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1. Introduction

Exponential distributions play a central role in analysis of lifetime or survival data, in part because
of their convenient statistical theory, their important ‘lack of memory’ property and their constant
hazard rates. In circumstances where the one-parameter family of exponential distributions is not
sufficiently broad, a number of wider families such as the gamma, Weibull and Gompertz-Makeham
distributions are in common use; these families and their usefulness are described by various authors
(see Johnson, Kotz and Balakrishnan, 2004).

By various methods, new parameters can be introduced to expand families of distributions for
added flexibility or to construct covariate models. Introduction of a scale parameter leads to the
accelerated life model, and taking powers of the survival function introduces a parameter that leads
to the proportional hazards model. For instance, the family of Weibull distributions contains the
exponential distributions and is constructed by taking powers of exponentially distributed random
variables. The family of gamma distributions also contains the exponential distributions, and is
constructed by taking powers of the Laplace transform.

Marshall and Olkin (1997) introduced a new family of distributions in an attempt to add a
parameter to a family of distributions. Let F(x) = P(X > x) be the survival function of a random
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variable X , and α > 0 be a parameter. Then

G(x,α) =
αF(x)

1− (1−α)F(x)
; −∞ < x < ∞, α > 0 (1.1)

is a proper survival function. The new family {G(x, α)} is called Marshall–Olkin family of distri-
butions. The p.d.f. corresponding to (1.1) is given by

g(x,α) =
α f (x)

[1− (1−α)F(x)]2
(1.2)

where f(x) is the p.d.f. corresponding to F(x). The new hazard (failure) rate function is given by

h(x,α) =
r(x)

1− (1−α)F(x)
where r(x) =

f (x)
F(x)

(1.3)

Alice and Jose (2003, 2004 a,b) studied these in detail in the case of Pareto models.

In this paper, we introduce the Marshall–Olkin Extended Exponential distribution MOEE(α,λ )

in section 2 and its properties are studied. In section 3, we discuss MOEE(α) distributions with
special emphasis on record value theory. In section 4, we derive the entropy of record value dis-
tribution and entropy is calculated for various record values.In section 5, we obtain an estimate
of reliability in the context of stress strength analysis and average bias,average mean square error,
average confidence interval and coverage probability for the estimate is tabulated numerically for
the simulated data. In section 6 we introduce first order stationary autoregressive processes with
exponential marginals and the sample path properties are explored. The probability p is estimated
and the standard error of the estimated value is calculated numerically by simulation.

2. Marshall–Olkin Extended Exponential Distribution

When F(x) = e−λx, x> 0, is the survival function of exponential distribution, we have the Marshall–
Olkin Extended Exponential MOEE (α,λ ) distribution with survival function,

G(x) =
α

eλx−α
, x > 0, λ > 0, α > 0, α = 1−α (2.1)

Then the p.d.f. is

g(x) =
αλeλx

[eλx−α]2
, x > 0, λ > 0, α > 0, α = 1−α. (2.2)

Direct evaluation shows that,

E(X) =−α logα

λα

The hazard rate is

h(x) =
λeλx

eλx−α
, x > 0, α > 0. (2.3)

The graph of h(x) is drawn. It can be seen that the hazard rate is DFR for α < 1, and IFR for α > 1.
Note that for α = 1, h(x) = 1, showing constant failure rate. This establishes the wide applicability
of the MOEE distribution in reliability modeling.
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Fig. 1. Hazard rate function of MOEE (α,λ ) for various values of α and λ

3. Record Value Theory

Chandler (1952) introduced the concept of records and laid the foundations of the mathematical
theory related to records. Record values and associated statistics are of greater importance in many
real life situations involving data relating to sports, weather, economics, life testing etc. Galambos
(1978), Galambos and Kotz (1987), Arnold and Balakrishnan (1989), Balakrishnan and Ahsanullah
(1994), Ahsanullah (1995), Sultan et al. (2003), etc. have made significant contributions to the
theory of records. Arnold et al. (1998) provide an excellent discussion on various results in the
theory of record values.
Let X1, X2, . . . be an infinite sequence of i.i.d. random variables having the same distribution as
the (population) random variable X . An observation X j will be called an upper record value (or
simply a record) if its value exceeds that of all previous observations. Then X j is a record if X j > Xi

for every i < j. The time at which records appear are of interest. Let X j be observed at time j.
Then the record time sequence {Tn, n > 0} is defined as T0 = 1 with probability 1 and for n > 1,
Tn = min{ j : X j > XTn−1}.
The record value sequence {Rn} is then defined by Rn = XTn , n = 1,2, . . . ,n. Then Rn is called the
nth record.

3.1. Moments of Record values

Let gRn(x) denote the p.d.f. of the nth record then

gRn(x) =
g(x)[− log(1−G(x))]n−1

(n−1)!
, −∞ < x < ∞ (3.1)

The joint p.d.f. of a pair of records say Rm, Rn is given by

gRm,Rn(x,y) =
[− logG(x)]m−1

(m−1)!

[
− log G(y)

G(x)

]n−m−1

(n−m−1)!
g(x)g(y)
1−G(x)

, −∞ < x < y < ∞ (3.2)
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(see Arnold et al., 1998). By (3.1) the density function of the nth record for MOEE(α) distribution
is given by

gRn(x) =
αex

(n−1)![ex− (1−α)]2

[
− ln

(
α

ex− (1−α)

)]n−1

, 0 < x < ∞ (3.3)

The single moment of nth record statistic can be written as

βn =
∫

∞

0
ln(α +αeu)

un−1

(n−1)!
e−udu (3.4)

Theorem 3.1. The single moment of nth upper record value for α > 0.5 is given by

βn = ln(α)+n−
∞

∑
i=1

ki

i(i+1)n , where k = 1− 1
α
. (3.5)

And consequently, for n > 2

βn = βn−1 +
∞

∑
i=0

ki

(i+1)n (3.6)

Proof. From (3.4) and using the fact that ln[1− ke−u] =−
∞

∑
i=1

kie−iu

i

βn = ln(α)
∫

∞

0

un−1e−u

(n−1)!
du+

∫
∞

0

une−u

(n−1)!
du−

∞

∑
i=1

ki

i

∫
∞

0

e−(i+1)uun−1

(n−1)!
du (3.7)

which on evaluation directly gives (3.5).

Now

βn = ln(α)+n−
∞

∑
i=1

ki

(i+1)n−1

[
1
i
− 1

i+1

]
simplifying we get the recurrence relation (3.6).
Using the result (3.5) the mean of record values from MOEE(α) for α = 1.0(0.5)4.0 are evaluated
and presented in Table 1.

Table 1. Mean of upper record values

n α =1 α = 1.5 α = 2 α = 2.5 α = 3 α = 3.5 α = 4
1 1 1.2164 1.3863 1.5272 1.6479 1.7539 1.8484
2 2 2.3150 2.5508 2.7398 2.8978 3.0337 3.1530
3 3 3.3615 3.6252 3.8331 4.0049 4.1513 4.2789
4 4 4.3839 4.6602 4.8762 5.0537 5.2043 5.3352
5 5 5.3948 5.677 5.8967 6.0767 6.2292 6.3615
6 6 6.4002 6.6852 6.9066 7.0879 7.2412 7.3741
7 7 7.4028 7.6892 7.9115 8.0933 8.2471 8.3803
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Theorem 3.2. The second single moment of nth upper record value is

β
2
n = ln(α)2 +n(n+1+2ln(α))−2n

∞

∑
i=1

ki

i(i+1)n+1 −2ln(α)

×
∞

∑
i=1

ki

i(i+1)n +
∞

∑
i=1

∞

∑
j=1

ki+ j

i j(i+ j+1)n (3.8)

Proof. From (3.4) the 2nd single moment of nth record value is given by

β
2
n =

∫
∞

0

{
ln[αeu(1− ke−u)]

}2 un−1e−u

(n−1)!
du, k = 1− 1

α

= (lnα)2 +n(n+1)+2n lnα−2n
∞

∑
i=1

ki

i(i+1)(n+1) −2

× lnα

∞

∑
i=1

ki

i(i+1)n +
∞

∑
i=1

∞

∑
j=1

ki+ j

i j

∫
∞

0
e−(i+ j+1)u un−1

(n−1)!
du (3.9)

On simplification using the fact that (a1 + a2)
2 =

2

∑
i=1

2

∑
j=1

aia j we get (3.8). By (3.2) the joint p.d.f.

of mth and nth record values of MOEE(α) distribution is given by

gRm,Rn(x) =
α2
[
− ln

{
α

ex− (1−α)

}]m−1

(m−1)!
1

[ex− (1−α)]

×

[
− ln

{
ex− (1−α)

ey− (1−α)

}]n−m−1

(n−m−1)!
× ey

[ey− (1−α)]2
, 0 < x < y < ∞ (3.10)

Theorem 3.3. For 1 6 m 6 n the product moment

βm,n = (lnα)2 + lnα(m+n)+m(n+1)− [lnα +(n−m)]

×
∞

∑
i=1

ki

i(i+1)m −m
∞

∑
i=1

ki

i(i+1)m+1 − lnα

∞

∑
i=1

k j

j( j+1)n −m

×
∞

∑
j=1

k j

j( j+1)n+1 +
∞

∑
i=1

∞

∑
j=1

k(i+ j)

i j( j+1)n−m(i+ j+1)m (3.11)

Proof.

βm,n =
α

(m−1)!

∫
∞

0
x
[
− ln

(
α

ex−α

)]m−1 ex

ex−α
Ix dx (3.12)

where

Ix =
1

(n−m−1)!

∫
∞

x

yey

(ey−α)2

[
− ln

(
ex−α

ey−α

)](n−m−1)

dy
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now making use of the transformation u = − ln
( ex−α

ey−α

)
and writing ln

[
1−
(

α−1
ex−α

)
e−u
]
=

−∑
∞
i=1
(

α−1
ex−α

)i e−iu

i we get

Ix =
1

(ex−α)

[
ln(ex−α)+(n−m)−

∞

∑
i=1

(
α−1
ex−α

)i 1
i(i+1)n−m

]

substituting the expression of Ix in (3.12) and using the transformation t =− ln
(

α

ex−α

)
yields (3.11).

3.2. Limiting distribution of nth record

In this context we derive a limit theorem which follows from Resnick (1987). According to (Resnick
(1987)). If ψF is such that

lim
s→∞

ψF(s+ x
√

s)−ψF(s)
ψF(s+

√
s)−ψF(s)

= x, for all x

then

Rn−ψF(n)
ψF(n+

√
n)−ψF(n)

d→ N(0,1) (3.13)

where ψF(u) = F−1(1− e−u).

Theorem 3.4. MOEE records are asymptotically distributed as normal.

Proof. Substituting G(x) =
αe−x

1− (1−α)e−x , x > 0, α > 0.

We have ψG(u) = log[α(eu−1)+1] and

lim
s→∞

ψG(s+ x
√

s)−ψG(s)
ψG(s+

√
s−ψG(s)

= lim
s→∞

log
(

α(es+x
√

s−1)+1
α(es−1)+1

)
log
(

α(es+
√

s−1)+1
α(es−1)+1

) = x.

Then the result follows from Resnick (1987).

3.3. Entropy of Record Value Distribution

Entropy provides an excellent tool to quantify the amount of information (or uncertainty) contained
in a random observation regarding its parent distribution. Shannon’s (1948) entropy of an absolutely
continuous random variable X with probability density function f (x) is given by

Hx[ f (x)] =−
∫

∞

−∞

f (x) ln[ f (x)]dx (3.14)

The entropy is always non-negative in the case of a discrete random variable X and is also invariant
under a one-to-one transformation of X . For a continuous random variable, entropy is not invariant
under a one-to-one transformation of X and it takes values in (−∞,+∞). Now we discuss the entropy
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for the record values of MOEE(α,λ ). Let H(Rn) be the entropy of the nth record value. Then by
Shakil (2005)

H(Rn) = ln(Γn)− (n−1)ψ(n)− 1
Γ(n)

∫
∞

−∞

[− ln(1−G(x))]n−1g(x) ln(g(x)) (3.15)

where
∫

∞

0 t j−1e−tdt = Γ( j) and
∫

∞

0 t j−1e−t ln(t)dt = Γ( j)ψ( j), ψ( j) is the digamma function. For
n = 1 entropy of the first record value is same as the entropy of parent distribution. Comparison of
the entropy of parent distribution and nth record value n > 2 is same as comparison of entropy of
first record value with entropy of a given nth record value, n > 2. Since the first observation from
the parent distribution is always considered as a record value, entropy of the first non-trivial record
value is obtained when n > 2.

Theorem 3.5. For MOEE(α,λ ) distribution if H( j) represents the entropy corresponding to jth

record, then

H( j) = ln( j)− ( j−1)ψ( j)+ j− ln(λ )+
∞

∑
i=1

ki

i(i+1) j (3.16)

Proof. By (3.15) the entropy of jth record for MOEE (α,λ ) is

H( j) = ln(Γ j)− ( j−1)ψ( j)− 1
Γ( j)

∫
∞

0

[
− ln

(
α

eλx−α

)] j−1

v(x) lnv(x) dx

where v(x) = αλeλx

(eλx−α)2 By the transformation t =− ln α

eλx−α
and writing

ln(1− ke−t) =−∑
∞
i=1

kie−it

i where k = α−1
α

the result (3.16) can be easily obtained.

Using (3.16) the entropy of MOEE (α,λ ) for α = 0.8 and for various record values and various
values of λ are tabulated and presented in Table 2.

Table 2. Entropy of MOEE (α,λ )

Record λ = 0.5 λ = 1 λ = 2 λ = 5
2 2.2113 1.5182 0.8250 −0.0913
4 2.0090 2.7021 1.3159 0.3996
6 2.2545 2.9476 1.5613 0.6450
8 2.4167 3.1098 1.7235 0.8073

10 2.5384 3.2315 1.8452 0.9289

4. Stress-Strength Analysis and Estimation of Reliability

Sankaran and Jayakumar (2006) discussed the physical interpretation of Marshall–Olkin family of
distributions using proportionate odds model. Bennet (1983) introduced the proportional odds(PO)
model to analyse the life time data with covariates as the odds ratio. Let X be a random variable
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with cdf F(x) and pdf f (x). Then the PO model with covariates can be written as

G(x;α(x))
1−G(x,α(x))

= α(x)
F(x)

1−F(x)

Then

G(x,α(x)) =
α(x) F(x)

1− (1−α(x))F(x)

where α(x) is a non negative function of the covariates, and G(x;α(x)) is the survival function
incorporating covariates.
Treating α(x) as a constant α , we get

G(x,α) =
αF(x)

1− (1−α)F(x)

The above family is known as the Marshall–Olkin family of distributions introduced by Marshall–
Olkin (1997). Thus the MO family is very closely related to the PO model in survival analysis.
Gupta et al. (2009) showed that for two independent random variables represent strength (X) and
stress (Y ) follow the same Marshall–Olkin extended distributions with tilt parameters α1 and α2

then the Reliability of the system given by P(X > Y ) denoted by R is

R =

α1
α2

(α1
α2
−1)2

[
− ln

α1

α2
+

α1

α2
−1
]

(4.1)

To estimate R it is enough if we estimate α1,α2 by the method of m.l.e. The log likelihood equation
here is

LL ∝ m ln(α1)+n log(α2)−2
m

∑
i=1

log(eλxi− (1−α1))−2
n

∑
i=1

log(eλyi− (1−α2))

Then the mle of α1 and α2 are the solutions of the non-linear equations

∂LL
∂α1

=
m
α1
−2

m

∑
i=1

1
(eλxi− (1−α1))

∂LL
∂α2

=
n

α2
−2

m

∑
i=1

1
(eλyi− (1−α2))

By the property of m.l.e. for m→ ∞, n→ ∞

√
m(α̂1−α1),

√
n(α̂2−α2)

d→ N2

(
0,diag

{
1

a11
,

1
a22

})
where a11 = lim

m,n→∞

1
m

I11 =
1

3α2
1

and a22 = lim
m,n→∞

1
n

I22 =
1

3α2
2
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Now the information matrix has the elements

I11 = −E
(

∂ 2LL
∂α2

1

)
= −E

(
−m
α2

1
+2

m

∑
i=1

1
(eλxi− (1−α1))2

)

=
m
α2

1
−2α1m

∫
∞

α

dt
t4

=
m

3α2
1

similarly I22 =−E
(

∂ 2LL
∂α2

1

)
=− n

3α2
2

and I12 = I21 =−E
(

∂ 2LL
∂α1α2

)
= 0.

Now from Gupta et al. (2009) the 95% confidence interval for R is given by

R̂∓1.96 α̂1b1(α̂1, α̂2)

√
3
m
+

3
n
,

where

b1(α1,α2) =
∂R
∂α1

=
α2

(α1−α2)3

[
−2(α1−α2)+(α1 +α2) ln

α1

α2

]
and

b2(α1,α2) =
∂R
∂α2

=
α1

(α1−α2)3

[
2(α1−α2)− (α1 +α2) ln

α1

α2

]
=−α1

α2
b1(α1,α2).

4.1. Simulation Study

We generate N = 10,000 sets of X-samples and Y-samples from the Marshall–Olkin extended expo-
nential distribution with parameters α1, λ and α2, λ respectively. The combinations of samples of
sizes m = 20, 25, 30 and n = 20, 25, 30 along with m = 40, n = 40 are considered. The validity
of the estimate of R is discussed by the measures namely average bias of the estimate (b),average
mean square error of the estimate (AMSE), average confidence interval of the estimate and coverage
probability.
The numerical values obtained for the measures listed above are presented in Tables 3–6. For
α1 < α2 the average bias is positive and for α1 > α2 the average bias is negative but in both cases
the average bias decreases as the sample size increases. The average MSE is almost symmetric with
respect to (α1,α2). This symmetric property can also be observed in the case of average confi-
dence interval and its performance is quite good. The coverage probability is very close to 0.95 and
approaches to the nominal value as the sample size increases. The simulation study indicates that
the average bias, average MSE, average confidence interval and coverage probability do not show
much variability for various parameter combinations.
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Table 3. Average bias and average MSE of the simulated estimates of R for λ = 0.5

(α1,α2)

Average bias (b) Average Mean Square Error AMSE
(m,n) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8)

(20,20) 0.0433 0.0586 −0.0432 −0.0582 0.0063 0.0065 0.0063 0.0064
(20,25) 0.0432 0.0578 −0.0455 −0.0582 0.0061 0.0061 0.0062 0.0061
(20,30) 0.0424 0.0574 −0.0481 −0.0599 0.0057 0.0059 0.0062 0.0060
(25,20) 0.0455 0.0593 −0.0423 −0.0579 0.0062 0.0063 0.0060 0.0061
(25,25) 0.0451 0.0584 −0.0468 −0.0585 0.0058 0.0058 0.0059 0.0060
(25,30) 0.0438 0.0576 −0.0478 −0.0593 0.0055 0.0057 0.0056 0.0058
(30,20) 0.0475 0.0596 −0.0430 −0.0573 0.0061 0.0060 0.0057 0.0059
(30,25) 0.0473 0.0587 −0.0450 −0.0585 0.0056 0.0058 0.0056 0.0058
(30,30) 0.0463 0.0580 −0.0465 −0.0596 0.0054 0.0056 0.0053 0.0056
(40,40) 0.0458 0.0575 −0.0468 −0.0597 0.0048 0.0052 0.0048 0.0052

Table 4. Average confidence length and coverage probability of the simulated 95% confidence intervals of R
for λ = 0.5

(α1,α2)

Average confidence length coverage probability
(m,n) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8)

(20,20) 0.3506 0.3516 0.3508 0.3516 0.9748 0.9763 0.9793 0.9740
(20,30) 0.3327 0.3336 0.3432 0.3432 0.9780 0.9719 0.9696 0.9685
(20,25) 0.3207 0.3209 0.3216 0.3223 0.9805 0.9716 0.9672 0.9624
(25,20) 0.3335 0.3344 0.3329 0.3337 0.9706 0.9693 0.9788 0.9726
(25,25) 0.3146 0.3152 0.3145 0.3154 0.9739 0.9620 0.9742 0.9618
(25,30) 0.3010 0.3019 0.3017 0.3023 0.9787 0.9572 0.9699 0.9545
(30,20) 0.3199 0.3222 0.3204 0.3211 0.9700 0.9600 0.9782 0.9718
(30,25) 0.3017 0.3023 0.3015 0.3019 0.9655 0.9537 0.9738 0.9582
(30,30) 0.2880 0.2883 0.2879 0.2883 0.9738 0.9469 0.9763 0.9468
(40,40) 0.2500 0.2502 0.2499 0.2502 0.9664 0.9108 0.9676 0.9164
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Table 5. Average bias and average MSE of the simulated estimates of R for λ = 3

(α1,α2)

Average bias (b) Average Mean Square Error AMSE
(m,n) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8)

(20,20) 0.0433 0.0586 −0.0432 −0.0582 0.0063 0.0065 0.0063 0.0064
(20,25) 0.0432 0.0578 −0.0455 −0.0582 0.0061 0.0061 0.0062 0.0061
(20,30) 0.0424 0.0574 −0.0481 −0.0599 0.0057 0.0059 0.0062 0.0060
(25,20) 0.0455 0.0593 −0.0423 −0.0579 0.0062 0.0063 0.0060 0.0061
(25,25) 0.0451 0.0584 −0.0468 −0.0585 0.0058 0.0058 0.0059 0.0060
(25,30) 0.0438 0.0576 −0.0478 −0.0593 0.0055 0.0057 0.0056 0.0058
(30,20) 0.0475 0.0596 −0.0430 −0.0573 0.0061 0.0060 0.0057 0.0059
(30,25) 0.0473 0.0587 −0.0450 −0.0585 0.0056 0.0058 0.0056 0.0058
(30,30) 0.0463 0.0580 −0.0465 −0.0596 0.0054 0.0056 0.0053 0.0056
(40,40) 0.0458 0.0575 −0.0468 −0.0597 0.0048 0.0052 0.0048 0.0052

Table 6. Average confidence length and coverage probability of the simulated 95% confidence intervals of R
for λ = 3

(α1,α2)

Average confidence length coverage probability
(m,n) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8)

(20,20) 0.3506 0.3512 0.3505 0.3512 0.9699 0.9799 0.9705 0.9819
(20,25) 0.3328 0.3334 0.3331 0.3339 0.9660 0.9785 0.9612 0.9794
(20,30) 0.3206 0.3210 0.3210 0.3214 0.9641 0.9764 0.9606 0.9739
(25,20) 0.3333 0.3339 0.3329 0.3334 0.9643 0.9762 0.9674 0.9799
(25,25) 0.3145 0.3150 0.3146 0.3150 0.9625 0.9728 0.9583 0.9733
(25,30) 0.3012 0.3016 0.3015 0.3017 0.9607 0.9713 0.9581 0.9677
(30,20) 0.3212 0.3215 0.3205 0.3211 0.9629 0.9753 0.9676 0.9762
(30,25) 0.2991 0.3018 0.3013 0.3017 0.9604 0.9692 0.9571 0.9704
(30,30) 0.2877 0.2880 0.2877 0.2880 0.9503 0.9660 0.9535 0.9655
(40,40) 0.2499 0.2498 0.2498 0.2498 0.9356 0.9485 0.9383 0.9479

5. Applications in Autoregressive Time Series Modeling

One of the simplest and widely used time series models is the autoregressive models and it is well
known that autoregressive process of appropriate orders is extensively used for modeling time series
data. The pth order autoregressive model is defined by

Xn = a1Xn−1 +a2Xn−2 + · · ·+apXn−p + εn

where {εn} is a sequence of independent and identically distributed random variables and
a1, a2, . . . ,an are autoregressive parameters. In particular the first order autoregressive model is

Xn = a1Xn−1 + εn, n = 1,2, . . . , |a1|< 1
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The need for non-Gaussian autoregressive models have been long felt from the fact that many nat-
urally arising time series are clearly non-Gaussian with Markovian dependence structure. Many
non-Gaussian autoregressive processes were introduced and studied during the past two decades
(see Jayakumar et al. (1995), Jose and Pillai (1995), Seethalakshmi and Jose (2004). Jayakumar
and Pillai (1993) introduced and studied first order autoregressive Mittag-Leffler process. Pillai and
Jayakumar (1995) characterized a pth order autoregressive Mittag-Leffler process using specialized
class L property. Jose and Pillai (1995) developed generalized autoregressive time series models
in Mittag-Leffler variables. Alice and Jose (2003, 2004 a,b) developed autoregressive minification
processes and studied their properties.

Now we discuss some application of MOEE distribution in autoregressive time series modeling.

Lewis and McKenzie (1991) introduced and discussed various minification processes having
structure

Xn = min(aXn−1,εn), n = 1,2, . . . , |a1|< 1

A more general structure is given by

Xn =

{
εn w.p. p

amin(Xn−1,εn) w.p. (1− p); 0 6 p 6 1
(5.1)

5.1. An AR(1) Model with MOEE Marginal Distribution

We construct a first order autoregressive minification process with structure given by (5.2). The
model is developed as follows. Consider an AR (1) structure

Xn =

{
εn w.p. p

min(Xn−1,εn) w.p. (1− p); 0 6 p 6 1
(5.2)

where {εn} is a sequence of i.i.d. r.v.s with exponential distribution with unit mean and is indepen-
dent of {Xn}. Here w.p. means ‘with probability’. This is a special case of the model considered
in (5.1).

Theorem 5.1. Consider the AR(1) structure given by (5.2). Then {Xn} is stationary Markovian
with MOEE marginal distribution if {εn} is distributed as exponential distribution with unit mean.

Proof. From (5.2) it follows that

FXn(x) = pFεn(x)+(1− p)FXn−1(x)Fεn(x) (5.3)

Under stationary equilibrium

FX(x) =
pFε(x)

1− (1− p)Fε(x)
and hence Fε(x) =

FX(x)
p+(1− p)FX(x)

.

If εn ∼ Exp (1), Fε(x) = e−x, then it easily follows that,

FX(x) =
pe−x

1− (1− p)e−x ,
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which is the survival function of MOEE(p).
Conversely, if we take,

FXn(x) =
pe−x

1− (1− p)e−x ,

In order to establish stationarity, we proceed as follows. Assume Xn−1
d
= MOEE (p) and εn

d
=

Exp(1), then from (11),

FXn(x) =
pe−x

1− (1− p)e−x .

This establishes that {Xn} is distributed as MOEE(p).

Even if X0 is arbitrary, it is easy to establish that {Xn} is stationary and is asymptotically
marginally distributed as MOEE(p).

In order to study the behavior of the process we simulate the sample paths for various values
of p. From the sample path properties it follows that the MOEE AR(1) minification process can
be used for modeling a rich variety of real data from various contexts such as financial modeling,
reliability modeling, hydrological modeling etc. Now we consider some properties of MOEE AR(1)
minification processes we start with the joint survival function of the random variables Xn+1 and Xn.
Let S(x,y) = P(Xn+1 > x, Xn > y) be the joint survival function of the random variables Xn+1 and
Xn. Then we have

S(x,y) = pFε(x)FX(y)+(1− p)Fε(x)FX(max(x,y))

=

{
Fε(x)FX(y), y > x

Fε(x)
(

pFX(y)+(1− p)FX(x)
)
, y < x

=


pe−x−y

1− (1− p)e−y , y > x

pe−x(pe−y +(1− p)e−x−2p(1− p)e−x−y)

(1− (1− p)e−x)(1− (1− p)e−y)
, y < x

The joint survival function S is not absolutely continuous since the probability P(Xn+1 = Xn) is
positive. Namely, it is easy to show that

P(Xn+1 = Xn) =
−p(1− p+ log p)

(1− p)2 ∈ (0,0.5)

Consider now the probability of the event {Xn+1 > Xn}. From (5.2) it follows that

P(Xn+1 > Xn) = pP(εn+1 > xn) =
p(1− p+ p log p)

(1− p)2 ∈ (0,0.5)

Also, we can show that

P(Xn+2 > Xn) =
p(2− p− p2 +3p log p)

(1− p)2 ∈ (0,0.5)

We can use these probabilities to estimate the unknown parameter p. Define the random variables
Un = I(Xn+1 > Xn) and Vn = I(Xn+2 > Xn). It is easy to show that E(Un) = P(Xn+1 > Xn) and
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E(Vn) = P(Xn+2 > Xn). Now we consider the equations

1
N

N

∑
i=1

Ui =
p(1− p+ p log p)

(1− p)2

1
N−1

N−1

∑
i=1

Vi =
p(2− p− p2 +3p log p)

(1− p)2

Solving these equations, we will obtain that the estimator of the unknown parameter p is given by

p̂ =
3
N

N

∑
i−1

Ui−
1

N−1

N−1

∑
i=1

Vi

Since the MOEE AR(1) minification process{Xn} is ergodic, it follows that p̂ is consistent estimator
for p.
In Table 7 we give some numerical results of the estimation. We estimate 10 000 realizations of the
MOEE AR (1) minification process for the true values p = 0.2, p = 0.4, p = 0.6 and p = 0.8. The
simulations are repeated 100 times. We computed the sample means and the standard errors of the
estimate of p̂.
Let us consider the autocovariance function at lag 1. After some calculations we obtain that

E(Xn+1Xn) = p
∫

∞

0

xe−xdx
1− (1− p)e−x =

p
1− p

.Li2(1− p),

where

Li2(z) = z
∫

∞

0

xe−xdx
1− ze−x

is dilogarithm. Now, autocovariance function at lag 1 is

cov(Xn+1,Xn) =
p

1− p
.Li2(1− p)− p2 log p

(1− p)2

the autocorrelation function at lag1 is

Corr(Xn+1,Xn) =
p(1− p)Li2(1− p)− p2 log p

2p(1− p)Li2(1− p)− p2 log p

5.2. Extension to Kth Order Processes

In this section we develop a kth order autoregressive model. Consider an autoregressive model of
order k with structure as

Xn =


εn w.p. p0

min(Xn−1,εn) w.p. p1
...

min(Xn−k,εn) w.p. pk.

such that 0 < pi < 1, p1 + p2 + · · ·+ pk = 1− p0; where {εn} is a sequence of i.i.d. r.v.s following
MOEE distribution independent of {Xn−1, Xn−2, . . .}.

FXn(x) = p0Fεn(x)+ p1FXn−1(x)Fεn(x)+ · · ·+ pkFXn−k(x)Fεn(x)
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Under stationary equilibrium,

FX(x) = p0Fε(x)+ p1FX(x)Fε(x)+ · · ·+ pkFX(x)Fε(x)

This reduces to

FX(x) =
p0Fε(x)

1− (1− p0)Fε(x)

This shows that Theorem 5.1 can be suitably extended to this case also.

Fig. 2. Sample paths of MOEE AR (1) process p = 0.6, 0.8, 0.9 and 0.5

Table 7. Some numerical results of the estimation

n p̂(True p = 0.2) SE(p̂) p̂(True p = 0.4) SE(p̂)

100 0.205328 0.050357 0.391892 0.067521
500 0.202402 0.023738 0.397680 0.029513

1000 0.200810 0.017016 0.396480 0.022201
5000 0.200076 0.006890 0.398344 0.011454

10000 0.200169 0.004981 0.399264 0.007092
n p̂(True p = 0.6) SE(p̂) p̂(True p = 0.8) SE(p̂)

100 0.596091 0.084100 0.796522 0.097800
500 0.595670 0.034729 0.801667 0.038394

1000 0.595555 0.025793 0.802864 0.030903
5000 0.599764 0.010598 0.801462 0.015817

10000 0.598863 0.007853 0.800391 0.011084
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