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Abstract 

In recent years, with the rapid development of the network hardware and software, the network speed is enhanced 
to multi-gigabit. Network packet filtering is an important strategy of network security to avoid malicious attacks, 
and it is a computation-consuming application.  Therefore, we develop two efficient GPGPU-based parallel packet 
classification approaches to filter packets by leveraging thousands of threads. The experiment results demonstrate 
that the computational efficiency of filtering packet can be significantly enhanced by using GPGPU. 
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1. Introduction 

In the past few years, the development of network 
bandwidth and hardware technologies have grown 
rapidly, a variety of Internet services have been popular, 
such as email system, storage system, entertainment 
system and others. Currently, many famous corporations, 
such as Google, Amazon, IBM an d Microsoft have 
released a variety of cloud services including hardware, 
software and platform. These services deeply rely on 
Internet. To maintain the robustness of Internet 
environments, the network security is one of t he 
important parts indeed. Therefore, Internet security has 

become an important role to protect activities on 
Internet. For this purpose, packet analysis1 is useful 
strategy to control that packet data can flow to and from 
a network.  The criteria t hat use when inspecting 
packets are bas ed on the Layer 3 (IPv4 and IPv6) and 
Layer 4 (TCP, UDP, ICMP, and ICMPv6) headers. The 
commonly used criteria are s ource and destination 
address, source and destination port and protocol. 

Packet analysis is at the core of timely detection and 
typically relies o n a p acket filtering system.  P acket 
filtering system drops the packets if packets match to 
the filter rules. A packet is compared with the filter 
rules in sequential order from the first to the last. Until 
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the packet matches a rule containing the keyword such 
as port number or IP address, the packet will be 
compared against all filter rules before the final action is 
taken. The last matched rule dictates what action to take 
on the packet. There is an i mplicit pass all at t he 
beginning of a filtering rule set meaning that if a packet 
does not match any filter rule the resulting action will be 
passed. In general, each incoming packet can be 
considered independently of any other packet. Although 
for the IP fragments, the first fragment is related  to 
other fragments apparently but arriving without order. It 
can be considered as independent for classification2. 

Packet filter system also has been applied to many 
network intrusion detection systems (NIDS) as the first 
stage. Botnet has become one m ajor threat to In ternet 
users in recent years. A botnet consists of a larg e 
number of bots that are n etworked computers 
compromised by malicious attackers. In general, an 
attacker conducts the bots to launch a variety of types of 
attacks such as phishing and spamming with a botn et, 
and then receives benefits from a variety of aspects such 
as economy and social security. Most of methods to 
detect bot’s activities according to predefined patterns 
and signatures retrieved from well-known bots3,4,5,6,7,8. 
Although signature-based approaches are able to detect  
bots accurately, it is  difficult to detect  botnet in real 
time. Nowadays, detecting signature becomes more and 
more complex because the number of attacks is 
increased dramatically, and the signatures also become 
sophisticated. In addition, busy-hour Internet traffic will 
increase by a factor of 3.4 between 2013 an d 2018. 
Therefore, to analyze the entire traffic on a high-speed 
link is computation-consuming problem. Consequently, 
random packet losses are likely to occur if the network 
traffic exceeds the capacity of packet filter of the botnet 
detection system. These botnet detection approaches has 
a very important stage, traffic reduction, to redu ce the 
data set to the meaningful subset of flows to speed later 
stages in these approaches. To reduce the network 
traffic, packet filtering is useful strategy to control that 
packet data can flow to and from a network. 

Sequential-process packet classifiers often take 
longer to clas sify a pack et set captured off a g iga-bit 
network interface than it took th e set to arrive, making 
them infeasible for real-time traffic analysis4. To solve 
packet filter problem leaded by large amounts of traffic, 
one of the solutions is to in crease the processing 
capacity of the botnet detection system. It can be either 

hardware9 or software10 solutions. However, the cost of 
these solutions is huge. The reasonable cost of available 
computing power to anal yze the network traffic is 
critical. Therefore, parallel process is useful solution to 
improve the performance of the detection system. 

Recently, many literatures tried to use General-
Purpose Graphics Processing Unit (GPU) to s olve 
computation intensive problem of various 
domains11,12,13,14,15,16,17. GPGPU programming has been 
successfully utilized in the scientific computing 
domains which involve a high level of numeric 
computation. However, other applications also could be 
successfully parallelized by  GPGPU. The greatest 
benefit is t hat the processing units grow from many 
(CPU, about 2-16) to massive (GPU, about over 512). In 
2006, NVIDIA proposed the Compute Unified Device 
Architecture (CUDA). CUDA uses a n ew computing 
architecture named Single Instruction Multiple Threads 
(SIMT)18. This architecture allows thread to ex ecute 
independent and divergent instruction streams, 
facilitating decision-based execution that is not provide 
for by the more common Single Instruction Multiple 
Data (SIMD). 

To improve the computational performance of the 
Botnet detection system, we propose two efficient 
network traffic reduction algorithms to filter packets 
simultaneously by using GPGPU device. By leveraging 
nVidia CUDA device can achieve low cost, commodity 
GPU co-processors to accelerate packet-filtering 
throughput. The proposed algorithms could be u tilized 
in any botnet detection method that adopts traffic 
reduction strategy. We al so implement the proposed 
packet classification algorithm on a variety of memory 
architectures on GPU to dis cuss the performance of 
proposed method. The experiment results demonstrate 
that the proposed method can achieve over 20 t imes 
speed up over the sequential packet classification 
software on single CPU. It p resents that GPGPU is 
useful for real-time traffic analysis. 

2. Related Works 

According the previous literature1, the classification can 
be categorized into three types: IP routing, packet 
demultiplexing and packet analysis. The slight 
differences of these types are bet ween target 
environments. IP routing is utilized to forward incoming 
packets through the correct in terface to a des tination 
host. Packet demultiplexing is concerned that 
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forwarding the packets to the next hop router, or 
dropping the packets altogether. Packet analysis is 
similar in many respects to demultiplexing, and often 
depends on similar filtering algorithms, but may process 
a wider variety of packets, with a broader ran ge of 
destinations. All of these three types are d epending on 
the packet filtering. A filter is a p redicate function that 
operates over a collection  of criteria to com pare each 
arriving packet1,19,20. Generally, a packet is classified by 
a filter which has the specific criteria. Filter criteria are  
Boolean valued comparisons, performed between values 
contained in discreet bit-ranges in the packet header and 
static protocol defined values.  

The commonly-used and most reliable methods of 
classifying packet data are exhaustive search algorithms 
which compare packets against each and every filter in 
the filter set u ntil a ex act match is f ound1,21. These 
algorithms are generally slow, and thus not very useful. 
Other classes of algorithms include decision tree, 
decomposition and tuple space approaches. Decision 
tree algorithms are diverse in design, but all leverage a 
sequential tree li ke traversal of a sp ecialized data 
structure in order to narrow down the number of criteria 
against which the packet need to be  compared1,19,22,23. 
Most of demultiplexing and analysis filters are highly 
sequential approaches based on decision trees19,20,24, and 
thus are suitable to the processing on CPUs. In contrast, 
decomposition algorithms can be equipped on parallel 
processing hardware such as FPGAs, typically splitting 
filter classifications into smaller sub-classifications 
which can be perf ormed in parallel1,25,26. Tuple space 
algorithms are highly specialized, and exploit a variety 
of filter set p roperties in order to reduce processing 
time1. 

Most of demultiplexing algorithms adopt decis ion 
tree approaches because of their efficiency at pru ning 
redundant computation on sequential processors. BPF is 
a well known algorithm that adopted Control Flow 
Graphs (CFGs) in a n assembler style programmable 
pseudo-machine to improve performance on register-
base processor20. Mach Packet Filter (MP F) and 
Dynamic Packet Filter (DPF) are ex tended from BPF. 
MPF was designed to extend and improve 
demultiplexing performance27, while DPF focused on 
exploiting dynamic code generation in order to prune 
redundant instructions24. These filters led to the 
development of BPF+19, which adopted techniques such 
as Predicate Assertion Propagating and Partial 

Redundancy Elimination, in conjunction with Just-In-
Time (JIT) processing and various other optimizations, 
to dramatically improve processing speeds. Extensible 
Packet Filter (xPF)28, Fairly Fast Packet Filter (FFPF)29 
and SWIFT30, were developed to reduce the context 
switching overhead, facilitate high performance 
demultiplexing between multiple network monitoring 
application, and reduce filter update latency to support 
real-time filter updates, respectively.  

Presently, RFC algorithm31, which is a 
generalization of cross-producting32, is the fastest 
classification algorithm in terms of the worst-case 
performance. Bitmap compression has been used in 
IPv4 forwarding33,34 and IPv6 forwarding35. It is applied 
to classification to compress redundant storage in data 
structure36. However, the performance bottleneck of 
these methods are searching the compressed tables, and 
thus additional techniques have to be introduced to 
improve the inefficiency of calculating the number of 
bits set in  a b itmap. Lulea33 algorithm utilizes a 
summary array to pre-process the number of bits set in 
the bitmap, and thus it needs an extra memory access 
operation per trie-node to search the compressed table. 
The Bitmap-RFC37 employs a built-in bit-manipulation 
instruction to calculate the number of bits set at runtime 
and apply bitmap compression to reduce its memory 
requirement to solve the problem of memory explosion. 
Thus, it is much more efficient than Lulea’s in terms of 
time and space complexity.  

However, these sequential packet classification 
algorithms take longer to classify a packet set captured 
off a g iga-bit network interface than it to ok the set to  
arrive, making them infeasible for real-time traffic 
analysis. 

Nottingham et al., 2,11 proposed a clas sification 
algorithm, by utilizing GPU co-processors to accelerate 
classification throughput and maximize processing 
efficiency in highly parallel execution context. They 
provided valuable articles for introducing the concept of 
parallel packet classification on CUDA and OpenCL 
platforms. However, these literatures are lack  of the 
performance comparisons and implementations with a 
variety of memory architectures of GPU. Han et al., 38 
proposed a GPU-based IP routing approach named 
PacketShader. The experiment results show that GPU-
based IP routing algorithm can enhance the performance 
over the CPU-based IP routing approaches. Hung et 
al.,39 presented a GP U-based network packet pattern-
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matching algorithm for network intrusion detection 
systems by leveraging the computational power of 
GPUs to accelerate pattern-m atching operations and 
subsequently increase the overall processing throughput. 
The experimental results showed that their algorithm 
can achieve a maximal traffic processing throughput of 
over 2 Gbit/s. These articles present an alternative of 
developing the parallel p acket classification by 
leveraging GPU devices. 

3. CUDA Programming Model 

As the GPU has become increasingly more powerful 
and ubiquitous, researchers have begun developing 
various non-graphics, or general-purpose applications13. 
Generally, the GPUs are organized in a streaming, data-
parallel model in which the co-processors execute the 
same instructions on multiple data streams 
simultaneously. Modern GPUs include several (tens to 
hundreds) of types of stream processors, both of 
graphical and general-purpose applications thus are 
faced with parallelization challenges in using GPUs41. 
nVidia released the Compute Unified Device 
Architecture (CUDA) SDK to as sist developers in 
creating non-graphics applications that run on GPUs. A 
CUDA programs typically consist of a component that 
runs on the CPU, or h ost, and a sm aller but 
computationally intensive component called the kernel 
that runs in parallel on the GPU. Input data for the 
kernel must be copi ed to the GPU's on-board memory 
from host’s main memory through the PCI-E bus prior 
to invoking the kernel, and output data also should be 
written to the GPU's memory first before copying to 
host’s main memory. All memory used by the kernel 
should be pre-allocated. 

Kernel executes a collecti on of threads that 
computes a res ult for a s mall segment of data. T o 
manage multiple threads, kernel is p artitioned into 
thread blocks, with each thread block being limited to a 
maximum of 512 threads. The thread blocks are usually 
positioned within a o ne or two-dimensional grid. Each 
thread can be positioned within a g iven block where it 
belongs, and this given block can be positioned within 
the grid. Therefore, each thread can  calculate which 
elements of data to operate on, and which regions of 
memory to write output to by an algebraic formula. 
Each block is executed by a sin gle multiprocessor, 
which allows all t hreads within the block to 

communicate through on-chip shared memory. The 
parallelism architecture of GPGPU is illustrated in Fig. 
1. 
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Fig. 2.  Memory architecture of CUDA device, nVidia 
GTS450. 

 

Fig. 1.  The parallelism architecture of CUDA. 
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CUDA devices provide access to s everal memory 
architectures, such as global memory, constant memory, 
texture memory, share memory and registers, with their 
access latencies and limitations.  T he performance of 
device is relevant to the memory variants. Figure 2 
illustrates the memory architectures of CUDA device. 
Table 1 shows the characteristics of memory 
architectures. 
 Global Memory: Global memory is the biggest 

memory region available on CUDA devices and is 
capable of storing hundreds of megabytes of data. 
However, the access latency is highest than others.  

 Constant Memory: Constant memory is a small 
read-only memory region that resides in DRAM on 
CUDA device. It is globally accessible memory for 
all threads. Since Constant memory has on-chip 
cache, the access latency is low.  

 Texture Memory: Texture memory is a compromise 
between global and constant memory. Each multi-
processor on the CUDA device equips a 64K B 
texture cache which can be bou nd to on e or more 
arbitrarily sized region of global memory. Texture 
memory is read only as constant memory. 

 Register: Each thread block in CUDA device 
equips a regis ter file that contains registers. The 
register provides fast thread-local storage during 
kernel execution.  

 Shared Memory: Shared memory is block-local that 
facilitates cooperation between multiple threads in 
an executing thread block. The access latency of 
shared memory is equivalent to that of register. 

The G80 that introduced the CUDA architecture had 
86.4GB/s of memory bandwidth, plus an 8 G B/s 
communication bandwidth with the CPU. A CUDA 
application can transfer data from the system memory at 
4 GB/s and at th e same time upload data back to the 

system memory at 4 GB /s. altogether, there is a 
combined total of 8 GB/s. the communication 
bandwidth is much lower than the memory bandwidth 
and may seem like a li mitation. Two memory 
transmission models, memory direct copy and zerocopy, 
in CUDA architecture is used to copy data from system 
memory to device memories including global, constant, 
texture and registers. 

The CUDA runtime system provides application 
programming interface (API) functions to allocate an d 
release memory on the device and transfer pertinent data 
from the host memory to the allocated device memory. 
It could be the bottleneck of GPU computing 
performance.  T he zerocopy function is a f eature that 
was added i n version 2.2 o f the CUDA Toolkit. It 
enables GPU threads to dire ctly access host memory. 
The zerocopy function can be used in place of  streams 
because kernel-originated data transfers automatically 
overlap kernel execution without the overhead of setting 
up and determining the optimal number of streams.  
Different to previous two memory transfer models, 
streaming model is another way to improve the use of 
the threads and data trans fer. It is  a pipelin e of 
asyconizing the data transmission. A stream is a 
sequence of operations that are performed in order on  
CUDA device. Figure 3 shows the streaming model of 
CUDA architecture. In Fig. 3, data is  copied from host 
memory to device memory and stream 1 t hen lunches 
kernel function 1, and when stream1 is copying output 
data from device memory to host memory and stream 2 
starts to lunch kernel function 2. The processes for 
stream 3 and stream 4 are as same as pervious processes 
of stream1 and stream 2.  

4. Method 

Table 1.  Overview of memory architectures in CUDA device. 

Memory Scope Hardware Latency Bandwidth Access 
Register Thread Chip Immediate  R/W 
Shared Block Chip 4-6 clock 200 GB/s R/W 
Constant Grid Cache 4-600 clock 200-300 GB/s R 
Texture Grid Cache 4-600 clock 200-300 GB/s R 
Global Grid DRAM 400-600 clock 100 GB/s R/W 
Local Thread DRAM 400-600 clock 100 GB/s R/W 
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In CUDA devices, each phy sical multiprocessor 
contains only a si ngle instruction register which drives 
eight independent processing cores simultaneously. 
Therefore, any divergence between thread executing on 
the same multiprocessor forces the instruction register 
to issue instruction for all th read paths sequentially 
whilst non-participating thread sleep18. The significant 
thread divergence can dramatically impair performance. 
To avoid thread divergence, each thread should process 
the similar length of data. In a filter set, the rules of each 
filter have a various number of fields. Due to this reason, 
we restrict that he number of fields of each rule should 
be the same at th e same filter. Table 2 presents the 
revised filter rules.  The filter sets are stored in constant 
memory or register files, and the packet data is stored in 
global memory or texture memory. Figure 4 illustrates 
the memory usage for filter sets sto red in constant 
memory and packet data stored in global memory on 
CUDA device. A thread process a packet data according 
the filter sets. Currently, we include two famous filter 
classification algorithms, BPF and BitMap-RFC, in the 
proposed method. We ch ose these two algorithms 
because they are totall y different data s tructures and 
well-known algorithm. BPF uses data structure as 
decision tree s tructure and BitMap-RFC uses data 
structure as hash table.  T hrough different data 
structures, it can be measured that which data structure 
is suitable for GPU. 

4.1.  GPU-Based BPF Filtering Algorithm 

BPF was originally proposed for BSD UNIX, it is 
independent of the TCP/IP stack, and gives user mode 
processes an interface to access data link layer. It is an 
elegant and commonly used solution for packet filtering 
and achieves better perf ormance than other packet 
filtering systems.  B PF consists of two main 
components: network tap and packet filter22.  T he 
network tap is  the first interface to co py packets from 
network interface card driv er and moving them to t he 
listening user processes. Then, the packet filter adopts 

 

Fig. 4.  The memory storage for filter sets (constant memory) 
and packet data (global memory) on CUDA device. 

 

Fig. 3.  Streaming approach on CUDA. 

Table 2.  Packet filtering rules 

Rule Source IP Destination IP Protocol Port Number 
1 140.128.1.0/ 

255.255.255.0 
* * * 

2 * 140.128.2.99/ 
255.255.255.0 

HTTP 8888 

3 140.127.0.0/ 
255.255.0.0 

123.6.0.0/ 
255.255.0.0 

* * 

4 219.88.0.0/ 
255.255.0.0 

123.6.22.0/ 
255.255.255.0 

FTP * 
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the filtering rules to determine whether a packet should 
be delivered to the upper-level component or it s hould 
be discarded in the kernel space. BPF adopts a directed 
acyclic control flow graph (CFG) to represent a packet 
filter.  Figure 5 shows a sample BPF filter. Each path in 
the BPF filters represents a comparison procedure needs 
to be completed for a p articular packet pattern. In the 
proposed GPU-based BPF filtering method, each thread 
compares the fields of a p acket head with the filtering 
rules.  As figure 6, a thread start to do the comparison of 
the field corresponding to the first condition of rule. If 
the condition of the rule is h it, the thread then thread 
stops the comparison and output the results. Otherwise, 
the thread passes this condition and go to compare next 
condition. If no condition of a rule is hit, the thread will 
pass this rule and go to co mpare next rule. Figure 6 
shows the proposed GPU-based BPF filtering algorithm. 
Since GPU has different memory architectures, filtering 
rules and packet head data can  be s tored in these 
memory architectures shown in Fig. 4. 

4.2. GPU-Based BitMap-RFC Filtering Algorithm 

Different to BPF algorithm, the RFC algorithm is a  
decomposition-based algorithm that is ab le to provide 
very high lookup throughput at the cost of low memory 
efficiency. RFC consists of t wo phases; direct table  
lookup and crossproducting. In the first phase, it 
performs the parallel table lookups on each filter field 
first. This step can achieve the best throughput 
performance by utilizing a direct table look up. Figure 7 
shows the data structure of this table. The table entry i 
of chunk j stores the set of filters for which the chunk j 
covers the value i. Each unique set o f filters is binary 
encoded. The eqID is  the identifier of the encoded set. 
The second phase is to build a cross-product table with 
the number of entries equaling to the multiplication of 
the number of eqIDs of each chunk. However, the 
number of entries of a cross-produce table can be very 
large and it leads to inefficient use of use. To solve this 
problem, the crossproducting phase is conducted 
recursively to build multiple cross-product tables. 

In the proposed GPU-based BitMap-RFC method, 
each thread copies with a packet data. In the initial stage, 
CPU builds all tables, and these tables then are copied 
to GPU’s memory. In the second stage, each thread 
performs RFC algorithm and store the result to GPU’s 
global memory. After all th reads complete filtering 
computation, the results will be copy to host’s memory.  

Figure 8 s hows the proposed GPU-based BitMap-RFC 
filtering algorithm. Figure 9 shows the GPU-based 
packet filter model for BPF and RFC algorithms. 

4.3. GPU Streaming for Implementation of Packet 
Filter 

In the above section, both of two proposed GPU-based 
packet filtering methods can adopt direct memory copy 
and zero-copy models to transfer data to GPU from host 
and transfer data to host from GPU. In addition, CUDA 
provides a mechanism, called streaming, to overlap the 
data transferring and thread computation to enhance the 
performance. Therefore, the time for transferring data 
between host and GPU can be decreas ed dramatically.  
To implement the two proposed methods, all filtering 
rule tables are co pied to GPU’s memory first. The 
packet data are split in many chunks, and then these 
chunks are copied t o GPU memory by memory-copy 
stream sequentially. In the initial phase, the first chunk 
is copied to GPU’s memory completely. Then, these 

BPF algorithm on GPU 
Input : GpuSrcPacket , GpuDstPacket, con_RuleIndex, con_Ruletable, con_mask 

/* GpuSrcPacket: the source IP address of packet 
                GpuDstPacket: the destination IP address of packet 
 

All filter rules are saved in constant memory 
RuleSize : The number of filter rules 

con_RuleIndex: Save the Index for con_Ruletable 
con_mask: sub-network mask if necessary 

_ _constant_ _  u_int16_t  con_RuleIndex [RuleSize]; 
_ _constant_ _  u_int16_t  con_Ruletable [RuleSize]; 
_ _constant_ _  u_int16_t  con_mask; 
             */ 
Output : GpuPacketOut Result /*Marked the packet that should be filtered our */ 
Method 
Begin 
1. int tid = blockIdx.x * blockDim.x + threadIdx.x; /* get thread id */ 
2. /* compare rules */ 
3. for j = 0 to RuleSize－1 
4.       if ((GpuSrcPacket + tid)& con_mask) == con_RuleIndex[j]) 
5.          GpuPacketOut Result[t id ] = con_Ruletable[j]; 
6. End 
End 

Fig. 6.  GPU-based BPF algorithm. 

 

Fig. 5.  BPF Filter Model. 
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packet data is processed and the second chunk is copied 
to GPU’s memory in the second phase. The second 
phase is repeated until all packet data is p rocessed 
completely and the filtering results are copied to host’s 
memory.  

5. Experiment 

We implemented two packet classification algorithms, 
BPF and BitMap-RFC, on single NVIDIA GeForceGTS 
560ti graphics card (Fermi architecture) and installed in 
a PC with an Intel i7-3930k CPU and 16GB DDRIII-

1333 RAM running the Linux operating system. We 
simulated 65 million packets with the random source 
address, destination address, source port, destination 
address and protocol for the experiments. The packet 
filter has three rules and each rule has two fields as 
shown in Table 2. 1000 classification rules are created 
by these three rules for the following experiments. 

5.1.  Performance Evolution of GPU-Based BPF 
Packet Filter 

In this experiment, we implemented BPF on CUDA 
with 10 co mbinations of CUDA memory storages and 

BitMap-RFC algorithm on GPU 
Input : GpuSrcPacket , GpuDstPacket, con_eqID, con_RuleIndex, con_Ruletable, 
con_mask 
             /* GpuSrcPacket: the source IP address of packet 
                 GpuDstPacket: the destination IP address of packet 
 

All filter rules are saved in constant memory 
RuleSize : The number of filter rules 
con_eqID: Save the Index for con_RuleIndex, and the index is transformed from 

IP address 
con_RuleIndex: Save the Index for con_Ruletable 
con_mask: sub-network mask if necessary 

_ _constant_ _  u_int16_t  con_eqID[RuleSize]; 
_ _constant_ _  u_int16_t  con_RuleIndex [RuleSize]; 
_ _constant_ _  u_int16_t  con_Ruletable [RuleSize]; 
_ _constant_ _  u_int16_t  con_mask; 
             */ 
Output : GpuPacketOut Result 
Method 
Begin 
1. int src,dst; 
2. int tid = blockIdx.x * blockDim.x + threadIdx.x; // get threadID 
3. src = con_RuleIdex[con_eqID[(GpuSrcPacket + tid) & con_mask]*eqIDNumber]; 
4. dst = con_RuleIdex[con_eqID[(GpuDstPacket + tid) & con_mask]*eqIDNumber];
5. GpuPacketOutResult [tid] = con_Ruletable[(src+dst)%256]; 
End 

Fig. 8.  GPU-based BitMap-RFC algorithm. 

 

Fig. 9.  Performance comparison between CPU-based and GPU-
based BPF classification algorithms with a vari ety of memory 
usage. 

 

Fig. 7.  This is the caption for the figure. If the caption is less than one line then it is centered. Long captions are justified manually. 
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data transfer models shown in table 3. Global memory is 
the biggest memory region available on CUDA devices. 
Constant memory and register files can access data 
faster than global and texture memory. However, some 
limitations on these two structures. First is the storage 
size. Constant memory is suitable for frequent access 
but low data update rate. The function of register on 
CUDA is the same as the registers on CPU. The over-
usage of register will decrease the performance of GPU. 
Therefore, we store the packet data in global and texture 
memory and the filtering rules are sto red in registers 
and constant memory. Also, we implement the proposed 
algorithm with three memory copy models, direct copy, 

zero-copy and streaming.  
Figure 9 illustrates the performance comparison 

between CPU-based and GPU-based BPF classification 
algorithms.  F igure 9 s hows that the GPU-based BPF 
algorithm can achieve 20x ~25x speedup over CPU-
based BPF algorithm with storing classification rules in 
registers for 65 million packets; especially by using 
streaming model. It is obvious that the speedup of BPF 
by using global memory with streaming model is 
slightly superior to that of using global memory with 
zero-copy. 

Actually, we implement GPU-based BPF 
classification algorithm with an optimization approach, 

 

Fig. 10.  Performance comparison between GPU-based BPF 
algorithms with unroll and non-unroll approaches. 

 

Fig. 11.  Performance comparison between CPU-based and 
GPU-based BitMap-RFC classification algorithms with a 
variety of memory usage. 

Table 3.  Combination of various memory architectures for GPU-based BPFalgorithm 

 Packet Storage Rule Storage Data Transfer 

1 Global Constant Direct 

2 Global Constant Zero Copy 

3 Texture Constant Direct 

4 Texture Constant Zero Copy 

5 Texture Constant Stream 

6 Global Register Direct 

7 Global Register Zero Copy 

8 Texture Register Direct 

9 Texture Register Zero Copy 

10 Texture Register Stream 
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unroll. In the implementation of GPU-based BPF 
algorithm, lots of loop operations are adopted to check 
the filter rules. However, it cau ses a critical p roblem 
that the number of registers is not enough for computing. 
The performance is affected. Therefore, an optimization 
approach, unroll, supported by CUDA is adopted to 
enhance the performance of GPU-based BPF algorithm. 
Figure 10 s hows the performance between GPU-based 
BPF with unroll and non-unroll approaches. It is 
obvious that the performance of GPU-based BPF with 
unroll is highly superior to that with non-unroll.  

5.2. Performance Evolution of GPU-Based 
BitMap RFC Packet Filter 

In this experiment, we only implemented BitMap-RFC 
on CUDA with 6 co mbinations of CUDA memory 
storages and data transfer models shown in table 4. 
BitMap-RFC algorithm needs to build hash tables 
before filtering. Since the sizes of these tables are bigger 
than that of register files, the filter rules cannot be 
stored in registers. The results show that the GPU-based 
RFC algorithm can achieve 5x~7x speedup over CPU-
based RFC algorithm in Fig. 11. B ecause CPU-based 
BitMap-RFC is much faster than CPU-based BPF, the 
performance enhancement is not dramatic to results in 
BPF. 

5.3. Performance Evolution between GPU-Based 
Packet Filter Algorithms 

Figures 12 an d 13 show the throughput produced by 
GPU-based BPF and BitMap-RFC algorithms. 
Obviously, GPU-based BitMap-RFC algorithm can 
achieve higher throughput than GPU-based BPF 
algorithm. The reason is that BPF executes many if-else 
branch instructions. It cau ses the divergent branch 

problem on CUDA device. Therefore, the performance 
of GPU-based BPF algorithm is decreased by divergent 
branch problem. 

5.4. Performance Evolution of GPU-Based Packet 
Filter Algorithms between Different CUDA 
Devices  

In this experiment, we implemented the proposed 
algorithms on different CUDA devices, such as GTS 
450, GTX480 and GTX560ti. Figure 14 s hows the 
throughput comparison between these three CUDA 
devices. From the result, GTX480 can achieve the 
highest throughput than other two devices, since 
GTX480 has more cores than other two devices; 
GTX480 has 480 cores, GTX450 has 192 cores and 
GTX560ti has 448 cores . The performance of the 
proposed algorithms is p roportional to the number of 
cores of the CUDA device. Therefore, executing the 

 

Fig. 12.  Throughput comparison between memory usages on 
GPU-based BPF algorithm. 

Table 4.  Combination of various memory architectures for GPU-based BitMap-RFC algorithm. 

 Packet Location Rule Location Data Transfer 

1 Global Constant NA 

2 Global Constant Zero Copy 

3 Global Constant Stream 

4 Texture Constant NA 

5 Texture Constant Zero Copy 

6 Texture Constant Stream 
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proposed algorithm on high-level CUDA device and the 
performance can be enhanced.  

6. Conclusion 

In this paper, we propose two fast packet filter methods 
by leveraging power of GPU device. The proposed 
methods include two well-know filter algorithms, BPF 
and BitMap-RFC, to ach ieve rapid an d reliable pack et 
filter system. We implement these algorithms on GPU 
devices by using CUDA. In addition, we considered the 
performance of the various memory architectures 
available to C UDA kernels, and the different data 
transfer models to enh ance the performance. The 
experimental results show the performance comparison 
among several combinations of memory architectures 
on CUDA device for the proposed methods. Obviously, 
the proposed methods can significantly enhance the 
performance over the filter algorithm executing on CPU.   

In the future, we will apply GPU-based packet filter 
system to other network security systems, such as 
Botnet detection system and network intrusion detection 
system, to improve the performance. Also, we focus on 
improving the proposed methods to provide a real-time 
giga-bit network and fast network telescope packet 
analysis applications. 
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