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experiments as they can be constructed for any number of treatments for given numbers of 
replications. Das (1958) was first to introduce the statistical analysis of variance (ANOVA) of these 
designs, and in the same year Giri also developed the same statistical analysis of variance for 
reinforced partially balanced incomplete block designs (PBIBDs). In this article, we focus on the 
method of statistical analysis of covariance (ANCOVA) of reinforced balanced incomplete block 
design (BIBD) when a single explanatory variable is available in the experiment. 
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1. Introduction 

The analysis of covariance (ANCOVA) is typically used to adjust or control for 
differences between treatment effects based another continuous variable called 
explanatory (or extraneous, or ancillary) variable (or covariate). In analysis of variance 
(ANOVA) if one or more explanatory variables are suspected to affect the outcome 
(dependent variable), then ignoring explanatory variables in ANOVA will increase error 
sum of squares and will make it harder to detect any real differences in treatment effects. 
Whereas the analysis covariance in this case will be more precise by reducing error sum 
of squares and increasing the statistical power of the experiment when a good covariate 
has been used within the ANCOVA. Keeping these in mind we will develop ANCOVA 
for reinforced BIBD,  

Reinforced BIBD has several advantages over other designs particularly with respect to 
using any number of treatments for given numbers of replications. Thus it brings no 
limitation on statistical planning of experiments in different fields. In factorial 
experiments when the number of treatment combinations are large, the confounding 
techniques are used to reduce the block size. This procedure provides most accurate 
estimation of lower order interactions at the cost of some of the less important higher-
order interactions which are confounded with blocks. Similar methods can be adopted for 
incomplete block designs in unifactorial situations such as one described below for the 
purpose of increasing precision.  

If the number of replications of all pairs of treatment in a design are the same, it creates 
an important class of designs known as balanced incomplete block designs (BIBD). This 
classes of designs provide equal precisions of all estimates of all pairs of treatment 
effects. This was introduced by Yates in 1936 for agricultural experiments. It is known 
that the balanced incomplete block design is not always suitable for varietal trials since it 
requires large number of replications. In order to make incomplete block designs 
available for all treatments with smaller number of replications, Das (1958) and Giri 
(1958) introduced incomplete block designs augmented by certain number of additional 
treatments in each block. These new designs are called reinforced BIBD.   

Suppose we have a BIBD with v  treatments, b  blocks of size k  each, and r  
replications. We obtain reinforced balanced incomplete block designs by adding new 
treatments, say p new ones, in each block to this BIBD. Then the resulting reinforced 

balanced incomplete block designs will have ( )v p  treatments distributed in  b  blocks 

each of size  ( )k p  such that each of p  newly introduced treatments are replicated b  

times and the original  v  treatments are replicated r  times each. In reinforced BIBD it is 
possible to introduce appropriate covariates in order to increase the precision in the 
design. In this article, we develop an exact method of analysis of covariance of reinforced 
balanced incomplete block designs with a single explanatory variable.  

Summary of the results obtained in this paper are as follows. In section 2, we describe the 
model and notations for reinforced balanced incomplete block designs with one 
explanatory variable. The estimates of the model parameters are provided in section 3. In 
section 4, we consider a model for y -variate without the explanatory variable and 

obtained least square (LS) estimates for parameters of this model. In this same section we 
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define an ANOVA model for x -variate (the explanatory variable) only, and obtained LS 
estimates for the parameters. Actually this facilitates the calculations for the original 
model. Error sum of squares and adjusted treatment sum of squares, error sum of 
products and adjusted treatment sum of products for the above modified models are 
provided in section 4.1 and section 4.2, respectively. In section 5 we consider the model 
in presence of the explanatory variable. In this section, we provided error sum of squares 
and adjusted treatment sum of squares, error sum of products and adjusted treatment sum 
of products in presence of the explanatory x -variate. 

Finally, variances of the estimable treatment contrast are obtained in section 6. We 

present three types of variances, e.g., (i) Var ˆ ˆ( )i jt t , (ii) Var ˆ ˆ( )i mt t , and (iii) Var

ˆ ˆ( )m mt t  , where ît  and ˆ
jt  are the estimates of original treatment effects; m̂t  and m̂t   are 

the estimates of the newly introduced treatment effects. 

 

2. Model and Notations 

Let ijn ( 1, 2, , ; 1, 2, , )i v p j b     denote the number of times the i th treatment 

occurs in j th block and mjn ( 1, 2, , ; 1, 2, , )m v v v p j b      denote the number 

of times m th newly introduced treatment occurs in j th block. In fact, 

ijn   1  if treatment  appears in block 
0  otherwise.

i j    

In the context of reinforced BIBD, we have the following relationships: 

 .
1 1 1

v p pv

j ij ij ij
i i i v

n n n n


   

     ( )k p  ,  .. .
1

( )
b

j
j

n n b k p


   , 

 .
1

b

i ij
j

n n


     for 1,2, ,
  for 1, ,

r i v
b i v v p


  


  ,  

1

b

ij i j
j

n n 


  for 1, 2, ,i i v   , 

 
1

b

ij mj
j

n n r


  for 1, 2, , ;  1, ,i v m v v p     ,  and  

 
1

b

mj m j
j

n n b


  for m m 1, ,v v p   .   

Suppose that ijy  ( 1, 2, , ;  1, 2, , )i v p j b     are the responses from the unit in j

th block with i th treatment. The linear additive ANCOVA model for reinforced balanced 
incomplete block design is given by 

                                              ij i j ij ijy t b x e                                                   (2.1)  
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where   is a constant mean effect; it is the effect of i th treatment; jb is the effect of j

th block; ijx  denote the explanatory variable from the unit in j th block with i th 

treatment; ije are the error components that are assumed to be normally distributed with a 

zero mean and a constant variance 2 ;   is the regression coefficient.                                       

�   

 

3. Estimation of Parameters with a Single Explanatory Variable      

The estimate of the unknown parameters , it , jb , and   are obtained by minimizing 

the error sum of squares, E , where E  is given by 

 2

1 1

( )
v p b

ij ij i j ij
i j

E n y t b x 


 

     .(3.1)  

The equation (3.1) provides the following normal equations, 

                     
1 1 1

ˆ ˆˆ ˆˆ( ) ( )
v pv b

i m j x
i m v j

G b k p r t b t k p b G 


   

                              (3.2) 

                     ( )
1 1

ˆ ˆˆ ˆˆ( ) ( )
v pv

j ij i mj m j j x
i m v

B k p n t n t k p b B 


  

                            (3.3) 

    ( )
1

ˆ ˆˆˆ
b

i i ij j i x
j

T r rt n b T 


    ,  1, 2, ,i v          (3.4) 

                             ( )
1

ˆ ˆˆˆ
b

m m ij j m x
j

T b bt n b T 


    ,  1, ,m v v p                 (3.5) 

           2
( ) ( ) ( )

1 1 1 1 1 1 1

ˆ ˆˆ ˆˆ
v p v p v pb v b b

ij ij ij x i i x m m x j j x ij ij
i j i m v j i j

n x y G t T t T b B n x 
  

       

            (3.6)  

where G  is the grand total; xG  is the grand total for the x -variate; jB  is the j th block 

total;  ( )j xB  is the j th block total for the x -Variate; iT  and mT  are the treatment totals 

for v  original treatments and p   newly introduced treatments, respectively. Below we 

give their mathematical expressions. 

 
1 1

v p b

ij ij
i j

G n y


 

 , 
1 1

v p b

x ij ij
i j

G n x


 

 , 
1

v p

j ij ij
i

B n y




  , ( )
1

v p

j x ij ij
i

B n x




  ; 

1

b

i ij ij
j

T n y


 , ( )
1

b

i x ij ij
j

T n x


 , 1, 2, , ;i v    
1

b

m mj mj
j

T n y


 and ( )
1

b

m x mj mj
j

T n x


 , 

1, ,m v v p    .       

Published by Atlantis Press 
Copyright: the authors 

238



 

 
 

5 ANCOVA of Renforced BIBD 

Now applying the restrictions, 
1

ˆ 0
b

j
j

b


 and 
1 1

ˆ ˆ 0
v pv

i m
i m v

r t b t


  

    in the above normal 

equations, the expressions for the estimates of and jb  are given by 

                                                          1 ˆˆ
( ) xG G

b k p
  


                                     (3.7) 

                      ( )
1 1

1ˆ ˆˆ ˆˆ( )
( )

v pv

j j ij i mj m j x
i m v

b B k p n t n t B
k p

 


  

 
        

                (3.8) 

where the estimate of it  and mt  are obtained in this section below and the estimate ̂  is 

provided in section 5. Now substituting ˆ
jb  in (3.5), and after simplifications we have 

                               ( )
1 1

ˆˆ ˆ ˆ
( ) ( )

v p v

m m m i m x
m v i

b r
Q bt t t Q

k p k p




 
   

   
                     (3.9) 

 where mQ  is the adjusted total for m th treatment and ( )m xQ is the adjusted total for m th 

treatment for x -variate.  The expressions for  mQ  and ( )m xQ  are given below: 

1

1

( )

b

m m mj j
j

Q T n B
k p 

 
   and ( ) ( ) ( )

1

1

( )

b

m x m x mj j x
j

Q T n B
k p 

 
  , 

1, ,m v v p    . 

Now the restriction 
1 1

ˆ ˆ 0
v pv

i m
i m v

r t b t


 
   

    reduces (3.9) to 

                                                       ( )
ˆˆ

m m m xQ bt Q                                                 (3.10) 

Thus, the estimate of  mt  may be expressed as 

                                                ( )

1 ˆ
m̂ m m xt Q Q

b
  , 1, ,m v v p    .            (3.11)  

Also, using (3.11) we may write 

                                            ( )
1 1 1

1 ˆˆ
v p v p v p

m m m x
m v m v m v

t Q Q
b


  

  
       

 
  

 
   .                        (3.12) 

Similarly, the estimate of i th treatment effect it  is obtained by substituting ˆ
jb  from (3.8) 

in (3.4) and applying (3.12). Therefore, after more simplifications ît  is given by 

        ( ) ( )
1 1

1 1 ˆ ˆˆ ( ) ( )( ) ( )
v p v p

i i m m x i x
m v m v

b
t k p Q r Q Q k p Q

z b r

  
 

 
    

 
       

 
       (3.13) 
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where ( )z r k p r     ; ît  stand for estimate of the original effects, 1, 2, ,i v  ; 

m̂t  stand for estimate of the newly introduced treatment effects, 1, ,m v v p   ; iQ  

and ( )i xQ  are given, respectively, by   

 
1

1

( )

b

i i ij j
j

Q T n B
k p 

 
   and ( ) ( ) ( )

1

1

( )

b

i x i x ij j x
j

Q T n B
k p 

 
   .       �   

 

4. Estimation of Parameters without an Explanatory Variable    

The model (2.1) without the explanatory x -variate can be written as 

                                              ( ) ( ) ( )ij y i y j y ij yy t b e                                               (4.1) 

where the notations ( ) ( ), ,y i y j yt b , and ( )ij ye  have similar meaning and satisfy similar 

assumptions as discussed in section 2. Now using least square method of estimation as 
before, we obtain the estimates of the parameters as follows. 

                                                            ˆ
( )y

G

b k p
 


                                                  (4.2) 

                              ( ) ( ) ( )
1 1

1ˆ ˆ ˆˆ( )
( )

v pv

j y j y ij i y mj m y
i m v

b B k p n t n t
k p




  

 
       

           (4.3) 

       ( )
1

1 1ˆ ( ) ( )
[ ( ) ]

v p

i y i m
m v

b
t k p Q r Q

r k p r b r







 

 
        

 , 1, 2, ,i v        (4.4) 

                                        ( )
ˆ m
m y

Q
t

b
 , 1, ,m v v p    .                                       (4.5)   

 Now replacing ijy  in (4.1) by ijx , we get the following new model. The model in terms 

of x -variate may be written as  

                                                   ( ) ( ) ( )ij x i x j x ij xx t b e                                           (4.6) 

where ( ) ( ), ,x i x j xt b , and ( )ij xe  have similar meaning and satisfy similar assumptions as 

discussed in section 2 with respect to the explanatory x -variate. Now using least square 
method of estimation as before, we obtain the estimates of the parameters given (4.6) as 

                                                      ˆ
( )

x
x

G

b k p
 


                                                         (4.7) 

                          (x) ( ) ( ) ( )
1 1

1ˆ ˆ ˆˆ( )
( )

v pv

j j x x ij i x mj m x
i m v

b B k p n t n t
k p




  

 
       

            (4.8)  
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  ( ) ( ) ( )
1

1 1ˆ ( ) ( )
[ ( ) ]

v p

i x i x m x
m v

b
t k p Q r Q

r k p r b r







 

 
        

 , 1, 2, ,i v      (4.9) 

                                  ( )
( )

ˆ m x
m x

Q
t

b
 ,  1, ,m v v p    .                                       (4.10) 

The estimates given in equations (4.2)-(4.5) and (4.7)-(4.10) are necessary to compute the 

expressions yyE  and xyE  given in section 4.1 and 4.2 respectively. In turn these will help 

in calculating ̂ , the regression coefficient, given in section 5 below. 

 

4.1. Error Sum of Squares and Adjusted Treatment Sum of Squares for y -variate with 

no Explanatory Variable 

 The error sum of squares for the model (4.1) can be written as 

 2
( ) ( ) ( )

1 1 1 1 1

v p v pb v b

yy ij ij y i y i m y m j y j
i j i m v j

E n y G t T t T b B
 

     

           

Now substituting ˆ y  and ( )
ˆ

j yb from (4.2) and (4.3), receptively, in the above equation, 

we obtain 

                 2 2
( ) ( )

1 1 1 1 1

1

( )

v p v pb b v

yy ij ij j i y i m y m
i j j i m v

E n y B t Q t Q
k p

 

     

 
      
                (4.1.1) 

Under the null hypothesis ( ): 0,o i yH t   1, 2, ,i v    and ( ) 0m yt  , 

1, ,m v v p     the above equation (4.1.1) reduces to 

                                       2 2

1 1 1

1

( )

v p b b

yy ij ij j
i j j

E n y B
k p



  

  
  .                                    (4.1.2) 

Thus the adjusted treatment sum of squares for y -variate on the assumption of no 

explanatory variable is given by 

                                          ( ) ( )
1 1

ˆ ˆ
v pv

yy yy yy i y i m y m
i m v

E E E t Q t Q


  

     
 
                  (4.1.3) 

Similarly, using model (4.6) the quantities xxE , the error sum of squares for x -variate 

and xxE , the error sum of squares for x -variate under ( ): 0,o i xH t    1, 2, ,i v    and 

( ) 0m xt  ,  1, ,m v v p    ,  and xxT , adjusted treatment sum of squares for x -

variate, can easily be obtained.  In the similar manner the expression for xxT  will be 
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 xx xx xxT E E    ( ) ( ) ( ) ( )
1 1

ˆ ˆ
v pv

i x i x m x m x
i m v

t Q t Q


  

 
 

 
   . 

 

4.2. Error Sum of Products and Adjusted Treatment Sum of Products   

The error sum of products of x  and y can be obtained using models (4.1) and (4.6) as 

                  ( ) ( ) ( )
1 1 1 1 1

v p v pb v b

xy ij ij ij x i x i m x m j x j
i j i m v j

E n x y G t T t T b B
 

     

                 (4.2.1) 

Now substituting ˆx  and ( )
ˆ

j xb  from (4.7) and (4.8), respectively, in the above equation 

(4.2.1), we get 

      ( ) ( ) ( ) ( ) ( )
1 1 1 1 1

1

( )

v p v pb b v

xy ij ij ij j j x i x i x m x m x
i j j i m v

E n x y B B t Q t Q
k p

 

     

 
      
          (4.2.2) 

Under the hypothesis ( ): 0,o i xH t    1, 2, ,i v    and ( ) 0m xt  ,  1, ,m v v p   

the above equation (4.2.2) reduces to 

                                 ( )
1 1 1

1

( )

v p b b

xy ij ij ij j j x
i j j

E n x y B B
k p



  

  
                                  (4.2.3) 

Thus the expression for adjusted treatment sum of products is given by 

                                xy xy xyT E E    ( ) ( )
1 1

ˆ ˆ
v pv

i x i m x m
i m v

t Q t Q


  

 
 

 
  .                         (4.2.4) 

 

5. Error Sum of Squares and Adjusted Treatment Sum of Squares for y -variate in 

Presence of an Explanatory x -variate 

In this section, we will focus on obtaining estimate of regression coefficient, error sum of 
squares, and adjusted treatment sum of squares for y -variate in presence of ancillary x -

variate. Below we state a useful lemma. This lemma helps to derive the estimates of error 
sum of squares, adjusted treatment sum of squares, and regression coefficient ( ). 

Lemma 5.1. For analysis of covariance of reinforced BIBD in presence of a single 

explanatory variable the parameters ( ) ( ), ,y i y m yt t , and ( )j yb  are estimated as 

 ˆˆ ˆ ˆy x    ;  ( ) ( )
ˆˆ ˆ ˆ

i y i i xt t t  ;  ( ) ( )
ˆˆ ˆ ˆ

m y m m xt t t  ; ( ) ( )
ˆ ˆˆˆ

j y j j xt b b  . 

Proof. Substituting the values of ijx from (4.6) in (2.1), we have 

        ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )ij x i i x m m x j j x ij ij xy t t t t b b e e                     (5.1) 
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Now, on comparing the coefficients of (5.1) with (4.1) we obtain 

ˆˆ ˆ ˆy x    ;  ( ) ( )
ˆˆ ˆ ˆ

i y i i xt t t  ;  ( ) ( )
ˆˆ ˆ ˆ

m y m m xt t t  ; ( ) ( )
ˆ ˆˆˆ

j y j j xt b b  . 

This completes the proof.                                                         �   

 

5.1. Estimate of Regression Coefficient   

We get the estimate of   from the normal equation (3.6). Now on substituting ̂  and ˆ
jb  

from (3.7) and (3.8), respectively, ( ) ( )
ˆ ˆ ˆ
i i y i xt t t  ,  and  m̂t   ( ) ( )

ˆ ˆ
m y m xt t  in (3.6), we 

obtain ˆ
xy xxE E . Final we have   

                                                                  ˆ xy

xx

E

E
                                                      (5.1.1) 

Under the hypothesis ( ): 0,o i xH t    1, 2, ,i v    and ( ) 0m xt  ,  1, ,m v v p   

(5.1.1) will reduce to 

                                                                  xy

xx

E

E



 


                                                   (5.1.2) 

 

5.2. Error sum of squares and adjusted Treatment Sum of Squares 

 From (2.1), the error sum of squares of y -variate with an explanatory variable x  can be 

found as 

           2

1 1 1 1 1 1 1

v p v p v pb v b b

ij ij i i m m j j ij ij ij
i j i m v j i j

E n y G t T t T b B n x y 
  

       

          .    (5.2.1) 

On substituting ̂  and ˆ
jb  from (3.7) and (3.8), respectively, ( ) ( )

ˆ ˆ ˆ
i i y i xt t t  ,  and  m̂t   

( ) ( )
ˆ ˆ
m y m xt t  in (5.2.1) we get 

                                                      ˆ
yy xyE E E  .                                                   (5.2.2) 

Under the hypothesis ( ): 0,o i xH t    1, 2, ,i v    and ( ) 0m xt  ,  1, ,m v v p   

(5.2.2) will reduce to  

                                                                   1
ˆ

yy xyE E E   .                                                 (5.2.3) 

Thus the adjusted treatment sum of squares of y -variate given the explanatory x -variate 

is obtained as the difference 1( )E E . The above results are summarized in the form of 
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Table 1 and Table 2.  Table 1 shows sums of squares and sums of products and Table 2 
shows adjusted error and treatment sums of squares.  

 

Table 1. Variance-Covariance Table for Analysis of Covariance of Reinforced 

BIBD with a Single Explanatory Variable 

Source d.f. 2x   xy 2y   

Block(unadj.) 1b   
xxB   xyB   yyB   

Treatment(adj.) 2v p    
xxT   xyT   yyT   

Error 2vr pb v p b       
xxE   xyE   yyE   

Total 1vr pb    
xxS   xyS   yyS   

 

 

Table 2. Adjusted Sums of Squares 

Source d.f. 2x  xy 2y    Adj. S.S. 

Treat(Adj.) 2v p   
xxT  xyT  yyT   

1E E  

Error 1vr pb v p b      
xxE  xyE  yyE  ˆ

xy xxE E   ˆ
yy xyE E E   

Treat+Error 1vr pb b    
xxE  xyE  yyE  ˆ

xy xxE E    1
ˆ

yy xyE E E     

 

Now the appropriate test statistics for the hypothesis  ( ): 0,o i xH t    1, 2, ,i v    and 

( ) 0m xt  ,  1, ,m v v p     and   is given by 

                                                          1 1

2

( )E E f
F

E f


                                               (5.2.4) 

where F  follows an distribution with 1 2f v p    and 2 1f vr pb v p b      . 

The null hypothesis oH  is rejected if  
1 2; ,f fF F  where 

1 2; ,f fF  is an upper  critical 

point of distribution with 1f  and 2f  degrees of freedom. 

 

6. Variance of Treatment Contrasts 

Three types of treatment contrasts can be considered for this type of designs. Variances 
of these contrasts are described as follows. 

Case-I. The estimated variance of the estimable treatment contrast ˆ ˆ( )i it t  ,

1, 2, ,i i v      can be found using (3.13) as 
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                             Var ˆ ˆ( )i it t  
2

( ) ( ) 2( )2( )
ˆ

( )
i x i x

xx

Q Qk p

r k p r E



 

 
    

.                 (6.1)  

  

Since the variance between two adjusted treatment estimates is different for each 
comparison, Finney (1946) and Das and Giri (1986) suggested that an average value of  

2
( ) ( )( )i x i xQ Q   can be replaced by  ( ) ( 1)i xT v   and hence average variance of 

treatment contrast can be obtained as  

                              'average' Var
( ) 22( )ˆ ˆ ˆ( )

( ) ( 1)
i x

i i
xx

Tk p
t t

r k p r v E




 
       

               (6.2) 

where 2̂  is the error mean squares. It can be obtained from Table 2 as
2ˆ ( 1)E vr pb v p b       .  

 

Case-II. The estimated variance of the estimable treatment contrast ˆ ˆ( )i mt t , 

1, 2, ,i v  ; 1, ,m v v p    can be found from (3.11) and (3.13) as 

      

2

2

( ) ( ) ( )

( ) 1

ˆ ˆ ˆVar( )
1 1 1 1

( )
i i

m x i x m x
m mxx

k p r b

z brz b
t t

b
r Q k p Q Q

E z b r b








 
 

   
    

                          
 

 

                           (6.3) 

where ( )z r k p r      . 

 

Case-III. The estimated variance of the estimable treatment contrast ˆ ˆ( )m mt t  , 

1, ,m m v v p       can be found from (3.11) as 

                               
 2

( ) ( ) 21ˆ ˆ ˆVar( ) 2
m x m x

m m
xx

Q Q
t t

b E




 
   
 
 

.                               (6.4) 

The estimated average variance of treatment contrast ˆ ˆ( )m mt t   can be found on 

substituting the average value of  2
( ) ( )( )m x m xQ Q   by  ( ) ( 1)m xT p   in (6.4) as  
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( ) 21ˆ ˆ ˆ'average'Var( ) 2

( 1)
m x

m m
xx

T
t t

b p E


 
    

                               (6.5) 

where  2̂  is obtained as before. 
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