
On Design-time Modelling and Verification
of Safety-critical Component-based Systems

Nermin Kajtazovic, Christopher Preschern, Andrea Höller, and Christian Kreiner

Institute for Technical Informatics, Graz University of Technology,
Inffeldgasse 16, 8010 Graz, Austria

E-mail: {nermin.kajtazovic, christopher.preschern, andrea.hoeller, christian.kreiner}@tugraz.at

Abstract

Component-based Software Engineering (CBSE) is currently a key paradigm used for developing safety-
critical systems. It provides a fundamental means to master systems complexity, by allowing to design
systems parts (i.e., components) for reuse and by allowing to develop those parts independently. One of
the main challenges of introducing CBSE in this area is to ensure the integrity of the overall system after
building it from individual components, since safety-critical systems require a rigorous development and
qualification process to be released for the operation. Although the topic of compositional modelling and
verification in the context of component-based systems has been studied intensively in the last decade,
there is currently still a lack of tools and methods that can be applied practically and that consider major
related systems quality attributes such as usability and scalability.
In this paper, we present a novel approach for design-time modelling and verification of safety-critical
systems, based on data semantics of components. We describe the composition, i.e., the systems design,
and the underlying properties of components as a Constraint Satisfaction Problem (CSP) and perform the
verification by solving that problem. We show that CSP can be successfully applied for the verification
of compositions for many types of properties. In our experimental setup we also show how the proposed
verification scales with regard to the complexity of different system configurations.

Keywords: component-based systems; safety-critical systems, compositional verification, constraint pro-
gramming.

1. Introduction

Safety-critical systems are controlling the techni-
cal processes in which certain failures may lead to
events causing catastrophic consequences for hu-
mans and the operating environment. Automotive,
railway, and avionics are exemplary domains here,
just to name few. In order to make these systems ac-
ceptably safe, their hardware/software engineering
has to be rigorous and quality-assured.

Currently, rapid and continuous increase of sys-
tems complexity represents one of the major chal-

lenges when engineering safety-critical systems.
The avionics domain for instance has seen an expo-
nential growth of software-implemented functions
in the last two decades (6), and a similar devel-
opment has also occurred in other domains with a
focus on mass production, such as automotive or
biomedical engineering (16). In response, many do-
mains have shifted towards using component-based
paradigm (24, 10). The standards such as the auto-
motive AUTOSAR and IEC 61131/61499 for indus-
trial automation are examples of widely used com-
ponent systems. This paradigm shift enabled the im-

International Journal of Networked and Distributed Computing, Vol. 2, No. 3 (August 2014), 175-188

Published by Atlantis Press
Copyright: the authors

175

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

provement in reuse and reduction of costs in devel-
opment cycles. In contrast to traditional paradigms
such as the procedural and the object-oriented pro-
gramming, in CBSE more attention is given on sys-
tems engineering for parts of the system rather than
considering the system as a whole, i.e., on devel-
oping components. This opens many opportunities
for developers and maintainers, such as more pre-
cise control and traceability over parts of the sys-
tem, and possibility on their systematic reuse, which
goes beyond the plain add-hoc reuse of code, ob-
jects and libraries. In some fields, the modularity of
the system structure is utilized to distribute the de-
velopment across different roles, in order to perform
many engineering tasks in parallel. For instance, the
automotive manufacturers are supplied by individ-
ually developed middleware and devices which can
run their applications.

On the other side, the new paradigm also intro-
duced some new issues. One of the major challenges
when applying CBSE is to ensure the integrity of the
system after building it from reusable parts (compo-
nents). The source of the problem is that compo-
nents are often developed in the isolation, and the
context in which they shall function is usually not
considered in detail. In response, it is very diffi-
cult to localize potential faults when components are
wired to form a composition – an integrated sys-
tem (12), even when using quality-assured compo-
nents. The focus of the current research with regard
to this problem is to enrich components with proper-
ties that characterize their correct behavior for par-
ticular context, and in this way to provide a basis for
the design-time analysis or verification∗of composi-
tions (8).

This verification is also the subject of considera-
tion in some current safety standards. For instance,
the ISO 26262 standard defines the concept Safety
Element out of Context (SEooC), which describes
a hardware/software component with necessary in-
formation for reuse and integration into an existing
system. Similarly, the Reusable Software Compo-
nents concept has been developed for systems that
have to follow the DO-178B standard for avionic

software. These concepts both share the same kind
of strategy for compositional verification: contract-
based design. Each component expresses the as-
sumptions under which it can guarantee to behave
correctly. However, the definition of the specific
contracts, component properties and validity criteria
for the composition is left to the domain experts.

From the viewpoint of the concrete and auto-
mated approaches for compositional verification and
reasoning, many investigations have focused on be-
havioural integrity, i.e., they model the behaviour of
the components and verify whether the composed
behaviours are correctly synchronized (2), (4). On
the other side, compositions are often made based
on data semantics shared between components (5).
Here, the correct behaviour is characterized by de-
scribing valid data profiles on component interfaces.
In both cases, many properties can be required to de-
scribe a single component and therefore scalability
of the verification method is crucial here.

In this paper, we present a novel approach for
verification of compositions based on the data se-
mantics shared between components†. We transform
the modelled composition along with properties into
a Constraint Satisfaction Problem (CSP), and per-
form the verification by solving that problem. To
realize this, we provide the following contributions:

• We define a component-based system that allows
modelling properties within a complete system hi-
erarchy.

• We define a structural representation of our mod-
elled component-based system as a CSP, which
provides us a basis to verify the preservation of
properties.

• We realize the process that conducts the transfor-
mation of the modelled component-based system
into a CSP and its verification automatically.

The CSP is a way to define the decision and opti-
mization problems in the context of Constraint Pro-
gramming paradigm (CP) (3). Using this paradigm
for our component-based system, many types of
properties can be supported. Also, various param-
eters that influence the scalability of the verification

∗In the remainder of this paper, we use the term verification for the static, design-time verification (cf. static analysis (25)).
†This article is an extended version of our previous work (14).

Published by Atlantis Press
Copyright: the authors

176

On Design-time Modelling and Verification of Safety-critical Component-based Systems

can be controlled (used policy to search for solutions
for example). In the end of paper, we discuss the
feasibility of the approach with regard to its perfor-
mance.

The remainder of this paper is organized as fol-
lows: Section 2 describes the problem statement
more in detail and gives some important require-
ments with regard to modelling a system. In Section
3 and 4, the proposed approach to systems modelling
and verification is described. Section 5 describes the
experimental results. A brief overview of relevant
related work is given in Section 6. Finally, the con-
cluding remarks are given in Section 7.

Air Flow System
MAFS

Injection Time
and

Ignition Time
Actuation System

MIIAS

Injection System
MFS

Ignition System
MIS

Throttle Angle Mass Air
Flow

Engine Speed

Injection Time

Ignition Time

Ignition System

Component Structure Specification (Data Semantics)

Parameters

Inputs Outputs

tigsen

ffl

Name Type Unit Datatype ...

...
sen in min int16

...

-1

Data

Properties

AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES

()

()
AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES

()

()AND0<=sen<=6400

50<=tig<=150

0<=ffl<=100

IMPLIES

()

()

ffl

ffl

sen

tig

tin

tig

tin

atr

Fig. 1. Motivating example: a component-based system of
automotive engine control function, adopted from (11) (top),
and detailed view of the component Ignition System (struc-
ture and specification, bottom).

2. Problem Statement

Properties are an important means to characterize
functional and extra-functional aspects of compo-
nents. Safety, timing and resource budgets are ex-
amples here, just to name few (21). Recently, they
get more and more attention in the safety commu-
nity, since efficient (an practical) methods for reuse

and system composition are crucial in order to re-
duce costs in development cycles and costs for certi-
fication of today’s safety-critical systems (i.e., their
extensive qualification process). In this section, we
give an insight into the main challenges when us-
ing properties to verify compositions, and based on
these challenges, we outline the main objectives that
we handle in this paper.

2.1. Motivating Example

In our work, we address properties that in general
describe data semantics. To clarify this, let us con-
sider now the example from Figure 1. The system
in this figure shows the composition of four com-
ponents that form the automotive engine control ap-
plication on a higher abstraction level. The basic
function of this application is to decide when to ac-
tivate the tasks of the fuel injection and ignition (11).
To do this, the application takes the sensed values of
the air flow volume, current speed and some param-
eters computed from the driver’s pedal position. In a
typical automotive development process‡, the system
structure from figure is made based on stepwise de-
composition of top-level requirements, having sev-
eral intermediate steps such as the functional and
technical system architecture with several levels in
the hierarchy (20). Let us assume now that involved
components are already developed, eventually for
the complete car product line, and are stored in some
repository. Let us further assume that we have a top-
level requirement with regard to the engine timing
for particular car type, which states the following:

The minimal allowed time delay between the task
of the fuel injection and ignition shall be greater
than 40 ms.

The main contributors to this requirement are
software components MAFS, MFS, MIS, MIIAS, and
their execution platform (e.g., concrete mapping of
components on real-time tasks, task configurations,
and other). In order to satisfy this timing property,
the developer has to analyze the specification for
each component in order to find the influence of the
component behaviour on that property. The exam-
ple of such a specification is given in Figure 1, bot-

‡Note that we do not limit our approach to automotive domain.

Published by Atlantis Press
Copyright: the authors

177

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

tom. Here, the context for the component Ignition
System is defined in terms of the syntax and seman-
tics related to component inputs, outputs and param-
eters. With the properties shown below, the concrete
behavior can be roughly described – in this exam-
ple, for certain intervals of inputs, the component
can guarantee that the output tig lies within the inter-
val [50,150] (note that pseudo syntax is used here).
When building compositions based on such proper-
ties, the developer has to consider their influence on
the remaining, dependent components – in this case,
it has to be decided whether the MIIAS component
can accept such values of the tig and what should
components MFS and MAFS provide so that higher
delay than 40ms between tig and tin can be achieved.
This can be very tedious and error prone task when
doing it manually, because of the following reasons:

• Many components may be required to build a
complete system, depending on their granularity.
For example, current automotive systems com-
prise several hundreds of components, and many
of them may depend on each other (16).

• Some components that directly influence the
safety-critical process are usually certified, i.e.,
developed according to rigorous rules from safety
standards. Because of costs for such a certifica-
tion, the practice is to develop components for dif-
ferent context and to certify them just once (e.g.,
to support different engine types in our example).
In response, many properties have to be defined
for a single component to capture all context in-
formation.

The main problem here is how to define and to
inter-relate all properties thorough the complete sys-
tem hierarchy in a way that the preservation of prop-
erties of all components can be verified automati-
cally? Another problem is how to complete with
such a verification in a ”reasonable time”?

2.2. Modelling and Verification Aspects

To narrow the problem statement above, very im-
portant prerequisite to structure properties within a
system hierarchy consistently is to define basic rela-
tions among them. For example, properties of the

component MIS are related with properties of the
component MIIAS, because of direct connections be-
tween their output and input variables. On the other
hand, properties of all four components influence the
semantics of the mentioned top-level property. We
summarize different types of these relations as fol-
lowing:

• Composition: hierarchical building of composed
properties based on their contained properties
(e.g., the top-level timing property is composed
of properties contained in components MAFS, MIS,
MFS and MIIAS). We discuss this later in more de-
tail.

• Refinement/abstraction: properties characterize
the component behaviour at certain abstraction
level. With refined properties, more specialized
behaviours can be described. For example, the
property in Figure 1 may include some additional
parameters to define conditions for the tig more
precisely.

• Alternatives: properties may have alternative rep-
resentations for different context (e.g., the Injec-
tion System component MIS can provide different
properties for different engine types).

These relations have to be supported when mod-
elling a component-based system and they have to
be considered when such a system has to be verified.

3. System Modelling, Verification and
Deployment: An Overview

In this section, we summarize the workflow that in-
tegrates the proposed approach for systems mod-
elling and verification. We use this workflow to ver-
ify the consistency of systems design, i.e., when the
system is initially developed by assembling com-
ponents, or when changes on that system have to
be performed – such as component replacements or
changes of the internal systems state, represented in
terms of component or systems parameters.

In our previous work (13), we described a method
on how to change safety-critical systems, with the
aim to repair that system in the operation and main-
tenance phase by replacing malfunctioning software

Published by Atlantis Press
Copyright: the authors

178

On Design-time Modelling and Verification of Safety-critical Component-based Systems

System Model

System Constraint Network

Constraint

Variable

Variable

Constraint

Software
Component 1

Platform
(Embedded System)

Software
Component n

Component Contracts
System
Modelling

Platform Contracts

Contract n-2
Contract n-1

Contract n
Properties

Contract n-2
Contract n-1

Contract n
Properties

Systems Design
Verification

System Architecture Dynamic
DeploymentDynamic Parts

(Exchangeable)  Load Software
Component

 Load Application

Constraint

Variable

Variable

Constraint

Constraint Variable...

Software Component 1 Software Component n

...

Static Parts
(Fixed or Configurable)

 Component level:
definition of
component and
platform contracts

 System level:
contract
composition

Software Application

Component Container (Middleware)

Operating System

 Initial verification
 Change verification

Hardware

...

Fig. 2: Application of the proposed modelling and verification – workflow to verify an impact of changes on system integrity (13):
system modelling using contracts (top), system design verification (middle) and dynamic deployment of software components (bottom)

components or by changing systems configuration
at reduced development and maintenance costs. To
this end, we defined types of supported changes and
properties that have to be considered in the mod-
elling and verification. Further, to allow to change
the system in the operation we introduced a runtime
support to load software components into a real-time
operating systems used for safety applications (15).
The overall workflow for the modelling, verifica-
tion and deployment is depicted in Figure 2. In this
paper, we focus only on modelling and verification
parts of the workflow.

In the first step of the workflow, a model of
a system is provided. This model basically cap-
tures properties on a level of software components,
i.e., (i) to express their behaviour and relationships
they have to neighbouring components, and (ii) to
express relationships between components and the
platform (i.e., an embedded system). Properties are
here structured using contracts, which are constructs
very similar to system requirements – they express
what components shall do (functional) or how they

shall be (extra-functional or non-functional), while
at same time they define a context in which com-
ponents have to satisfy those requirements. A
very important role of contracts in system design is
that they allow for defining specific relationships,
so that the information about system integrity ex-
pressed through functional and extra-functional re-
quirements can be maintained. Based on this fun-
damental feature, the impact of changes can be eas-
ily estimated and also necessary measures to handle
changes can be easily identified. The next step of the
workflow deals with the analysis of the system mod-
elled using contracts. Here, a complete system is
translated into a so called constraint network – a col-
lection of inter-connected variables and constraints.
This network represents contracts in a problem do-
main using CP. In this way, we are able to anal-
yse whether a modelled system violates any of the
contracts. In the same way, we can verify whether
changes within a system design eventually require to
change requirements.

Finally, the last step of the workflow is an archi-

Published by Atlantis Press
Copyright: the authors

179

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

tectural support to perform changes. To this end, we
have realized a dynamic linker that is customized for
the use in real-time operating-systems for safety ap-
plications. The distinct feature of this linker is that
its behaviour is predictable, and the mechanism it-
self is designed to meet software safety regulations
(please refer to (15) for more details).

In the following, we describe the modelling and
verification parts of this workflow more in detail.

4. Constraint-based Verification

To get a rough image of the proposed approach, we
highlight the modelling and verification steps in Fig-
ure 3. The input to the verification is a modelled
component-based system, enriched with properties,
which are structured in contracts – Msys in figure.
This model is further transformed into a Constraint
Satisfaction Problem (CSP) – CSPsys in figure, which
corresponds to the problem domain mentioned in the
previous section (we discuss this later). The CSP
model is processed by the constraint solver, i.e., a
tool to solve the CSPs, in order determine the preser-
vation of all properties in the system. As a result, we
get a decision about such a preservation. In addition,
we get concrete values of data (i.e., inputs, outputs
and parameters), for which properties are preserved.
All steps in the process are performed automatically.

In the following, we describe how we defined
each model described above. We first give some ba-
sic assumptions for our system Msys. Then we de-
scribe the main elements of that system, including
properties. In the end, we describe its representation
as a CSP.

4.1. General: Components and Compositions

In our system, we define a component M as follows:

M :=
〈
Σ

in,Σout ,Σpar,Mc
〉

(1)

, where Σin, Σout , and Σpar are inputs, outputs and pa-
rameters respectively (i.e., Σ-alphabets define input,
output and parameter variables in terms of datatypes,
values, and some additional attributes), whereby Mc
is an optional set of contained components, and is

defined according to relation (1). To clarify this, we
distinguish between following two types of compo-
nents:

• Atomic components: components that can not be
further divided to form hierarchies, i.e., compo-
nents for which Mc = /0. They perform the con-
crete computation. The Ignition System for exam-
ple may contain many atomic components, such
as integrators, limiters, simple logical elements
and other.

• Composite components: hierarchical components
that may contain one or more atomic and com-
posite components, i.e., Mc 6= /0. Note that we
use the term composition to indicate composite
components, which also may represent a complete
component-based system (cf. our system in Fig-
ure 1).

The component model introduced above is typi-
cal for data-flow systems such as the ones modelled
in the Matlab Simulink for example. Similar models
of component-based systems are used when consid-
ering properties for resource budgets (5).

Component-based System Msys

M

M

M

M

M

M

Constraint Satisfaction Problem
 CSPsys

Constraint

Variable

Variable

Constraint

Satisfied CONSTRAINT
SOLVER

1 - Transform

2 - Verify

Not satisfied

M - Component

Fig. 3. Overview of the proposed verification method: (1)
transformation of the component-based system Msys into
the CSP representation CSPsys, (2) verification of the com-
position CSPsys by solving a CSP.

4.2. Modelling Compositions Enriched with
Properties

As illustrated in Figure 1, properties are defined
as expressions over component variables. In or-
der to be able to interpret these expressions dur-
ing the verification, we formulate them in a SMT
form§: each expression can be represented in terms of
basic symbols, such as 0,1, ...sen, ...,+,−,/, ...min.

§Syntax in SMT (Satisfiability Modulo Theories) allows to define advanced expressions, e.g., on integers, reals, etc.

Published by Atlantis Press
Copyright: the authors

180

On Design-time Modelling and Verification of Safety-critical Component-based Systems

Using this form, various expressions can be sup-
ported for our system, including logical, arithmetic,
and other. The property from Figure 1 for instance,
(0 6 sen 6 6400)∧ (0 6 f f l 6 100), conforms to the
SMT form.

In order to link properties throughout the system
hierarchy with regard to three basic relations intro-
duced in Section 2.2, we encapsulate them in as-
sume/guarantee (A/G) contracts. According to the
general contract theory in (5), a contract C is a tuple
of assumption/guarantee pairs, i.e.:

C := 〈Σ,A,G〉 (2)

, where A and G are expressions over sets of vari-
ables Σ. In this way, we can split properties for each
component in (a) part that has to be satisfied, i.e., as-
sumptions, and (b) part that is guaranteed if assump-
tions hold, i.e., guarantees. For example, the top-
level contract CII for our system in Figure 1 guaran-
tees the 40ms delay under assumptions that the rota-
tional speed sen and values for the throttle angle atr
are within certain ranges:

CII =


variables


inputs sen,atr

parameters −
outputs tin, tig

types sen,atr, tin, tig ∈ N
assumptions (0 6 sen 6 6400)∧ (0 6 atr 6 100)
guarantees tig− tin > 40

Based on this structure, we can link properties
between dependent components in a similar way
it is done when wiring components using connec-
tors (i.e., links between their input/output variables).
Figure 4 shows our example system modelled us-
ing contracts. Every component provides certain
guarantees which stay in relation to assumptions of
dependent components. These components in turn
provide guarantees based on their own assumptions,
and so forth. In this way, all properties within a sys-
tem hierarchy can be linked together. In Figure 4,
we have also highlighted different types of relations
between contracts, required to build such a hierarchy

(see Section 2.2). These are:

CAFS

CIIAS

CFS

CISA G

GA

A G

GA

A G

System Contract CII

Refinement/
Abstraction Composition

Alternatives

Fig. 4. The Engine Controller system represented using
contracts and their basic relations (A – assumptions, G –
guarantees, C – contracts).

• Composition: two contracts can interact when af-
ter connecting their guarantees and assumptions
both contracts can function correctly (we discuss
this in more detail in Section 4.3). We use the op-
erator ⊗ to define a composition (5). An example
of such relations is shown in Figure 4, where con-
tracts CFS, CIS, and CIIAS form a composite con-
tract, i.e., ((CFS⊗CIS)⊗CIIAS).

• Refinement/abstraction: similar to refinement of
properties, contracts refine other contracts in
terms of refined assumptions and guarantees. We
use the operator � for this relation. The top-level
contract CII has such a relation with the contained
contracts, i.e., ((CFS⊗CIS)⊗CIIAS) � CII . Note
that only the relation with the contract CIS is high-
lighted here.

• Alternatives: when designing components for
more than one context, each new context is de-
scribed in a separated contract. Contracts that de-
scribe the same property for different context are
alternatives. In example in Figure 4, any of con-
tained contracts may have alternatives – here, we
just highlighted CFS to indicate that it may have
alternative contracts.

Based on definitions for contracts and their relations,
we can now define the top-level system/composition
contract, Csys, as follows:

Csys := (⊗i∈NCi) (3)

Published by Atlantis Press
Copyright: the authors

181

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

, i.e., a hierarchical composition of contracts Ci,
where Ci represents further composition according
to relation (3).

Finally, to relate contracts with components, i.e.,
the concrete implementations of contracts, we ex-
tend the relation (1) as follows:

M :=
〈
Σ

in,Σout ,Σpar,Cc,Mc
〉

(4)

, where Cc is a set of contracts that the component M
can implement. Based on this relation, any imple-
mentation of the Csys contract represents a complete
component-based system or a top-level composition.
We identify this implementation as Msys and use it
later as a basis to define our CSP.

4.3. Ensuring Correctness of Compositions

For our component-based system defined previ-
ously, two contracts C1 and C2 can form a compo-
sition (i.e., can be integrated) when their connected
assumptions/guarantees match in the syntax of their
variables (i.e., datatypes, units, etc.), and when fol-
lowing holds:

G(C1)⊆ A(C2) (5)

In other words, the contract C1 shall not provide val-
ues not assumed by the contract C2. This relation is a
basis in our CSP to verify the complete composition.

4.4. Composition as a Constraint Satisfaction
Problem

Now, we describe how we define the composition
Msys as a CSP. We name our CSP representation of
Msys as CSPsys, and define it as follows:

CSPsys := 〈XCSP,DCSP,CCSP〉 (6)

, where XCSP is a finite set of variables, DCSP

their domains (datatypes, values), and CCSP a set
of constraints related to variables and constraints in
CCSP. In other words, the CSP represents a network
of variables inter-connected with each other using
constraints. The constraints set variables in relations

using some operators, and in this way they form ex-
pressions. Various types of expressions can be used
to define constraints (e.g., Boolean, SMT – depend-
ing on supported features of the solver). The so-
lution of the CSPsys is a set of values of XCSP for
which all constraints CCSP are satisfied. The con-
straint solver performs the task of finding solutions.

In order to represent the composition Msys in a
CSP, we need to map the top-level contract structure
((sub-)contracts, variables, and A/G expressions)
into the CSP constructs mentioned above. Important
aspects of this representation are CSP definitions for
(1) a type system, (2) A/G expressions or properties,
(3) the structure of components and contracts and
(4) the structure of compositions. We can now turn
to these representations.

4.4.1. Type System

The CSP tools, i.e., constraint solvers, usually pro-
vide the support for several domains to represent
various types of variables. Integers, reals, and sets
are examples here, just to name few. In order to
avoid type castings between modelled system Msys

and CSPsys, we use the same domains for both Msys

and CSPsys. Another reason is that the time needed
for the constraint solver to solve the CSP strongly
depends on a particular domain. For example, there
is a significant difference in runtime when dealing
with real numbers instead of integers. Therefore,
we use integers for both system representations, i.e.,
Msys and CSPsys.

4.4.2. A/G Expressions (Properties)

Concerning the representation of values of variables
in the CSP, limits have to be set on their inter-
vals. The intervals are possible search space for the
solver, and can have significant influence on solver’s
runtime. It is therefore important to limit the vari-
ables on smallest possible intervals.

In our CSPsys, each variable which is used in an
expression is represented by two CSP variables: one
indicating the begin of the interval, another one for
the end of that interval. The size of this interval

Published by Atlantis Press
Copyright: the authors

182

On Design-time Modelling and Verification of Safety-critical Component-based Systems

Component M1

(Contracts)

Component

Variables: Inputs, Outputs, Parameters

Contract C1

Contract Part 1 Csp1

Local A/G Variables

A/G Constraints Cagc

Composition Constraints Ccc

Binding Constraints Cbc

Contract Part n Cpn

Contract Cn

Contract C1

Assumptions Guarantees

Refined/Alternative Contract C1'

Assumptions Guarantees
C

o
n

st
ra

in
ts

V
ar

ia
b

le
s

V
ar

ia
b

le
s

Contract Constraint Cs1C
o

n
st

ra
in

ts

Component Constraint Cm

...

...

C
o

m
p

o
n

e
n

t
Lo

ca
l A

/G
To

p
-l

e
ve

l
Su

b
-

Cm

Cm

Cm

System

Component

Cm

Cm

Cm

Cm

Cm

Cs1 Cs2 Csn

Component Constraint

Component Constraint

Contract Constraints

System Constraint Network (CSP, Csys)System Model Msys

Contract Cn

Assumptions Guarantees

(excerpt)

...

Fig. 5: Representation of a component in CSP: an exemplary component with three contracts (left) and an excerpt of the mapping of
contracts to constraints and variables (right)

is determined based on intervals defined in expres-
sions. For example, the variable sen in the expression
(0 6 sen 6 6400) is limited on the interval [0,6400].
The reason for using two CSP variables here is that
solving the CSP results with not only decision about
the correctness of a composition with regard to the
relation (5), but it also provides values for which the
relation (5) is satisfied. In this way, we can obtain
the concrete intervals (instead of just values) for all
variables in all contracts (for correct compositions).
This information can be useful for example when the
composition Msys has many alternative contracts, to
observe which of them are identified as correct.

Relations or operations between variables in ex-
pressions are represented as constraints. Since both
Msys and CSPsys use the SMT syntax for expressions,
every operation is represented as a single constraint.

4.4.3. Components

From the perspective of the structural organization,
every component is represented in a CSP as a set
of variables (inputs, outputs, parameters) from the
integer domain, and a set of constraints, which cor-
respond to the contracts implemented by that com-
ponent (see Figure 5).

Note that we distinguish here between variables
used in components, i.e., Σ in relation (4), and vari-
ables used in contracts, i.e., Σ in relation (2). Al-
though they are identical, we define separated vari-
ables in the CSP for each of them. This means,
when a component has two contracts, we have CSP
variables for (a) component variables (inputs, out-
puts and parameters) and (b) CSP variables (inputs,
outputs and parameters) for each contract. With
this separation of contracts and components, we can
identify which contracts are satisfied if the verifica-
tion succeeds. As mentioned, the constraint solver
not only responds with a decision, but it also finds
all values of XCSP for which the verification suc-
ceeds. Similarly, if the verification fails, the con-
flicting contracts can be easily identified.

Now we describe how the contracts are defined
in a CSP, how they are linked with components, and
how the criteria for correctness from relation (5) is
represented in a CSP.

4.4.4. Contracts

As shown in Figure 5, each contract is represented
as a single top-level constraint Cs. This constraint is
further related to a set of local A/G variables (inputs,

Published by Atlantis Press
Copyright: the authors

183

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

outputs, parameters) and a set of sub-constraints.
The sub-constraints represent the constraints of the
refined/abstracted or alternative contracts (contract
parts Csp in figure). Because refined/abstracted and
alternative contracts do not depend on each other, we
define the top-level constraint Cs as follows: Cs :=
(∨i∈NCspi). In this relation, any contract which can
satisfy the relation (5) implies that the top-level con-
tract constraint Cs is satisfied.

As illustrated in Figure 5, every contract consists
of the following sub-constraints:

• A/G constraints Cagc: constraints related only to
local A/G variables. These constraints define the
assumptions and guarantees for a contract. They
are defined based on A/G expressions in contracts,
as described in Section 4.4.2.

• Binding constraints Cbc: constraints that link the
local A/G variables to the global component vari-
ables so that both types of variables get the same
values. In this way, we can observe which con-
tracts were satisfied, after successful verification.

• Composition constraints Ccc: constraints that inte-
grate the contracts. These constraints express the
integration or composition between two contracts,
as described in Section 4.3. They link two con-
tracts according to relation (5).

All three top-level constraints have to be satisfied
for a contract Csp, i.e., Csp := (Cagc∧Cbc∧Ccc).

Finally, the top-level constraint of a component
is satisfied, if all contract constraints Cs are satisfied,
i.e., Cm := (∧i∈NCsi).

4.4.5. System/Composition

The compositions have very similar structure to ba-
sic or atomic components. Because they abstract
some contracts of the contained components, addi-
tional constraints are defined to link these variables.
An example of such a composition is given in Figure
4, where assumptions and guarantees of the contract
CII are an abstraction of assumptions and guarantees
of the contained contracts.

Like atomic components, the complete
component-based system Msys is represented in a
CSP as a set of variables and constraints. Within
this set of constraints, there is a single top-level con-
straint of the composition Cm which links the com-
plete hierarchy of the sub-constraints and variables
discussed previously (the top-level constraint Cm is
shown in Figure 5 right). The CSP has a solution
only if this top-level constraint is satisfied. Finally,
the Cm corresponds to the top-level constraint in the
constraint set CCSP from the relation (6).

5. Experimental Results

In the following, we describe the results of the pre-
liminary evaluation and we discuss the performance
of our approach.

To conduct the experiment, we used Java-based
Choco constraint solver (7). In our experiment, we
defined the composition Msys as a XML description,
which is then used to generate the CSP in memory.

The main goal of this experiment is to show
whether the proposed CSP is applicable to solve the
composition problems defined with data properties,
and for which system configurations. We conduct
the experiment by showing how the verification re-
sponds with regard to attributes that might have an
effect on runtime. These attributes include:

• Components and properties: how the verification
scales with regard to number of components and
properties, including also the presence of the al-
ternative properties.

• Nature of properties: different properties may re-
quire different expressions in the CSP, including
operations on fixed values, intervals, or more ad-
vanced operations such as ones used to define re-
source constraints (e.g., sum, min, etc.).

Figure 6 shows the system configuration used to
conduct the experiments. The inputs for the veri-
fication are provided by the Environment compo-
nent, which encloses the component-based system
under test. All experiments were executed on Intel

Published by Atlantis Press
Copyright: the authors

184

On Design-time Modelling and Verification of Safety-critical Component-based Systems

i7-3630QM, 4 cores, 2.40GHz.

M

Environment Component ME

M M

MM

M

...

...

......

...

Component-based System Msys (System Under Test)

Fig. 6. System configuration used to conduct the experi-
ments (M - component, ME - environment component).

5.1. Quantitative Results

For this experiment, we performed two measure-
ments. In the first measurement, we show the re-
sponse time with regard to the number of compo-
nents, properties and alternative properties, having
specified assumptions and guarantees as intervals.
Then, in the second measurement, we use the same
configurations but with fixed values for expressions.
With these two measurements, we are able to ob-
serve the limits on modeling the component-based
system with regard to number of components, prop-
erties, and expressions used to describe the proper-
ties.

5.1.1. Measurements

In the first measurement, we execute several thou-
sands of system configurations with the varying
number of components and properties. The mea-
surement has two parts. In the first part, we ver-
ify the system configurations with the varying num-
ber of components, each having varying number of
properties but with constant number of assumptions
or guarantees (i.e., each component variable is there-
fore related to only one expression). In the second
part, each of the components has varying number of
alternative and refined properties, so that many so-
lutions are possible. In this case, each component
variable is related to many expressions.

The expressions in the first measurement are de-
fined in a way that always the intervals of the com-

ponent variables have to be satisfied, and not the
fixed values. An example for such expression is
given in Section 4.2 for the contract CII , which is
satisfied only if the variables sen and atr are in ranges
[0,6400] and [0,100] respectively.

For the input test data, i.e., the operands of the
assumption and guarantee expressions, we generate
the values for each expression randomly, but with
the rule that the assumptions are always satisfied.
The advantage of performing the positive tests here
is to get more clear statement about the runtime of
the verification. In both parts of the measurement,
we use the relational and logical operations on val-
ues.

In the second measurement, we execute the same
system configurations as in previous measurement,
but this time using the fixed values for component
variables.

5.1.2. Observations

First results of the experiments are illustrated in Fig-
ure 7. On the left, an excerpt of the results for the
first measurement is shown, where the properties
have a constant number of assumptions and guar-
antees. The reason why the verification responds in
short time is that each component variable has only
one expression (assumption or guarantee constraint,
Cagc), and it is then immediately instantiated to a
value indicated by that expression. The runtime de-
pends in this case therefore on the number of com-
ponents and properties.

On the right in Figure 7, a scenario that is more
likely to occur in practice is shown. Here, each
component variable has an increasing number of ex-
pressions, and these expressions are alternatives (as
mentioned in the description of the measurement).
The response time of the verification strongly de-
pends on the number of alternatives, because each
of the expressions represents different interval. The
solver has to adjust the component variables to ade-
quate intervals, in order to find a solution. Further-
more, since the choice of the particular alternative
may influence the choice of the intervals in other
connected components, often the backtracks have to

Published by Atlantis Press
Copyright: the authors

185

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120

R
u

n
ti

m
e

 [
m

s]

components

10
20

50

400 800 1200 1600 2000

of assumptions/guarantees per component

R
u

n
ti

m
e

[m
s]

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100200 400 600 800 1000

of components

alternatives per component

4

6
8

R
u

n
ti

m
e

[m
s]

Fig. 7: Experimental results: runtime for system configuration with varying number of assumption/guarantee expressions and compo-
nents (left) and varying number of components and alternative properties (right)

be done to the state where the constraints were sat-
isfied, which is time consuming.

In the second measurement, we observed very
similar results as illustrated in Figure 7 on the left.
Having fixed values on component variables, no
search has to be performed, but just the constraint
verification. For the case where the alternatives are
used, more time is required to find a solution, but
this time is negligible in contrast to situation when
using intervals (i.e., Figure 7, right).

In the end, we summarize our observations with
Figure 8. This figure shows the region for which
the verification can complete in a ”reasonable time”.
We set the limit for this time on 2 minutes, just to
get a first feedback about possible configurations for
the system under test. To establish this region, we
used the system configuration with the worst case
in response time, i.e., the one having the alternative
properties from the first measurement.

5.2. Qualitative Results: Discussion

Figure 8 shows the worst-case scenario, in which a
component-based system is modelled having vary-
ing number of assume guarantee expressions.

The verification scales well but for configura-
tions with only few instances of either components
or properties. In nowadays automotive systems for

example, there are more than 800 software compo-
nents, that control various technical sub-processes
in automobiles (16). However, it is still possible
to support these configurations, since each such
sub-system can be provided to verification indepen-
dently, and also, not all components are massively
interconnected as in Figure 6. For example, the sim-
plified system from Figure 1 is modelled using 13
software components (is just one option to realize
that system).

6. Related Work

Now we turn to a brief overview of related studies.
We summarize here some relevant articles that han-
dle compositional verification based on data seman-
tics.

Similar problems to those described in our prob-
lem statement were identified by Sun et al. (23)
in their work on verifying the composition of ana-
logue circuits for analogue system design. In their
approach, each analogue element (resistor, capaci-
tor, etc.) is characterized by its performance profile
and this profile is used to build the contract; that is,
for certain values of the inputs the element responds
with certain output values. Using contracts made
from performance profiles, it was possible to elim-
inate many integration failures early in the system

Published by Atlantis Press
Copyright: the authors

186

On Design-time Modelling and Verification of Safety-critical Component-based Systems

design phase. These structural compositions of ana-
logue elements are very similar to the compositions
in CBSE. However, the model of Sun et al. only
considers connections between elements (horizontal
relations).

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

o

f
al

te
rn

at
iv

es
 p

er
 c

o
m

p
o

n
en

t

of components

Response time < 2 min

Not usable configurations

Fig. 8. Region of possible system configurations for which
the verification completes within a given time.

Another article describes a runtime framework
for dynamic adaptation of safety-critical systems in
the automotive domain (1). In the event of failures or
degradation of quality, the intent is to reconfigure the
automotive system while it is operating. In contrast
to the previous approach, the compositional verifi-
cation in this case is based on a common quality
type system shared among components. Two com-
ponents can form a composition only when their in-
terfaces or ports have the compatible type qualities.
In this way, wrong type castings between compo-
nents can be avoided. However, using a type system
in our case would just verify the syntax but not the
semantics of data (i.e., the concrete values).

A more advanced framework for dynamic adap-
tation of avionics systems was developed by Mon-
tano (18). The goal is to adapt the system to new,
correct configurations, in case of failures. To per-
form this, a common quality system defines the
contracts between functions and available static re-
sources (e.g., memory consumption, CPU utiliza-
tion, etc.) and in this way it restricts the possible
set of correct configurations. An important aspect
of this work is that it demonstrates the CSP ap-
proach to solving the composition problem. How-

ever, the quality type system only considers static
resources, and does not consider contracts between
functions. Ultimately, the approach is strongly fo-
cused on dynamic adaptation with human-assisted
decision making.

In the field of industrial automation, the authors
in (17) propose the static verification of composi-
tions based on data types of the IEC 61131-3 com-
ponent model (or standard). This model defines the
standard data types but it also allows definition of
customized data types (derived from existing ones)
and combination of existing data types into complex
structures. The authors identified ambiguities in the
standard for user-defined data types and defined a
proper compatibility criteria. Like the adaptation ap-
proach in the automotive domain (1), this work con-
siders only a type system. However, the approach
verifies not only compositions, but also the use of
variables in IEC 61131-related languages.

In the last few years, several research projects
have begun to handle the topics of compositional
verification (22), (9), (19) by formalizing system
models (component models) and languages for spec-
ification of contracts. These approaches share many
concepts, especially contract-based design and for-
mal behavioural verification of compositions. Al-
though our model is conceptually very similar, it
differs in that it considers the data semantics of
property values, and it addresses a specific type of
component-based systems in which data semantics
can be used to express the validity criteria for com-
positions.

7. Conclusion

In this paper, we presented a method for modelling
and verification of compositions in component-
based systems. The components modelled here are
enriched with properties, which describe the data se-
mantics of components. The novelty of our veri-
fication lies in representing the composition along
with modelled properties as a Constraint Satisfac-
tion Problem (CSP), which allows us to achieve two
important objectives. First, using relational, logical

Published by Atlantis Press
Copyright: the authors

187

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

and more advanced operators on data, many types
of properties can be supported. Second, for proper-
ties that use basic logical and arithmetic operators,
the verification can scale up to several hundreds of
components, each of them consisting of few tens of
properties, which makes the approach promising for
the use in practice.

As part of our ongoing work, we want to char-
acterize the runtime performance based on different
types of properties, since they impact the scalabil-
ity at most. In addition, we also want to investigate
other parameters such as solver search policy, solver
engine, etc., in order to find best configuration for
the verification method.

References

1. Adler, R., Schaefer, I., Trapp, M., Poetzsch, A.:
Component-based modeling and verification of dy-
namic adaptation in safety-critical embedded systems.
ACM Trans. Embed. Comput. Syst. 10(2) (2011)

2. de Alfaro, L., Henzinger, T.A.: Interface automata.
SIGSOFT Softw. Eng. Notes 26(5), 109–120 (2001)

3. Apt, K.: Principles of Constraint Programming. Cam-
bridge University Press, New York, NY, USA (2003)

4. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber,
M., Nguyen, T.H., Sifakis, J.: Rigorous component-
based system design using the bip framework. Soft-
ware, IEEE 28(3), 41–48 (2011)

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone,
R., Raclet, J.B., Reinkemeier, P., Sangiovanni-
Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.:
Contracts for Systems Design. Tech. rep., Research
Report, Nr. 8147, November 2012, Inria (2012)

6. Butz, H.: Open integrated modular avionic (ima):
State of the art and future development road map at
airbus deutschland. Dept. of Avionic Systems at Air-
bus Deutschland, Hamburg, Germany (-)

7. choco Team: choco: an Open Source Java Constraint
Programming Library. Research report 10-02-INFO,
École des Mines de Nantes (2010)

8. Clara Benac Earle: Languages for Safety-Certification
Related Properties. In: WIP Session at SEAA’13

9. COMPASS: Compass - comprehensive modelling
for advanced systems of systems. Homepage:
http://www.compass-research.eu (2011-2014)

10. Crnkovic, I.: Building Reliable Component-Based
Software Systems. Artech House, Inc., Norwood,
MA, USA (2002)

11. Frey, P.: Case Study: Engine Control Application.

Tech. rep., Ulmer Informatik, Nr. 2010-03 (2010)
12. Gössler, G., Sifakis, J.: Composition for component-

based modeling. Sci. Comp. Prog. 55 (2005)
13. Kajtazovic, N., Preschern, C., Höller, A., Kreiner,

C.: Towards assured dynamic configuration of safety-
critical embedded systems. In: Computer Safety, Re-
liability, and Security, LNCS, vol. 8696, pp. 167–179.
Springer International Publishing (2014)

14. Kajtazovic, N., Preschern, C., Höller, A., Kreiner,
C.: Constraint-based verification of compositions in
safety-critical component-based systems. In: SNPD,
Studies in Computational Intelligence, vol. 569, pp.
113–130. Springer International Publishing (2015)

15. Kajtazovic, N., Preschern, C., Kreiner, C.: A
component-based dynamic link support for safety-
critical embedded systems. In: 20th IEEE Interna-
tional Conference and Workshops on the Engineering
of Computer Based Systems, pp. 92–99 (2013)

16. Kindel, O., Friedrich, M.: Softwareentwicklung mit
AUTOSAR: Grundlagen, Engineering, Management
in der Praxis. dpunkt Verlag; Auflage: 1 (2009)

17. M., D.S.: Data-type checking of iec61131-3 st and
il applications. In: 2012 IEEE 17th Conference on
Emerging Technologies Factory Automation (ETFA),
pp. 1–8 (2012)

18. Montano, G.: Dynamic reconfiguration of safety-
critical systems: Automation and human involvement.
PhD Thesis (2011)

19. SAFECER: Safecer - safety certification of software-
intensive systems with reusable components. Home-
page: http://safecer.eu (2011-2015)

20. Schäuffele, J., Zurawka, T.: Automotive Software
Engineering: Grundlagen, Prozesse, Methoden und
Werkzeuge effizient einsetzen. V+T Verlag (2010)

21. Sentilles, S., Štěpán, P., Carlson, J., Crnković, I.:
Integration of extra-functional properties in compo-
nent models. In: Proceedings of the 12th Inter-
national Symposium on Component-Based Software
Engineering, pp. 173–190. Springer-Verlag, Berlin,
Heidelberg (2009)

22. SPEEDS: Speculative and exploratory design
in systems engineering - speeds. Homepage:
http://www.speeds.eu.com (2006-2012)

23. Sun, X., Nuzzo, P., Wu, C.C., Sangiovanni-
Vincentelli, A.: Contract-based system-level com-
position of analog circuits. In: Design Automation
Conference, 2009. DAC ’09. 46th ACM/IEEE, pp.
605–610 (2009)

24. Szyperski, C.: Component Software: Beyond Object-
Oriented Programming, 2nd edn. Addison-Wesley LP
Co., Inc., Boston, MA, USA (2002)

25. Tran, E.: Verification/validation/certification.
Carnegie Mellon University, 18-849b Dependable
Embedded Systems (1999)

Published by Atlantis Press
Copyright: the authors

188

