

Fast Parallel Network Packet Filter System based on CUDA

Che-Lun Hung*
Department of Computer Science and Communication Engineering, Providence University, 200, sec. 7, Taiwan

Boulevard, Shalu Dist.,
Taichung, 43301, Taiwan

E-mail: clhung@pu.edu.tw

Shih-Wei Guo
Department of Computer Science and Information Managemen, Providence University, 200, sec. 7, Taiwan Boulevard,

Shalu Dist.,
Taichung, 43301, Taiwan

E-mail: cometlcc@gmail.com

Abstract

In recent years, with the rapid development of the network hardware and software, the network speed is enhanced
to multi-gigabit. Network packet filtering is an important strategy of network security to avoid malicious attacks,
and it is a computation-consuming application. Therefore, we develop two efficient GPGPU-based parallel packet
classification approaches to filter packets by leveraging thousands of threads. The experiment results demonstrate
that the computational efficiency of filtering packet can be significantly enhanced by using GPGPU.

Keywords: Packet filtering; Packet classification; GPGPU; CUDA; Parallel Processing.

*Corresponding author: Che-Lun Hung. E-Mail: clhung@pu.edu.tw.

1. Introduction

In the past few years, the development of network
bandwidth and hardware technologies have grown
rapidly, a variety of Internet services have been popular,
such as email system, storage system, entertainment
system and others. Currently, many famous corporations,
such as Google, Amazon, IBM an d Microsoft have
released a variety of cloud services including hardware,
software and platform. These services deeply rely on
Internet. To maintain the robustness of Internet
environments, the network security is one of t he
important parts indeed. Therefore, Internet security has

become an important role to protect activities on
Internet. For this purpose, packet analysis1 is useful
strategy to control that packet data can flow to and from
a network. The criteria t hat use when inspecting
packets are bas ed on the Layer 3 (IPv4 and IPv6) and
Layer 4 (TCP, UDP, ICMP, and ICMPv6) headers. The
commonly used criteria are s ource and destination
address, source and destination port and protocol.

Packet analysis is at the core of timely detection and
typically relies o n a p acket filtering system. P acket
filtering system drops the packets if packets match to
the filter rules. A packet is compared with the filter
rules in sequential order from the first to the last. Until

International Journal of Networked and Distributed Computing, Vol. 2, No. 4 (October 2014), 198-210

Published by Atlantis Press
Copyright: the authors

198

Che-Lun Hung et al.

the packet matches a rule containing the keyword such
as port number or IP address, the packet will be
compared against all filter rules before the final action is
taken. The last matched rule dictates what action to take
on the packet. There is an i mplicit pass all at t he
beginning of a filtering rule set meaning that if a packet
does not match any filter rule the resulting action will be
passed. In general, each incoming packet can be
considered independently of any other packet. Although
for the IP fragments, the first fragment is related to
other fragments apparently but arriving without order. It
can be considered as independent for classification2.

Packet filter system also has been applied to many
network intrusion detection systems (NIDS) as the first
stage. Botnet has become one m ajor threat to In ternet
users in recent years. A botnet consists of a larg e
number of bots that are n etworked computers
compromised by malicious attackers. In general, an
attacker conducts the bots to launch a variety of types of
attacks such as phishing and spamming with a botn et,
and then receives benefits from a variety of aspects such
as economy and social security. Most of methods to
detect bot’s activities according to predefined patterns
and signatures retrieved from well-known bots3,4,5,6,7,8.
Although signature-based approaches are able to detect
bots accurately, it is difficult to detect botnet in real
time. Nowadays, detecting signature becomes more and
more complex because the number of attacks is
increased dramatically, and the signatures also become
sophisticated. In addition, busy-hour Internet traffic will
increase by a factor of 3.4 between 2013 an d 2018.
Therefore, to analyze the entire traffic on a high-speed
link is computation-consuming problem. Consequently,
random packet losses are likely to occur if the network
traffic exceeds the capacity of packet filter of the botnet
detection system. These botnet detection approaches has
a very important stage, traffic reduction, to redu ce the
data set to the meaningful subset of flows to speed later
stages in these approaches. To reduce the network
traffic, packet filtering is useful strategy to control that
packet data can flow to and from a network.

Sequential-process packet classifiers often take
longer to clas sify a pack et set captured off a g iga-bit
network interface than it took th e set to arrive, making
them infeasible for real-time traffic analysis4. To solve
packet filter problem leaded by large amounts of traffic,
one of the solutions is to in crease the processing
capacity of the botnet detection system. It can be either

hardware9 or software10 solutions. However, the cost of
these solutions is huge. The reasonable cost of available
computing power to anal yze the network traffic is
critical. Therefore, parallel process is useful solution to
improve the performance of the detection system.

Recently, many literatures tried to use General-
Purpose Graphics Processing Unit (GPU) to s olve
computation intensive problem of various
domains11,12,13,14,15,16,17. GPGPU programming has been
successfully utilized in the scientific computing
domains which involve a high level of numeric
computation. However, other applications also could be
successfully parallelized by GPGPU. The greatest
benefit is t hat the processing units grow from many
(CPU, about 2-16) to massive (GPU, about over 512). In
2006, NVIDIA proposed the Compute Unified Device
Architecture (CUDA). CUDA uses a n ew computing
architecture named Single Instruction Multiple Threads
(SIMT)18. This architecture allows thread to ex ecute
independent and divergent instruction streams,
facilitating decision-based execution that is not provide
for by the more common Single Instruction Multiple
Data (SIMD).

To improve the computational performance of the
Botnet detection system, we propose two efficient
network traffic reduction algorithms to filter packets
simultaneously by using GPGPU device. By leveraging
nVidia CUDA device can achieve low cost, commodity
GPU co-processors to accelerate packet-filtering
throughput. The proposed algorithms could be u tilized
in any botnet detection method that adopts traffic
reduction strategy. We al so implement the proposed
packet classification algorithm on a variety of memory
architectures on GPU to dis cuss the performance of
proposed method. The experiment results demonstrate
that the proposed method can achieve over 20 t imes
speed up over the sequential packet classification
software on single CPU. It p resents that GPGPU is
useful for real-time traffic analysis.

2. Related Works

According the previous literature1, the classification can
be categorized into three types: IP routing, packet
demultiplexing and packet analysis. The slight
differences of these types are bet ween target
environments. IP routing is utilized to forward incoming
packets through the correct in terface to a des tination
host. Packet demultiplexing is concerned that

Published by Atlantis Press
Copyright: the authors

199

 Fast Network Packet Filter

forwarding the packets to the next hop router, or
dropping the packets altogether. Packet analysis is
similar in many respects to demultiplexing, and often
depends on similar filtering algorithms, but may process
a wider variety of packets, with a broader ran ge of
destinations. All of these three types are d epending on
the packet filtering. A filter is a p redicate function that
operates over a collection of criteria to com pare each
arriving packet1,19,20. Generally, a packet is classified by
a filter which has the specific criteria. Filter criteria are
Boolean valued comparisons, performed between values
contained in discreet bit-ranges in the packet header and
static protocol defined values.

The commonly-used and most reliable methods of
classifying packet data are exhaustive search algorithms
which compare packets against each and every filter in
the filter set u ntil a ex act match is f ound1,21. These
algorithms are generally slow, and thus not very useful.
Other classes of algorithms include decision tree,
decomposition and tuple space approaches. Decision
tree algorithms are diverse in design, but all leverage a
sequential tree li ke traversal of a sp ecialized data
structure in order to narrow down the number of criteria
against which the packet need to be compared1,19,22,23.
Most of demultiplexing and analysis filters are highly
sequential approaches based on decision trees19,20,24, and
thus are suitable to the processing on CPUs. In contrast,
decomposition algorithms can be equipped on parallel
processing hardware such as FPGAs, typically splitting
filter classifications into smaller sub-classifications
which can be perf ormed in parallel1,25,26. Tuple space
algorithms are highly specialized, and exploit a variety
of filter set p roperties in order to reduce processing
time1.

Most of demultiplexing algorithms adopt decis ion
tree approaches because of their efficiency at pru ning
redundant computation on sequential processors. BPF is
a well known algorithm that adopted Control Flow
Graphs (CFGs) in a n assembler style programmable
pseudo-machine to improve performance on register-
base processor20. Mach Packet Filter (MP F) and
Dynamic Packet Filter (DPF) are ex tended from BPF.
MPF was designed to extend and improve
demultiplexing performance27, while DPF focused on
exploiting dynamic code generation in order to prune
redundant instructions24. These filters led to the
development of BPF+19, which adopted techniques such
as Predicate Assertion Propagating and Partial

Redundancy Elimination, in conjunction with Just-In-
Time (JIT) processing and various other optimizations,
to dramatically improve processing speeds. Extensible
Packet Filter (xPF)28, Fairly Fast Packet Filter (FFPF)29
and SWIFT30, were developed to reduce the context
switching overhead, facilitate high performance
demultiplexing between multiple network monitoring
application, and reduce filter update latency to support
real-time filter updates, respectively.

Presently, RFC algorithm31, which is a
generalization of cross-producting32, is the fastest
classification algorithm in terms of the worst-case
performance. Bitmap compression has been used in
IPv4 forwarding33,34 and IPv6 forwarding35. It is applied
to classification to compress redundant storage in data
structure36. However, the performance bottleneck of
these methods are searching the compressed tables, and
thus additional techniques have to be introduced to
improve the inefficiency of calculating the number of
bits set in a b itmap. Lulea33 algorithm utilizes a
summary array to pre-process the number of bits set in
the bitmap, and thus it needs an extra memory access
operation per trie-node to search the compressed table.
The Bitmap-RFC37 employs a built-in bit-manipulation
instruction to calculate the number of bits set at runtime
and apply bitmap compression to reduce its memory
requirement to solve the problem of memory explosion.
Thus, it is much more efficient than Lulea’s in terms of
time and space complexity.

However, these sequential packet classification
algorithms take longer to classify a packet set captured
off a g iga-bit network interface than it to ok the set to
arrive, making them infeasible for real-time traffic
analysis.

Nottingham et al., 2,11 proposed a clas sification
algorithm, by utilizing GPU co-processors to accelerate
classification throughput and maximize processing
efficiency in highly parallel execution context. They
provided valuable articles for introducing the concept of
parallel packet classification on CUDA and OpenCL
platforms. However, these literatures are lack of the
performance comparisons and implementations with a
variety of memory architectures of GPU. Han et al., 38
proposed a GPU-based IP routing approach named
PacketShader. The experiment results show that GPU-
based IP routing algorithm can enhance the performance
over the CPU-based IP routing approaches. Hung et
al.,39 presented a GP U-based network packet pattern-

Published by Atlantis Press
Copyright: the authors

200

Che-Lun Hung et al.

matching algorithm for network intrusion detection
systems by leveraging the computational power of
GPUs to accelerate pattern-m atching operations and
subsequently increase the overall processing throughput.
The experimental results showed that their algorithm
can achieve a maximal traffic processing throughput of
over 2 Gbit/s. These articles present an alternative of
developing the parallel p acket classification by
leveraging GPU devices.

3. CUDA Programming Model

As the GPU has become increasingly more powerful
and ubiquitous, researchers have begun developing
various non-graphics, or general-purpose applications13.
Generally, the GPUs are organized in a streaming, data-
parallel model in which the co-processors execute the
same instructions on multiple data streams
simultaneously. Modern GPUs include several (tens to
hundreds) of types of stream processors, both of
graphical and general-purpose applications thus are
faced with parallelization challenges in using GPUs41.
nVidia released the Compute Unified Device
Architecture (CUDA) SDK to as sist developers in
creating non-graphics applications that run on GPUs. A
CUDA programs typically consist of a component that
runs on the CPU, or h ost, and a sm aller but
computationally intensive component called the kernel
that runs in parallel on the GPU. Input data for the
kernel must be copi ed to the GPU's on-board memory
from host’s main memory through the PCI-E bus prior
to invoking the kernel, and output data also should be
written to the GPU's memory first before copying to
host’s main memory. All memory used by the kernel
should be pre-allocated.

Kernel executes a collecti on of threads that
computes a res ult for a s mall segment of data. T o
manage multiple threads, kernel is p artitioned into
thread blocks, with each thread block being limited to a
maximum of 512 threads. The thread blocks are usually
positioned within a o ne or two-dimensional grid. Each
thread can be positioned within a g iven block where it
belongs, and this given block can be positioned within
the grid. Therefore, each thread can calculate which
elements of data to operate on, and which regions of
memory to write output to by an algebraic formula.
Each block is executed by a sin gle multiprocessor,
which allows all t hreads within the block to

communicate through on-chip shared memory. The
parallelism architecture of GPGPU is illustrated in Fig.
1.

Register
(32K words)

Shared Mem
(48KB)

L1 cache (16KB)

Block(0,0)

L2 cache (768KB)

Global Memory(1G)

Stream
processor

Thread(0,0) Thread(1,0)

Local
Mem

Local
Mem

Block(0,0)

Register
(32K words)

Shared Mem
(48KB)

L1 cache (16KB)

Block(1,0)

Thread(0,0) Thread(1,0)

Block(1,0)

Local
Mem

Local
Mem

Constant Memory(64K)

Texture Memory(8K)

(Device) Grid

Fig. 2. Memory architecture of CUDA device, nVidia
GTS450.

Fig. 1. The parallelism architecture of CUDA.

Published by Atlantis Press
Copyright: the authors

201

 Fast Network Packet Filter

CUDA devices provide access to s everal memory
architectures, such as global memory, constant memory,
texture memory, share memory and registers, with their
access latencies and limitations. T he performance of
device is relevant to the memory variants. Figure 2
illustrates the memory architectures of CUDA device.
Table 1 shows the characteristics of memory
architectures.
 Global Memory: Global memory is the biggest

memory region available on CUDA devices and is
capable of storing hundreds of megabytes of data.
However, the access latency is highest than others.

 Constant Memory: Constant memory is a small
read-only memory region that resides in DRAM on
CUDA device. It is globally accessible memory for
all threads. Since Constant memory has on-chip
cache, the access latency is low.

 Texture Memory: Texture memory is a compromise
between global and constant memory. Each multi-
processor on the CUDA device equips a 64K B
texture cache which can be bou nd to on e or more
arbitrarily sized region of global memory. Texture
memory is read only as constant memory.

 Register: Each thread block in CUDA device
equips a regis ter file that contains registers. The
register provides fast thread-local storage during
kernel execution.

 Shared Memory: Shared memory is block-local that
facilitates cooperation between multiple threads in
an executing thread block. The access latency of
shared memory is equivalent to that of register.

The G80 that introduced the CUDA architecture had
86.4GB/s of memory bandwidth, plus an 8 G B/s
communication bandwidth with the CPU. A CUDA
application can transfer data from the system memory at
4 GB/s and at th e same time upload data back to the

system memory at 4 GB /s. altogether, there is a
combined total of 8 GB/s. the communication
bandwidth is much lower than the memory bandwidth
and may seem like a li mitation. Two memory
transmission models, memory direct copy and zerocopy,
in CUDA architecture is used to copy data from system
memory to device memories including global, constant,
texture and registers.

The CUDA runtime system provides application
programming interface (API) functions to allocate an d
release memory on the device and transfer pertinent data
from the host memory to the allocated device memory.
It could be the bottleneck of GPU computing
performance. T he zerocopy function is a f eature that
was added i n version 2.2 o f the CUDA Toolkit. It
enables GPU threads to dire ctly access host memory.
The zerocopy function can be used in place of streams
because kernel-originated data transfers automatically
overlap kernel execution without the overhead of setting
up and determining the optimal number of streams.
Different to previous two memory transfer models,
streaming model is another way to improve the use of
the threads and data trans fer. It is a pipelin e of
asyconizing the data transmission. A stream is a
sequence of operations that are performed in order on
CUDA device. Figure 3 shows the streaming model of
CUDA architecture. In Fig. 3, data is copied from host
memory to device memory and stream 1 t hen lunches
kernel function 1, and when stream1 is copying output
data from device memory to host memory and stream 2
starts to lunch kernel function 2. The processes for
stream 3 and stream 4 are as same as pervious processes
of stream1 and stream 2.

4. Method

Table 1. Overview of memory architectures in CUDA device.

Memory Scope Hardware Latency Bandwidth Access
Register Thread Chip Immediate R/W
Shared Block Chip 4-6 clock 200 GB/s R/W
Constant Grid Cache 4-600 clock 200-300 GB/s R
Texture Grid Cache 4-600 clock 200-300 GB/s R
Global Grid DRAM 400-600 clock 100 GB/s R/W
Local Thread DRAM 400-600 clock 100 GB/s R/W

Published by Atlantis Press
Copyright: the authors

202

Che-Lun Hung et al.

In CUDA devices, each phy sical multiprocessor
contains only a si ngle instruction register which drives
eight independent processing cores simultaneously.
Therefore, any divergence between thread executing on
the same multiprocessor forces the instruction register
to issue instruction for all th read paths sequentially
whilst non-participating thread sleep18. The significant
thread divergence can dramatically impair performance.
To avoid thread divergence, each thread should process
the similar length of data. In a filter set, the rules of each
filter have a various number of fields. Due to this reason,
we restrict that he number of fields of each rule should
be the same at th e same filter. Table 2 presents the
revised filter rules. The filter sets are stored in constant
memory or register files, and the packet data is stored in
global memory or texture memory. Figure 4 illustrates
the memory usage for filter sets sto red in constant
memory and packet data stored in global memory on
CUDA device. A thread process a packet data according
the filter sets. Currently, we include two famous filter
classification algorithms, BPF and BitMap-RFC, in the
proposed method. We ch ose these two algorithms
because they are totall y different data s tructures and
well-known algorithm. BPF uses data structure as
decision tree s tructure and BitMap-RFC uses data
structure as hash table. T hrough different data
structures, it can be measured that which data structure
is suitable for GPU.

4.1. GPU-Based BPF Filtering Algorithm

BPF was originally proposed for BSD UNIX, it is
independent of the TCP/IP stack, and gives user mode
processes an interface to access data link layer. It is an
elegant and commonly used solution for packet filtering
and achieves better perf ormance than other packet
filtering systems. B PF consists of two main
components: network tap and packet filter22. T he
network tap is the first interface to co py packets from
network interface card driv er and moving them to t he
listening user processes. Then, the packet filter adopts

Fig. 4. The memory storage for filter sets (constant memory)
and packet data (global memory) on CUDA device.

Fig. 3. Streaming approach on CUDA.

Table 2. Packet filtering rules

Rule Source IP Destination IP Protocol Port Number
1 140.128.1.0/

255.255.255.0
* * *

2 * 140.128.2.99/
255.255.255.0

HTTP 8888

3 140.127.0.0/
255.255.0.0

123.6.0.0/
255.255.0.0

* *

4 219.88.0.0/
255.255.0.0

123.6.22.0/
255.255.255.0

FTP *

Published by Atlantis Press
Copyright: the authors

203

 Fast Network Packet Filter

the filtering rules to determine whether a packet should
be delivered to the upper-level component or it s hould
be discarded in the kernel space. BPF adopts a directed
acyclic control flow graph (CFG) to represent a packet
filter. Figure 5 shows a sample BPF filter. Each path in
the BPF filters represents a comparison procedure needs
to be completed for a p articular packet pattern. In the
proposed GPU-based BPF filtering method, each thread
compares the fields of a p acket head with the filtering
rules. As figure 6, a thread start to do the comparison of
the field corresponding to the first condition of rule. If
the condition of the rule is h it, the thread then thread
stops the comparison and output the results. Otherwise,
the thread passes this condition and go to compare next
condition. If no condition of a rule is hit, the thread will
pass this rule and go to co mpare next rule. Figure 6
shows the proposed GPU-based BPF filtering algorithm.
Since GPU has different memory architectures, filtering
rules and packet head data can be s tored in these
memory architectures shown in Fig. 4.

4.2. GPU-Based BitMap-RFC Filtering Algorithm

Different to BPF algorithm, the RFC algorithm is a
decomposition-based algorithm that is ab le to provide
very high lookup throughput at the cost of low memory
efficiency. RFC consists of t wo phases; direct table
lookup and crossproducting. In the first phase, it
performs the parallel table lookups on each filter field
first. This step can achieve the best throughput
performance by utilizing a direct table look up. Figure 7
shows the data structure of this table. The table entry i
of chunk j stores the set of filters for which the chunk j
covers the value i. Each unique set o f filters is binary
encoded. The eqID is the identifier of the encoded set.
The second phase is to build a cross-product table with
the number of entries equaling to the multiplication of
the number of eqIDs of each chunk. However, the
number of entries of a cross-produce table can be very
large and it leads to inefficient use of use. To solve this
problem, the crossproducting phase is conducted
recursively to build multiple cross-product tables.

In the proposed GPU-based BitMap-RFC method,
each thread copies with a packet data. In the initial stage,
CPU builds all tables, and these tables then are copied
to GPU’s memory. In the second stage, each thread
performs RFC algorithm and store the result to GPU’s
global memory. After all th reads complete filtering
computation, the results will be copy to host’s memory.

Figure 8 s hows the proposed GPU-based BitMap-RFC
filtering algorithm. Figure 9 shows the GPU-based
packet filter model for BPF and RFC algorithms.

4.3. GPU Streaming for Implementation of Packet
Filter

In the above section, both of two proposed GPU-based
packet filtering methods can adopt direct memory copy
and zero-copy models to transfer data to GPU from host
and transfer data to host from GPU. In addition, CUDA
provides a mechanism, called streaming, to overlap the
data transferring and thread computation to enhance the
performance. Therefore, the time for transferring data
between host and GPU can be decreas ed dramatically.
To implement the two proposed methods, all filtering
rule tables are co pied to GPU’s memory first. The
packet data are split in many chunks, and then these
chunks are copied t o GPU memory by memory-copy
stream sequentially. In the initial phase, the first chunk
is copied to GPU’s memory completely. Then, these

BPF algorithm on GPU
Input : GpuSrcPacket , GpuDstPacket, con_RuleIndex, con_Ruletable, con_mask

/* GpuSrcPacket: the source IP address of packet
 GpuDstPacket: the destination IP address of packet

All filter rules are saved in constant memory
RuleSize : The number of filter rules

con_RuleIndex: Save the Index for con_Ruletable
con_mask: sub-network mask if necessary

_ _constant_ _ u_int16_t con_RuleIndex [RuleSize];
_ _constant_ _ u_int16_t con_Ruletable [RuleSize];
_ _constant_ _ u_int16_t con_mask;
 */
Output : GpuPacketOut Result /*Marked the packet that should be filtered our */
Method
Begin
1. int tid = blockIdx.x * blockDim.x + threadIdx.x; /* get thread id */
2. /* compare rules */
3. for j = 0 to RuleSize－1
4. if ((GpuSrcPacket + tid)& con_mask) == con_RuleIndex[j])
5. GpuPacketOut Result[t id] = con_Ruletable[j];
6. End
End

Fig. 6. GPU-based BPF algorithm.

Fig. 5. BPF Filter Model.

Published by Atlantis Press
Copyright: the authors

204

Che-Lun Hung et al.

packet data is processed and the second chunk is copied
to GPU’s memory in the second phase. The second
phase is repeated until all packet data is p rocessed
completely and the filtering results are copied to host’s
memory.

5. Experiment

We implemented two packet classification algorithms,
BPF and BitMap-RFC, on single NVIDIA GeForceGTS
560ti graphics card (Fermi architecture) and installed in
a PC with an Intel i7-3930k CPU and 16GB DDRIII-

1333 RAM running the Linux operating system. We
simulated 65 million packets with the random source
address, destination address, source port, destination
address and protocol for the experiments. The packet
filter has three rules and each rule has two fields as
shown in Table 2. 1000 classification rules are created
by these three rules for the following experiments.

5.1. Performance Evolution of GPU-Based BPF
Packet Filter

In this experiment, we implemented BPF on CUDA
with 10 co mbinations of CUDA memory storages and

BitMap-RFC algorithm on GPU
Input : GpuSrcPacket , GpuDstPacket, con_eqID, con_RuleIndex, con_Ruletable,
con_mask
 /* GpuSrcPacket: the source IP address of packet
 GpuDstPacket: the destination IP address of packet

All filter rules are saved in constant memory
RuleSize : The number of filter rules
con_eqID: Save the Index for con_RuleIndex, and the index is transformed from

IP address
con_RuleIndex: Save the Index for con_Ruletable
con_mask: sub-network mask if necessary

_ _constant_ _ u_int16_t con_eqID[RuleSize];
_ _constant_ _ u_int16_t con_RuleIndex [RuleSize];
_ _constant_ _ u_int16_t con_Ruletable [RuleSize];
_ _constant_ _ u_int16_t con_mask;
 */
Output : GpuPacketOut Result
Method
Begin
1. int src,dst;
2. int tid = blockIdx.x * blockDim.x + threadIdx.x; // get threadID
3. src = con_RuleIdex[con_eqID[(GpuSrcPacket + tid) & con_mask]*eqIDNumber];
4. dst = con_RuleIdex[con_eqID[(GpuDstPacket + tid) & con_mask]*eqIDNumber];
5. GpuPacketOutResult [tid] = con_Ruletable[(src+dst)%256];
End

Fig. 8. GPU-based BitMap-RFC algorithm.

Fig. 9. Performance comparison between CPU-based and GPU-
based BPF classification algorithms with a vari ety of memory
usage.

Fig. 7. This is the caption for the figure. If the caption is less than one line then it is centered. Long captions are justified manually.

Published by Atlantis Press
Copyright: the authors

205

 Fast Network Packet Filter

data transfer models shown in table 3. Global memory is
the biggest memory region available on CUDA devices.
Constant memory and register files can access data
faster than global and texture memory. However, some
limitations on these two structures. First is the storage
size. Constant memory is suitable for frequent access
but low data update rate. The function of register on
CUDA is the same as the registers on CPU. The over-
usage of register will decrease the performance of GPU.
Therefore, we store the packet data in global and texture
memory and the filtering rules are sto red in registers
and constant memory. Also, we implement the proposed
algorithm with three memory copy models, direct copy,

zero-copy and streaming.
Figure 9 illustrates the performance comparison

between CPU-based and GPU-based BPF classification
algorithms. F igure 9 s hows that the GPU-based BPF
algorithm can achieve 20x ~25x speedup over CPU-
based BPF algorithm with storing classification rules in
registers for 65 million packets; especially by using
streaming model. It is obvious that the speedup of BPF
by using global memory with streaming model is
slightly superior to that of using global memory with
zero-copy.

Actually, we implement GPU-based BPF
classification algorithm with an optimization approach,

Fig. 10. Performance comparison between GPU-based BPF
algorithms with unroll and non-unroll approaches.

Fig. 11. Performance comparison between CPU-based and
GPU-based BitMap-RFC classification algorithms with a
variety of memory usage.

Table 3. Combination of various memory architectures for GPU-based BPFalgorithm

 Packet Storage Rule Storage Data Transfer

1 Global Constant Direct

2 Global Constant Zero Copy

3 Texture Constant Direct

4 Texture Constant Zero Copy

5 Texture Constant Stream

6 Global Register Direct

7 Global Register Zero Copy

8 Texture Register Direct

9 Texture Register Zero Copy

10 Texture Register Stream

Published by Atlantis Press
Copyright: the authors

206

Che-Lun Hung et al.

unroll. In the implementation of GPU-based BPF
algorithm, lots of loop operations are adopted to check
the filter rules. However, it cau ses a critical p roblem
that the number of registers is not enough for computing.
The performance is affected. Therefore, an optimization
approach, unroll, supported by CUDA is adopted to
enhance the performance of GPU-based BPF algorithm.
Figure 10 s hows the performance between GPU-based
BPF with unroll and non-unroll approaches. It is
obvious that the performance of GPU-based BPF with
unroll is highly superior to that with non-unroll.

5.2. Performance Evolution of GPU-Based
BitMap RFC Packet Filter

In this experiment, we only implemented BitMap-RFC
on CUDA with 6 co mbinations of CUDA memory
storages and data transfer models shown in table 4.
BitMap-RFC algorithm needs to build hash tables
before filtering. Since the sizes of these tables are bigger
than that of register files, the filter rules cannot be
stored in registers. The results show that the GPU-based
RFC algorithm can achieve 5x~7x speedup over CPU-
based RFC algorithm in Fig. 11. B ecause CPU-based
BitMap-RFC is much faster than CPU-based BPF, the
performance enhancement is not dramatic to results in
BPF.

5.3. Performance Evolution between GPU-Based
Packet Filter Algorithms

Figures 12 an d 13 show the throughput produced by
GPU-based BPF and BitMap-RFC algorithms.
Obviously, GPU-based BitMap-RFC algorithm can
achieve higher throughput than GPU-based BPF
algorithm. The reason is that BPF executes many if-else
branch instructions. It cau ses the divergent branch

problem on CUDA device. Therefore, the performance
of GPU-based BPF algorithm is decreased by divergent
branch problem.

5.4. Performance Evolution of GPU-Based Packet
Filter Algorithms between Different CUDA
Devices

In this experiment, we implemented the proposed
algorithms on different CUDA devices, such as GTS
450, GTX480 and GTX560ti. Figure 14 s hows the
throughput comparison between these three CUDA
devices. From the result, GTX480 can achieve the
highest throughput than other two devices, since
GTX480 has more cores than other two devices;
GTX480 has 480 cores, GTX450 has 192 cores and
GTX560ti has 448 cores . The performance of the
proposed algorithms is p roportional to the number of
cores of the CUDA device. Therefore, executing the

Fig. 12. Throughput comparison between memory usages on
GPU-based BPF algorithm.

Table 4. Combination of various memory architectures for GPU-based BitMap-RFC algorithm.

 Packet Location Rule Location Data Transfer

1 Global Constant NA

2 Global Constant Zero Copy

3 Global Constant Stream

4 Texture Constant NA

5 Texture Constant Zero Copy

6 Texture Constant Stream

Published by Atlantis Press
Copyright: the authors

207

 Fast Network Packet Filter

proposed algorithm on high-level CUDA device and the
performance can be enhanced.

6. Conclusion

In this paper, we propose two fast packet filter methods
by leveraging power of GPU device. The proposed
methods include two well-know filter algorithms, BPF
and BitMap-RFC, to ach ieve rapid an d reliable pack et
filter system. We implement these algorithms on GPU
devices by using CUDA. In addition, we considered the
performance of the various memory architectures
available to C UDA kernels, and the different data
transfer models to enh ance the performance. The
experimental results show the performance comparison
among several combinations of memory architectures
on CUDA device for the proposed methods. Obviously,
the proposed methods can significantly enhance the
performance over the filter algorithm executing on CPU.

In the future, we will apply GPU-based packet filter
system to other network security systems, such as
Botnet detection system and network intrusion detection
system, to improve the performance. Also, we focus on
improving the proposed methods to provide a real-time
giga-bit network and fast network telescope packet
analysis applications.

Acknowledgements

This research was partially supported by the National
Science Council under the Grants NSC-102-2221-E-
126-004.

References

1. D. E. T aylor, Survey and taxonomy of packet

classification techniques, ACM Comput. Surv. 37(3)
(2005) 238–275.

2. A. Nottingham and B. I rwin, Parallel packet
classification using GPU co-processors, SAICSIT Conf.
ACM, (2010), pp. 231–24.

3. M. Roesch, Snort - L ightweight intrusion detection for
networks, in Proc. the 13th USENIX Conference on
System Administration, (1999), pp. 229–238.

4. V. Paxson, Bro: A system for detecting network intruders
in real-time, Computer Networks, 31 (1999), pp. 2435–
2463

5. W. Lu, M. Tav.allaee, G. Rammidi and A. A. Ghorbani,
Botcop: An online botnet traffic classifier, in Proc. the
7th IEEE Annual Communications Networks and
Services Research Conference, (2009), pp. 70–77.

6. F. Alserhani, M. A khlaq, I. U. Awan and A. J. Cullen,
Detection of coordinated attacks using alert correlation
model, in Proc. IEEE International Conference on
Progress in Informatics and Computing, (2010), pp. 542–
546.

7. M. Szymczyk, Detecting botnets in computer net- works
using multi-agent technology, in Proc. the 4th
International Conference on Dependability of Computer
Systems, (2009), pp. 192–201.

8. L. Braun, G. Munz and G. Carle, Packet sampling for
worm and botnet detection in TCP connections, in Proc.
IEEE Network Operations and Management Symposium,
(2010), pp. 1542-1201.

9. S. Fide and S. Jenks, A Survey of String Matching
Approaches in Hardware, Dept. of Electrical Engineering
and Computer Science, University of California, Irvine,
Tech. Rep. TR SPDS 06-01, (2006).

10. M. Colajanni and M. Marchetti, A Parallel Architecture
for Stateful Intrusion Detection in High Traffic Networks,

Fig. 14. Throughput comparison between two GPU-based fiilter
algorithms on different CUDA devices.

Fig. 13. Throughput comparison between memory usages on
GPU-based BitMap-RFC algorithm.

Published by Atlantis Press
Copyright: the authors

208

Che-Lun Hung et al.

in Proc. of Workshop on Monitoring, Attack Detection
and Mitigation, (2006).

11. A. Nottingham and B. Irw in, GPU packet classification
using OpenCL: a co nsideration of viable classification
methods. In Proc. SAICSIT Conf. ACM., (2010), pp. 160-
169.

12. M. LCharalambous, P. Trancoso and A. Stamatakis,
Initial Experiences Porting a Bioinformatics Application
to a G raphics Processor, In Proc. the 10th Panhellenic
Conference on Informatics, 2005, pp. 415-425.

13. J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Krüger, A.E. Lefohn and T. Purcell, A Survey of
General-Purpose Computation on Graphics Hardware,
Computer Graphics Forum, 26 (2007), pp. 80-113.

14. C. L. Hung and G. J. Hua, Local Alignment Tool Based
on Hadoop Framework and GPU Architecture, Biomed
Research International, 2014 (2014), Article ID 541490.

15. S. T. Lee, C. Y. Lin, and C. L. Hung, GPU-Based Cloud
Service for Smith-Waterman Algorithm Using Frequency
Distance Filtration Scheme, Biomed Research
International, 2013 (2013), Article ID 72173.

16. C. Y. Lin, C. L. Hung and Y. C. Hu, A Re-sequencing
Tool for High- throughput Long Reads Based on
UNImarker with non-Overlapping iNterval indexing
strategy, Information - An International Interdisciplinary
Journal, 16(1(B)) (2013), pp. 827-832.

17. C. Y. Lin, S. T. Lee and C. L. Hung, Frequency-based re-
sequencing tool for short reads on graphics processing
units, International Journal of Computational Science
and Engineering, 9(1/2) (2014), pp. 3-10.

18. Nvidia cuda c best practices guide, version 4. Online,
(2011).

19. A. Begel, S. McCanne, and S. L. Graham, BPF+:
Exploiting global data-flow optimization in a generalized
packet filter architecture, SIGCOMM Comput. Commun.
Rev., 29(4) (1999), pp. 123-134.

20. S. Mccanne and V. Jacobson, The bsd packet filter: A
new architecture for user-level packet capture, in Proc.
the USENIX Winter, (1993), pp. 259-269.

21. E. Spitznagel, D. Taylor, and J. Turner, Packet
classification using extended tcams, in Proc. the 11th
IEEE International Conference on Network Protocols,
(2003), pp. 120-131.

22. S. Singh, F. Baboescu, G. Varghese, and J. Wang, Packet
classification using multidimensional cutting, in Proc. the
2003 conference on Applications, technologies,
architectures, and protocols for computer
communications, (2003), pp. 213-224.

23. V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel,
Fast and scalable layer four switching, SIGCOMM
Comput. Commun. Rev., 28(4) (1998), pp. 191-202.

24. D. R. Engler and M. F. Kaashoek, Dpf: Fast, flexible
message demultiplexing using dynamic code generation,
in Proc. on Applications, technologies, architectures, and
protocols for computer communications, (1996), pp. 53-
59.

25. F. Baboescu and G. Varghese. Scalable packet
classification, SIGCOMM Comput. Commun. Rev., 31(4)
(2001), pp. 199-210.

26. T. V. L akshman and D. Stiliadis. High-speed policy-
based packet forwarding using efficient multi-
dimensional range matching, SIGCOMM Comput.
Commun. Rev., 28(4) (1998), pp. 203-214.

27. M. Yuhara, B. N. Bershad, C. Maeda, J. Eliot and B.
Moss. Efficient packet demultiplexing for multiple
endpoints and large messages, In Proceedings of the 1994
Winter USENIX Conference, (1994), pp. 153-165.

28. H. Bos, W. D. Bru ijn, M. Cristea, T. Nguyen and G.
Portokalidis, FFPF: Fairly fast packet filters, In Proc. the
6th conference on Symposium on Opearting Systems
Design & Implementation, (2004), pp. 24.

29. S. Ioannidis and K. G. Anagnostakis, XPF: Packet
filtering for low-cost network monitoring, In Proc. the
IEEE Workshop on High-Performance Switching and
Routing, (2002), pp. 121-126.

30. Z. Wu, M. Xie, and H. Wang, Swift: a f ast dynamic
packet filter, In Proc. the 5th USENIX Symposium on
Networked Systems Design and Implementation, (2008),
pp. 279-292.

31. P. Gupta and N. McKeown, Packet Classification on
Multiple Fields, SIGCOMM Comput. Commun. Rev., 29
(1999), pp. 147-160.

32. T. Sherwood, G. Varghese and B. Calder, A Pipelined
Memory Architecture for High Throughput Network
Processors, in Proc. the 30th annual international
symposium on Computer architecture, (2003), pp. 288-
299.

33. M. Degermark, A. Brodnik, S. Carlsson, and S. Pink,
Small Forwarding Tables for Fast Routing Lookups, in
Proc. ACM SIGCOMM, (1997), pp. 3-14.

34. W. Eatherton, G Varghese, and Z Dittia , Tree Bitmap:
Hardware/Software IP Lookups with Incremental
Updates, SIGCOMM on Computer Communication
Review, 34(2) (2004), pp. 97-122.

35. Xianghui Hu, Xinan Tang, and Bei Hua, A High-
performance IPv6 Forwarding Algorithm for a Multi-core
and Multithreaded Network Processor, in Proc. the
eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming, (2006), pp. 168-177.

36. E. Spitznagel, Compressed Data Structures for Recursive
Flow Classification, Technical Report, WUCSE-2003-65,
(2003).

37. D. Liu, B. Hua, X. Hu, and X. Tang, High-performance
packet classification algorithm for many-core and
multithreaded network processor, in Proc. international
conference on Compilers, architecture and synthesis for
embedded systems, (2006), pp. 334-344.

38. S. Han, K. Jang, K. Park and S. Moon, PacketShader: a
GPU-accelerated Software Router., in Proc. ACM
SIGCOMM, (2010), pp. 195-206.

39. C. L. Hung, C. Y. Lin, and H. H. Wang, An Efficient
Parallel-Network Packet Pattern-Matching Approach

Published by Atlantis Press
Copyright: the authors

209

 Fast Network Packet Filter

Using GPUs, Journal of Systems Architecture, 60(5),
(2014), pp. 431-439.

40. N.K. Govindaraju, S. Larsen, J. Gray and D. Manocha, A
memory model for scientific algorithms on graphics
processors, In Proc. the ACM/IEEE conference on
Supercomputing, 2006:89

Published by Atlantis Press
Copyright: the authors

210

