141

Tahir et al.

follows both the paths. The path constraint is also
updated for each branching statement execution. The
condition of a for loop is similar to an if condition. Path
conditions are generated for each path aggregating all the
branch conditions over symbolic variables. The path
condition can be a sequence of concatenated logical and
mathematical statements. In some cases, the path
condition can be simplified. Constraint solving is
computationally the most expensive part of the system.
By simplifying the path condition we can make it faster.
We use a constraint simplifier for constraint
simplification.
 A constraint solver checks whether a path condition
can be solved for concrete value. We have developed a
constraint solver shown in Fig. 4, based on random
number generation. Usually the symbolic variables are
pixels whose values are stored in 8-bit variables ranging
from 0 to 255. Range of random numbers is small and a
random number generator based solver can find the
concrete solution for a path constraint quickly. Once the
solution to the path condition is computed, it is used to
generate test images. Multiple images can be generated if
there exists multiple solutions to the path constraint. A
single image containing different concrete solutions can
also be generated. These test images are given as input to
program under test and the output of the program is
evaluated. For example, in global thresholding the pixel
value of gray image is checked. If pixel is less than 128,
then pixel of the resulting binarized image is assigned 0
otherwise 255. There exist multiple solutions to their path
conditions. The multiple solutions are randomized in the
test images. When the test image of path 1 is executed the

resulting image is all black. Whereas when the test image
for path 2 is executed the resulting image is all white.

5. Results

We have developed a tool IMSUIT in Matlab to generate
test images for functions written in Matlab. It consists of
2000 lines of code. IMSUIT is tested on different
functions and modules, Table 1 shows the results of test
images created and their paths.
 IMSUIT is tested on different modules and
functions to show its applicability and effectiveness. The
first function is Robust filtering, which removes salt and
pepper noise from input image. The program has three
different paths which classify input pixels on the basis of
minimum and maximum values of 8-neighboring pixels.
There can be different combinations of the neighboring
pixels to fulfill the path constraints. For first path, the
value of current pixel is greater than the maximum value
of the 8-neighbors. Figure 5(A) shows the test image
generated by IMSUIT and the plot shows the difference
between the generated input test image and the resultant
output image. The values in the plot are all positive which
shows that the corresponding value of pixel is greater
than the maximum value of the neighboring pixels. This
path represents white noise removal in the image. For the
second path, the current pixel value is replaced with the
minimum value of neighboring window if the value is
less than the minimum value. Figure 5(B) shows the test
image created for this path and the plot shows the
difference of generated input test image and the resultant
output image. All the values are negative in the plot
which shows that the value of center pixel in a 3x3
window of input image is less than the corresponding
vale of output image. The plots in 5(A) and 5(B) shows
the spread of different input combinations generated
randomly for satisfying path constraint. The second path
represents black noise removal in the image. For the third
case, if the pixel is between minimum and maximum
values of the neighboring pixels then the value of current
image remains same. Figure 5(C) shows the test image
generated for this path and plot shows that there is no
difference between input and output image. In this way
we can test the input program for different combinations
of inputs and images are generated for each path of the
program under test.
 The second function Distance Transform finds
distance of current white pixel with the nearest black
pixel in a window of 25x25 pixels. Figure 6 (C) shows a

Table 2 Results of Modules of OCR

Sr. Function Lines

of

Code

No of

Paths

No Test

Images

1 Robust Filtering 56 3 3

2 Distance
Transform

95 7 7

3 Global Threshold 31 2 2
4 Smooth

Threshold
64 4 4

5 OCR Alphabets 164 27 27
6 OCR Numbers 106 11 11
7 OCR Special

Characters
106 27 27

Published by Atlantis Press
Copyright: the authors

142

 Test Image Generation sing Segmental Evaluation

Figure 5 Test Images and Evaluation of Robust Filtering Application

0
20

40
60

80
100

120

0

20

40

60

80

100

120
0

50

100

150

200

RowsColumns
D

if
fe

re
n

c
e

 o
f

In
p

u
t

a
n

d
 S

m
o

o
th

e
d

 I
m

a
g

e

0
20

40
60

80
100

120

0

20

40

60

80

100

120
-160

-140

-120

-100

-80

-60

-40

-20

0

RowsColumns

D
if

fe
re

n
c

e
 o

f
In

p
u

t
a

n
d

 S
m

o
o

th
e

d
 I

m
a

g
e

0
20

40
60

80
100

120

0

20

40

60

80

100

120
-1

-0.5

0

0.5

1

D
if

fe
re

n
c

e
 o

f
In

p
u

t
a

n
d

 S
m

o
o

th
e

d
 I

m
a

g
e

RowsColumns

A

B

C

Published by Atlantis Press
Copyright: the authors

143

Tahir et al.

(A)

(B)

(C)

2.8 2.4 2.0 2.4 2.8

2.4 1.4 1.0 1.4 2.4

2.0 1.0 0 1.0 2.0

2.4 1.4 1.0 1.4 2.4

2.8 2.4 2.0 2.4 2.8

C

J I H G

F E D

Figure 6 Distance Transform (Qausi) and Test Images Generated

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.5

1

1.5

2

2.5

3

B A

Published by Atlantis Press
Copyright: the authors

144

 Test Image Generation sing Segmental Evaluation

table of Qausi Distance to compute distance transform.
There are 7 different paths in the program for the given
distances. Figure 6 (A) shows a hand crafted 10x10 test
image and Figure 6 (B) shows its distance transform
image using different color map. The distance is scaled
from 0 to 2.8. The pixels having distance greater than 2.8
are classified as 3. Figure 6 (D) to 6 (J) shows the seven
test images generated for each path. In each image
different possible combinations of the solution for path
constraint are generated randomly by IMSUIT. When
these images are given as input to the program under test,
the resulting image have a single value of the distance
computed. In this way we can generate different size of
images by using IMSUIT whereas the manual generation
of such images is a very tedious and difficult task.
 The third function is global threshold, which
binarizes the given image using a threshold values. This
function has two paths and to test we need at least one
image for each path. There exist 128 different solutions
to both path constraint. The first image created has
random values of pixels less than or equal to 128 and the
second has random values greater than 128. When the
first test image is given as input to the function, its output
is all black pixels. Whereas the output of second image is
all white pixels. Violation of the test oracle points to a
bug in the function. The fourth function smooth threshold
binarizes the input image and also eliminate noise, which
causes problems in character recognition. This function
uses three different bands of pixel values to binarize input
image. It uses 8 neighbors of a centered pixel and
computes their average. The average is compared to the
three different thresholds. These 9 pixels are considered
symbolic variables in the execution. The function have
four different paths and for each path a test image is
created. The fifth function is OCR Alphabets which
searches alphabet patterns of 25x25 pixels in the given
image. This function has 27 paths and 27 images are
generated for each path. The sixth function is OCR
Numbers which searches number patterns in the given
test image. IMSUIT generates test image for numbers
using the path constraints. It has 11 paths and 11 test
images are generated to test this function. The seventh
function is OCR special characters which searches
special character patterns in the input image. There are
26 different paths for this function and 26 test images are
generated to test them.
 Fig. 7 shows the input images generated for
alphabets, numbers and special characters. Fig. 8 shows

a gray scale image on the left side which is pre-processed
using smooth threshold function. Smoothing effects are
clearly visible in the binarized image at the top right of
the figure. Alphabets and numbers are clearly visible in
the image and this image is ready to be given as input to
OCR alphabets, OCR numbers and OCR special
characters. However, test images are required covering
all paths which can be difficult in some cases. Using
IMSUIT we can generate test images and also we can
control variation in the test images for testing purposes
and analyzing the performance of the program under test.

6. Discussion

Synthetic image generation is a research tool which is
extensively used in image processing testing and
evaluation [20, 21]. A synthetic database allows the
economical generation of images, which represent
scenarios that are difficult or impossible to obtain in real
data and provides a direct control of image parameters
[22]. Synthetic images are also used for testing of image
processing applications [23 24]. However, it is difficult

Figure 7 Test Image Generated for OCR

Figure 8 Binarized Image

Published by Atlantis Press
Copyright: the authors

145

Tahir et al.

to produce test images and evaluate their test results. An
intuitive way to generate a test image, is to randomly
select independent values of each pixel called random
binary image model [24]. For a binary image, the pixel
values are selected with some probability for black and
white pixels. Boolean model [25] is introduced by
random points into which random grains are translated.
The number of random points follows a Poisson
distribution.
 To test image operations, Mayer [23] applied
models from stochastic geometry for random input
generation and used statistical heuristics to compare the
results. In image processing and such other complex
input systems the exact output of a program under test
cannot be verified. Despite of its limitations the statistical
oracle can be used to verify some statistical
characteristics of the actual test results. In case of a
failure, there are multiple test cases required to identify
the bug. The scheme is useful to generate random tests
for basic image operations such as dilation and erosion
but the limitation of the approach is that statistical oracle
requires a couple of test cases to decide a pass or fail.
Furthermore, the approach cannot check all the
characteristics of the output and only works if statements
about the statistical distribution of the test result is
possible, which limits the applicability of the approach.
In his extended work, Mayer [24] presents assessment of
models that can be used for random test data generation
and presented a method to generate additional test cases.
The validation is performed using mutation analysis for
a concrete image processing operation.
 The techniques discussed are for specific algorithms
and their use is limited to binary images as they are using
binary models. IMSUIT is extending testing goals to gray
scale images and the programs where arithmetic, and
logical operations are applied on neighboring windows.
It allows automatic generation of test images and
different random combinations of the solutions of path
constraint.

7. Conclusion

Testing a program with the help of test data is a basic way
to check the functionality of the program under test. In
this paper, we have used segmental symbolic evaluation
for the generation of test images for image processing
applications and demonstrated its usefulness with the
help of real programs. This is the first effort to generate
test images automatically for unit testing of image

processing modules. The tool IMSUIT, is a prototype
tool developed for Matlab programs however, it can be
implemented for other programming languages. IMSUIT
is capable of taking input function and generating test
images for all of its paths using symbolic evaluation and
reporting the infeasible paths. We have developed a
simple constraint solver based on random number
generation. The path constraints generated for image
processing systems comprise of pixels as symbolic
variables and their values ranges from 0 to 255 for 8-bit
images. This fact makes possible the use of a simple
solver. The result shows that it has successfully created
test images for each program path.

References

1. Beizer, Boris. "Software testing techniques. 1990." New
York, ISBN: 0-442-20672-0.

2. King, James C. "Symbolic execution and program
testing." Communications of the ACM 19.7 (1976): 385-
394.

3. Knight, John C., Kevin G. Wika, and Shannon Wrege.
"Exhaustive Testing as a Verification Technique."
Submitted to the International Symposium on Software
Testing and Analysis. 1996. J. Clerk Maxwell, A Treatise
on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:
Clarendon, 1892, pp.68-73.

4. Ciupa, Ilinca, et al. "Finding faults: Manual testing vs.
random+ testing vs. user reports." Software Reliability
Engineering, 2008. ISSRE 2008. 19th International
Symposium on. IEEE, 2008.

5. Korel, Bogdan. "Automated software test data
generation." Software Engineering, IEEE Transactions on
16.8 (1990): 870-879.

6. Armand, Michaël, et al. "A modular integration of
SAT/SMT solvers to Coq through proof witnesses."
Certified Programs and Proofs. Springer Berlin
Heidelberg, 2011. 135-150.

7. Clarke, Lori A. "A system to generate test data and
symbolically execute programs." Software Engineering,
IEEE Transactions on 3 (1976): 215-222.

8. Cadar, Cristian, et al. "Symbolic execution for software
testing in practice: preliminary assessment." Proceedings
of the 33rd International Conference on Software
Engineering. ACM, 2011

9. Li, Yi, et al. "Symbolic posium on Principles of
programming languages. ACM, 2014.

10. Clarke, Lori A., and Debra J. Richardson. "Applications of
symbolic evaluation." Journal of Systems and Software
5.1 (1985): 15-35.

11. Cadar, Cristian, Daniel Dunbar, and Dawson R. Engler.
"KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs." OSDI.
Vol. 8. 2008.

Published by Atlantis Press
Copyright: the authors

146

 Test Image Generation sing Segmental Evaluation

12. Sen, Koushik, Darko Marinov, and Gul Agha. CUTE: a
concolic unit testing engine for C. Vol. 30. No. 5. ACM,
2005.

13. Godefroid, Patrice, Nils Klarlund, and Koushik Sen.
"DART: directed automated random testing." ACM
Sigplan Notices. Vol. 40. No. 6. ACM, 2005.

14. Larson, Eric, and Todd Austin. "High coverage detection
of input-related security facults." Proceedings of the 12th
conference on USENIX Security Symposium-Volume 12.
USENIX Association, 2003.

15. Sen, Koushik, Darko Marinov, and Gul Agha. CUTE: a
concolic unit testing engine for C. Vol. 30. No. 5. ACM,
2005.

16. Godefroid, Patrice, Nils Klarlund, and Koushik Sen.
"DART: directed automated random testing." ACM
Sigplan Notices. Vol. 40. No. 6. ACM, 2005.

17. Sen, Koushik, and Gul A. Agha. "Concolic testing of
multithreaded programs and its application to testing
security protocols." (2006).

18. Haralick, R. M. "Some neighborhood operators." Real-
Time Parallel Computing. Springer US, 1981. 11-35.

19. Haralick, Robert M., Stanley R. Sternberg, and Xinhua
Zhuang. "Image analysis using mathematical
morphology." Pattern Analysis and Machine Intelligence,
IEEE Transactions on 4 (1987): 532-550.

20. Cappelli, Raffaele, Dario Maio, and Davide Maltoni.
"Synthetic fingerprint-database generation." Pattern
Recognition, 2002. Proceedings. 16th International
Conference on. Vol. 3. IEEE, 2002.

21. Prakosa, Adityo, et al. "Generation of synthetic but
visually realistic time series of cardiac images combining
a biophysical model and clinical images." Medical
Imaging, IEEE Transactions on 32.1 (2013): 99-109.

22. Thomson, Chris J., Thomas T. Steck, and Ken G.
Krebaum. "Synthetic Image Generation for Automatic
Target Recognizer Evaluation." 1988 Orlando Technical
Symposium. International Society for Optics and
Photonics, 1988.

23. Mayer, Johannes. "On Testing Image Processing
Applications with Statistical Methods." Software
Engineering. 2005.

24. Mayer, Johannes, and Ralph Guderlei. "On random testing
of image processing applications." Quality Software,
2006. QSIC 2006. Sixth International Conference on.
IEEE, 2006.

25. Chiu, Sung Nok, et al. Stochastic geometry and its
applications. John Wiley & Sons, 2013.APA

Published by Atlantis Press
Copyright: the authors

147

