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Considered is a linear ‘interactive’ model in the context of survey sampling. This situation arises when investi-

gator and/or supervisor interventions are contemplated in the responses. An appropriate linear model is intro-

duced to represent the response profile(s) arising out of each respondent-cum-investigator-cum-supervisor com-

bination as per the planned ’design layout’. Two situations [blinded and unblinded submission of responses]

are differentiated and corresponding data analysis techniques are discussed. Variance components are assumed

to be known in this study.
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1. Introduction to Survey Design and Interactive Linear Model

Considered is the set-up of simple i.e., direct response on a quantitative response variable Y in the

context of a finite labeled population of size N. It so happens that in actual surveys, we need investi-

gators and often some supervisors as well. The instruction manuals are prepared for the investigators

to maintain uniformity in data collection. The field level data are collected by the investigators. The

scrutiny manual is prepared for scrutiny of the filled-in schedules by the supervisors. This is accom-

plished independently of the investigators. We depict a situation wherein there are possibilities of

investigator intervention effect and/or supervisor intervention effect on the response profiles before

the same are finally received by the data collection agency. Of course, these intervention effects

may be assumed to be random, having mean zero, non-interactive within and between the two sets

of ‘people’. The problem is to unbiasedly estimate the finite population total of the response vari-

able Y by incorporating a fixed size (n) sampling design and by administering the sampling design

in a situation wherein the above two types of random effects are likely to be present.

Denote by i a respondent unit in the sample of size n and by S[i] the number of schedule-based

observations collected on this particular unit. It is quite possible that a respondent unit is composed

of more than one individual. In this article, we will deal with fixed-size non-overlapping clusters

of individuals to represent such respondent units. These clusters are formed before the sampling
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operation takes place and the investigators/supervisors are supposed to provide information in the

form of sub-totals, accrued from each member of the selected clusters. We will refer to such clusters

as Respondent Clusters [RC] and these will be treated as the responding units in the finite population

under consideration. The RC subtotals are denoted by the generic notation ‘Y’. Naturally, S[i], based

on the RC labelled i, is the number of all field-based sub-totals used for this RC in combination

with the investigators and the supervisors. We may write S[i] = ∑∑ I[i; ( j,k)] where I[i;( j,k)] = 1

if ( j,k)-combination of the investigator and the supervisor have both worked on a schedule assigned

to the ith RC. Naturally, for any triplet [i; ( j,k)], I[i; ( j,k)] > 0 while S[i] > 0 for each responding

unit. Whenever I[i; ( j,k)] = 1, we will denote by Y[i;( j,k)] the underlying response on the study

variable for the RC labelled i.

To fix ideas, let us take up the following simple example of a study design involving n = 7 RCs

selected out of a large number of N = 70 RCs, following a fixed size (n) sampling design, say,

for example, SRSWOR of 7 RCs, each RC being of size 10. Let there be 7 investigators and 2

supervisors engaged in the process. We designate the RCs as RCI to RCV II. Here is the description

of a study design [as against the sampling design specified above]:

Choices of [i; ( j,k)] for which I[i; ( j, k)] = 1

(RCI): ( j = 1; k = 1); ( j = 5, k = 2); ( j = 7; k = 2);

(RCII): ( j = 1, k = 1); ( j = 2, k = 1); ( j = 6, k = 2);

(RCIII): ( j = 2, k = 1); ( j = 3, k = 1); ( j = 7, k = 2);

(RCIV): ( j = 1, k = 1); ( j = 3, k = 1); ( j = 4, k = 1); ( j = 4, k = 2);

(RCV): ( j = 2, k = 1); ( j = 4, k = 1); ( j = 4, k = 2); ( j = 5, k = 2);

(RCVI): ( j = 3, k = 1); ( j = 5, k = 2); ( j = 6, k = 2);

(RCVII): ( j = 4, k = 1); ( j = 4, k = 2); ( j = 6, k = 2); ( j = 7, k = 2);

This study design is essentially derived from a symmetric BIBD(7,7,3,3,1) ‘developed from the

initial set’ (1,2,4), following Bose’s technique. Vide Raghavarao (1971). In essence, the above

allocation design suggests that the first RC(I) will be approached once by the investigator number 1

and the response profile will be checked by the supervisor 1. Further, the same RC(I) will also be

approached by investigators 5 and 7 and both the profiles will be checked by supervisor number 2.

Similar explanation applies to the other selected RCs as well. Since the RC sizes are all equal (= 10,

in the above), we will ignore the RC size effect and treat each one as a singleton.

Let us denote by Y[I], Y[II], . . . , Y[V II] the ‘data’ accrued from the field. Without any intervention effect

on the part of the investigators/supervisors, we would have regarded the above data as ‘error-free’

and so usual estimation techniques could be routinely used. Note that in such ‘error-free’ scenario,

there is no difference between Y[I;(1,1)], Y[I;(5,2)] and Y[I;(7,2)], for example. However, we want to

examine the possibility of intervention by one or the other group or possibly by both and so we

postulate a linear model of the following form, as applied to Y[I;(1,1)], for example:

Y[I;(1,1)] = T R[I]+ IR1+S1 + e[I;(1,1)]

where T R[I] is the true response from Cluster I, IR1 is the intervention effect of Investigator 1 and

S1 is that of the Supervisor 1. The last term is the so-called error term. As usual, we assume that the

errors and the intervention effects are all randomly distributed with means 0’s, variances σ 2
e , σ 2

IR, σ 2
S

respectively while all pairwise effects / interventions are uncorrelated. We refer to Searle (1971) for

basic results in linear models.

At this stage, we need to differentiate between two distinct scenarios:
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(i) Blinded Submission;

(ii) Unblinded Submission.

The above refers to the submission of the response profiles to the supervisors. In case it is blinded,

each supervisor treats each response profile as a separate document and treats it as an isolated

document - without the knowledge of identification of the interviewer/investigator. In the other case,

the supervisor also receives information about the identity of the interviewer/investigator along with

response profiles. We will treat both the scenarios in this paper.

2. Interactive Linear Model under Blinded Submission

In the above, since every respondent unit (RC) is viewed as a cluster of 10 units, the response on

each RC is taken to be the sum of the responses of the constituent members. Further, since there are

3 data points for the first set i.e., RCI – as collected independently by the investigators 1, 5, 7, we

straightaway take the average of the three responses and use this as the representative figure for the

first selected RC. This we do for all other RCs as well. Note that there are altogether 24 data points

in the above study design and the RC-wise frequency distributions are given by 3, 3, 3, 4, 4, 3, 4

respectively. We denote by Y the row vector of 24 observations represented in the order these are

displayed above through (RCI) to (RCV II) and by A the 7×24 incidence matrix of the population

units versus the observations as per the sampling design. Thus, for example, the first row vector of

A is given by: (1 1 1 0 0 . . .). Also we denote by Yi.. the average of the sample observations

corresponding to the RC(i) in the sample for i = I, II, . . . , V II. In view of the model assumptions,

EMYi.. = T R[i]; i = 1, 2, . . . , 7. Computations of the model-based variances and covariances are

quite involved and these are developed below.

Σ11 = dispersion matrix of Y[I;(1,1)]; YI;(5,2)]; Y[I;(7,2)]

= dispersion matrix of (IR1 +S1 + e[I:(1,1)]; IR5 +S2 + e[I;(5,2)]; IR7 +S2 + e[I;(7,2)])

= [(σ 2
e +σ 2

IR +σ 2
S ,0,0);(0,σ

2
e +σ 2

IR +σ 2
S ,σ

2
S );(0,σ

2
S ,σ

2
e +σ 2

IR +σ 2
S )].

Therefore, VMYI.. = [3σ 2
e +3σ 2

IR +5σ 2
S ]/9.

Likewise,

VMYII.. = [3σ 2
e +3σ 2

IR +5σ 2
S ]/9;

VMYIII.. = [3σ 2
e +3σ 2

IR +5σ 2
S ]/9;

VMYIV.. = [4σ 2
e +6σ 2

IR +10σ 2
S ]/16;

VMYV.. = [4σ 2
e +6σ 2

IR +8σ 2
S ]/16;

VMYVI.. = [3σ 2
e +3σ 2

IR +5σ 2
S ]/9;

VMYVII.. = [4σ 2
e +6σ 2

IR +10σ 2
S ]/16.

Next note that the rows of the matrix A have been numbered as 1 to 24 in a way that these have 1:1

correspondence with the triplets designated for RCI to RCV II. This representation is already men-

tioned above.

We now work out Σ12 which is a 3×3 vector and stands for the covariance between the two vectors

Y[I] and Y[II]. This is given by Σ12 = COVM(Y[I],Y[II]) = [(σ 2
IR +σ 2

s ,σ
2
s ,0);(0,0,σ

2
s );(0,0,σ

2
s )].

Similarly, we may deduce the following expressions for other covariance matrices:

Σ13 = [(σ 2
s ,σ

2
s ,0);(0,0,σ

2
s );(0,0,σ

2
IR +σ 2

s )],

Σ14 = [(σ 2
IR +σ 2

s ,σ
2
s ,σ

2
s ,0);(0,0,0,σ

2
s );(0,0,0,σ

2
s )],
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Σ15 = [(σ 2
s ,σ

2
s ,0,0);(0,0,σ

2
s ,σ

2
IR +σ 2

s );(0,0,σ
2
s ,σ

2
s )],

Σ16 = [(σ 2
s ,0,0);(0,σ

2
IR +σ 2

s ,σ
2
s );(0,σ

2
s ,σ

2
s )],

Σ17 = [(σ 2
s ,0,0,0);(0,σ

2
s ,σ

2
s ,σ

2
s );(0,σ

2
s ,σ

2
s ,σ

2
IR +σ 2

s )],

Σ23 = [(σ 2
s ,σ

2
s ,0);(σ

2
IR +σ 2

s ,σ
2
s ,0);(0,0,σ

2
s )],

Σ24 = [(σ 2
IR +σ 2

s ,σ
2
s ,σ

2
s ,0);(σ

2
s ,σ

2
s ,σ

2
s ,0);(0,0,0,σ

2
s )],

Σ25 = [(σ 2
s ,σ

2
s ,0,0);(σ

2
IR +σ 2

s ,σ
2
s ,0,0);(0,0,σ

2
s ,σ

2
s )],

Σ26 = [(σ 2
s ,0,0);(σ

2
s ,0,0);(0,σ

2
s ,σ

2
IR +σ 2

s )],

Σ27 = [(σ 2
s ,0,0,0);(σ

2
s ,0,0,0);(0,σ

2
s ,σ

2
IR +σ 2

s ,σ
2
s )],

Σ34 = [(σ 2
s ,σ

2
s ,σ

2
s ,0);(σ

2
s ,σ

2
IR +σ 2

s ,σ
2
s ,0);(0,0,0,σ

2
s )],

Σ35 = [(σ 2
IR +σ 2

s ,σ
2
s ,0,0);(σ

2
s ,σ

2
s ,0,0);(0,0,σ

2
s ,σ

2
s )],

Σ36 = [(σ 2
s ,0,0);(σ

2
IR +σ 2

s ,0,0);(0,σ
2
s ,σ

2
s )],

Σ37 = [(σ 2
s ,0,0,0);(σ

2
s ,0,0,0);(0,σ

2
s ,σ

2
s ,σ

2
IR +σ 2

s )],

Σ45 = [(σ 2
s ,σ

2
s ,0,0);(σ

2
s ,σ

2
s ,0,0);(σ

2
s ,σ

2
IR +σ 2

s ,σ
2
IR,0);(0,σ

2
IR,σ

2
IR +σ 2

s ),σ
2
s ],

Σ46 = [(σ 2
s ,0,0);(σ

2
IR +σ 2

s ,0,0);(σ
2
s ,0,0);(0,σ

2
s ,σ

2
s )],

Σ47 = [(σ 2
s ,0,0,0);(σ

2
s ,0,0,0);(σ

2
IR +σ 2

s ,σ
2
IR,0,0);(σ

2
IR,σ

2
IR +σ 2

s ,σ
2
s ,σ

2
s )],

Σ56 = [(σ 2
s ,0,0);(σ

2
s ,0,0);(0,σ

2
s ,σ

2
s );(0,σ

2
IR +σ 2

s ,σ
2
s )],

Σ57 = [(σ 2
s ,0,0,0);(σ

2
IR +σ 2

s ,σ
2
IR,0,0);(σ

2
IR,σ

2
IR +σ 2

s ,σ
2
s ,σ

2
s );(0,σ

2
s ,σ

2
s ,σ

2
s )],

Σ67 = [(σ 2
s ,0,0,0);(0,σ

2
s ,σ

2
s ,σ

2
s );(0,σ

2
s ,σ

2
IR +σ 2

s ,σ
2
s )].

From the above, we deduce that

COVM(YI..,YII..) = 1′Σ121/9 = [σ 2
IR +4σ 2

s ]/9.

Similarly, we may deduce the rest of the covariance terms as follows:

COVM(YI..,YIII..) = 1′Σ131/9 = [σ 2
IR +4σ 2

s ]/9,

COVM(YI..,YIV..) = 1′Σ141/12 = [σ 2
IR +5σ 2

s ]/12,

COVM(YI..,YV..) = 1′Σ151/12 = [σ 2
IR +6σ 2

s ]/12,

COVM(YI..,YVI..) = 1′Σ161/9 = [σ 2
IR +5σ 2

s ]/9,

COVM(YI..,YVII..) = 1′Σ171/12 = [σ 2
IR +7σ 2

s ]/12,

COVM(YII..,YIII..) = 1′Σ231/9 = [σ 2
IR +5σ 2

s ]/9,

COVM(YII..,YIV..) = 1′Σ241/12 = [σ 2
IR +7σ 2

s ]/12,

COVM(YII..,YV..) = 1′Σ251/12 = [σ 2
IR +6σ 2

s ]/12,

COVM(YII..,YV I..) = 1′Σ261/9 = [σ 2
IR +4σ 2

s ]/9,

COVM(YII..,YV II..) = 1′Σ271/12 = [σ 2
IR +5σ 2

s ]/12,

COVM(YIII..,YIV..) = 1′Σ341/12 = [σ 2
IR +7σ 2

s ]/12,

COVM(YIII..,YV..) = 1′Σ351/12 = [σ 2
IR +6σ 2

s ]/12,

COVM(YIII..,YVI..) = 1′Σ361/9 = [σ 2
IR +4σ 2

s ]/9,

COVM(YIII..,YVII..) = 1′Σ371/12 = [σ 2
IR +5σ 2

s ]/12,

COVM(YIV..,YV..) = 1′Σ451/16 = [4σ 2
IR +8σ 2

s ]/16,

COVM(YIV..,YV I..) = 1′Σ461/12 = [σ 2
IR +5σ 2

s ]/12,

COVM(YIV..,YV II..) = 1′Σ471/16 = [4σ 2
IR +6σ 2

s ]/16,

COVM(YV..,YV I..) = 1′Σ561/12 = [σ 2
IR +6σ 2

s ]/12,

COVM(YV..,YV II..) = 1′Σ571/16 = [4σ 2
IR +8σ 2

s ]/16,

COVM(YV I..,YVII..) = 1′Σ671/12 = [σ 2
IR +7σ 2

s ]/12.

Published by Atlantis Press 
Copyright: the authors 

266



Interactive Linear Models in Survey Sampling

3. Data Analysis under Blinded Submission

We will now discuss essential features of data analysis for unbiased estimation of the finite popula-

tion total T (Y ) of the study variable Y under the above interactive linear model. We refer to Hedayat

and Sinha (1991) for standard results in finite population inference.

In a very general set-up, we have a finite labeled population of N units and we have taken recourse

to a fixed size (n) sampling design with positive inclusion probabilities and joint inclusion proba-

bilities for all pairs of units. For example, the well-known sampling design SRSWOR(N,n) could

be utilized.

Because of possible investigator and/or supervisor interventions, the response on the study vari-

able Yi for the selected RC(i) may be distorted and we stipulate a model as given above. For each

sampling unit i in the sample, we simply take the average of the observations underlying it. Under

the model assumptions, this serves as an unbiased estimate of the true response T Ri of the ith

sample unit. We have used the notation EMYi.. = T Ri. Once this is ensured, we use the conven-

tional Horvitz-Thompson Estimator [HTE, for short] for unbiased estimation of the population total

T (T R). In other words, we use T ˆ(T R) = ∑i[
ˆ(T R)i]/πi, where ˆ(T R)i = Yi... An expression for Vari-

ance of T ˆ(T R) has to be evaluated next. We use the standard formula: V = V1E2 +E1V2. Here E2

and V2 refer to model expectation and model variance. Clearly, model expectation results in the true

values TR’s. And then V1 refers to computation of the variance of the HTE in terms of the TR’s

which is very much a standard exercise. Vide Hedayat and Sinha (1991) for details. For a fixed size

(n) sampling design, this is given by

V1E2 = ∑∑
i< j

[T Ri/πi −TR j/π j]
2(πiπ j −πi j).

Next, V2 refers to the computation of model variance of the estimator based on the average responses

for the sampled units. The estimator is the HTE for which the model variance involves all individual

variances and all pair-wise covariances of the averages for the n sampled units. More explicitly,

VM(∑
i

Yi../πi) = ∑
i

VM(Yi..)/π2
i +∑∑

i6= j

COVM(Yi..,Y j..)/πiπ j

All the entries involved in the above expression have already been worked out.

We will now discuss about the computation of E1V2. Note that E1 refers to expectation wrt the fixed

size (n) sampling design. Here we need to go carefully. To discuss the general framework of such

computations, we assume that N = M f so that all population units are grouped into M RCs of size f

each. And we also set m = n f as the total number of ultimate responding units so that in effect, our

sampling design corresponds to a fixed size (n) sampling design for selection of n RCs each of size

f , out of M clusters in the population, each of size f . The RCs are to be regarded as sampling units

in our study and the cluster totals are the ‘primary data’ accrued from each sampled unit. These

have been denoted by Y[i;( j,k)] for every triplet [i; ( j,k)] for which I[i; ( j,k)] = 1.

Whenever investigator and / or supervisor interventions are likely to be present and are to be

accounted for, we introduce, as in the above, an allocation matrix of order t × n to suggest the

nature of allocation of the investigators among the sampled RCs and also another allocation matrix

of order q× t to suggest the nature of supervisor-investigator ‘dual checks’ on the RCs’ profiles.

Here t denotes the number of investigators and q stands for the number of supervisors. While sug-

gesting these two types of allocation matrices, we may take recourse to some ‘nice’ combinatorial

structures such as BIBDs. The important point to be noted is that field data on each RC profile
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should be collected/checked by more than one investigator and/or by more than one supervisor. In

the illustrative example with n = 7, we chose t = 7 and q = 3 and the two matrices of orders t × n

and q× t were presented in the same place through detailed descriptions of (RCI) to RC(V II).

Having discussed these ‘design issues’, we are now in a position to project the concept underlying

E1. We treat the ‘investigator-cum-RC’ matrix of order t ×n as ‘given’ once for all. So is the other

matrix as well. Once the RCs are chosen according to a given fixed size (n) sampling design, we

check the allocation matrix and adhere to it by assigning the columns of the allocation matrix to

the sample RCs in ascending order of their labels. Since the two allocation matrices are chosen in

advance, the variance and covariance computations underlying the interactive model will remain

the same for all choices of the n RCs in the sample, except for their identification in terms of the

RC-labels.

Thus, in the example above, we may decide on N = 700, M = 70, f = 10, n = 7, t = 7, q = 2, so

that altogether 70 respondents are selected in 7 RCs of 10 each out of 70 RCs of 700 ultimate units.

If the randomly selected RCs are labeled [3, 17, 33, 41, 57, 63, 69], then the above expressions for

model-based variance-covariances correspond to these RCs in the order mentioned. In other words,

Σ11 in effect corresponds to Σ33 and so on. The actual realized RC-labels in ascending order take

the positions of the labels 1, 2, . . . , 7 in the table and in the related computations.

It is evident that the exact computation of E1 is quite involved. However, an unbiased sample RC-

based estimator of E1V2 is simply given by V2, once we assume the three variance components to be

known.

Again, to find an unbiased estimator of V1E2, a trivial situation would have produced

∑∑i6= j[T Ri/πi−T R j/π j]
2[πiπ j−πi j]/πi j had the T Ri’s been known. This follows from the standard

result on variance estimation for the HTE viz., Yates–Grundy formula, as applicable for a fixed

size (n) sampling design. Vide Hedayat and Sinha (1991), for example. However, in the present

situation, T Ri’s are unknown and instead we have the unbiased estimates of the T Ri’s viz., Yi.. =
ˆT Ri. Therefore, we start with the expression ∑∑i6= j[Yi../πi−Yi../π j]

2[πiπ j −πi j]/πi j] and work out

its expectation i.e., E1E2. It follows that

E2[...] = ∑∑
i6= j

[T Ri/πi −TR j/π j]
2[πiπ j −πi j]/πi j]+∑∑

i6= j

VM[Yi../πi −Yi../π j][πiπ j −πi j]/πi j].

Once more, if we assume the variance components to be known, then the second term above can be

computed. Hence the first term above can be evaluated by subtraction.

Thus finally, we are in a position to derive an expression for the variance estimate, under the assump-

tion of known variance components. The case of unknown variance components will be taken up in

a subsequent communication.

Remark 3.1. At this stage, it may be mentioned that in a very general sense, we can make use

of a BIBD(b,v,r,k,λ ) for allocation of the b = t investigators among the v = n RCs with obvious

interpretation of the other parameters r, k, λ . Note also that the investigator-supervisor allocation

matrix does not necessarily have any structure or pattern, except that at least two supervisors need to

be appointed and at least two should sit on each RC’s field-based data file, which is already collected

by independent venture of at least two investigators and made available for further scrutiny.

Remark 3.2. It must be noted that two distinct random processes are involved in the data analysis

stage. One corresponds to the sampling design which results in the use of design-based unbiased

estimator such as Horvitz-Thompson Estimator [HTE]. We need to work out variance estimate
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corresponding to the HTE. On the other hand, the interactive linear model introduces model-based

variance components which are assumed to be known. Therefore, variance estimation in this study

refers to the sampling-design-based variance estimation from the survey data. Vide Hedayat and

Sinha (1991) for details.

4. Illustrative Example [continued]

Without any loss of generality, we take the sample clusters to possess the labels (1, 2, . . . , 7). Fur-

ther, we assume that the sampling design is SRSWOR(M = 70, n = 7). The true population total is

T (T R) where each T R is composed of the sum of T R-values of 10 basic eus from within each of

the clusters. We further assume that the reported data correspond to the subtotals based on within-

cluster units. The true population subtotals are denoted by T R1, T R2, . . . , T R70 and our sample

of size n = 7 provides model-based unbiased estimates for T R1, T R2, . . . , T R7. Further, since we

adopt SRSWOR, we assert that

(i) unbiased estimate of T (T R) is given by M× the sample average of within cluster estimates

i.e., T ˆ(T R) = 10∑i Yi...

(ii) unbiased variance estimate is to be computed from

(a) E1V2 component: It is just V2 given by M2/n2[∑i VM(Yi..)+∑∑i6= j COVM(Yi..,Yi..)]

(b) V1E2 component: It is the difference between two expressions given by

First Expression: [M2(1/n−1/M)][∑ ∑i< j(Yi..−Y j..)
2/n(n−1)];

Second Expression: [M2(1/n−1/M)][(n−1)∑i σii −∑∑i6= j σi j]/n(n−1).

It follows, upon simplification, that

∑
i

σii = 25/12σ 2
e +59/24σ 2

IR +143/36σ 2
s ;

∑∑
i< j

σi j = 22/9σ 2
IR +191/36σ 2

s .

By combining the two from (a) and (b) above, we obtain the final expression for the unbiased

variance estimate as

[M2(1/n−1/M)][∑ ∑i< j(Yi..−Y j..)
2/n(n−1)] [contribution from data]

PLUS

[M/n][∑i σii]+ [M(M−1)/n(n−1)][∑∑i6= j σi j].

This latter expression simplifies to

[M/n][25/12σ 2
e +59/24σ 2

IR +143/36σ 2
s ]+ [2M(M−1)/n(n−1)][22/9σ 2

IR +191/36σ 2
s ].

5. Interactive Linear Model under Unblinded Submission

Recall that I[i; ( j,k)] = 1 if ( j,k)-combination of the investigator and the supervisor have both

worked on a schedule assigned to the ith responding unit. Therefore, if for a pair of triplets

I[i; ( j,k)] = I[i; ( j′,k)] = 1, under unblinded submission, supervisor labelled k has to handle two

separate response profiles of the same respondent i and therefore, it only makes sense to first aver-

age out these two responses and then provide his/her own ‘input’ to that average before finalization

of the response! Under blind submission, supervisor’s input was incorporated for each response
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profile submitted to him/her. That is the essential difference between the two scenarios.

For the same example as before, we now sort out the final scheme of ‘averaging’ as follows:

(I) Y[I∗] = [(YI,(1,1))+1/2[YI,(5,2)+YI,(7,2)]]/2 = [2YI,(1,1)+YI,(5,2)+YI,(7,2)]/4;

(II) Y[II∗ ] = [(YII,(1,1)+YII,(2,1))/2+YII,(6,2)]/2 = [YII,(1,1)+YII,(2,1)+2YII,(6,2)]/4;

(III) Y[III∗ ] = [(YIII,(2,1) +YIII,(3,1))/2+YIII,(7,2)]/2 = [YIII,(2,1) +YIII,(3,1)+2YIII,(7,2)]/4;

(IV) Y[IV ∗] = [(YIV,(1,1)+YIV,(3,1)+YIV,(4,1))/3+YIV,(4,2)]/2

= [YIV,(1,1)+YIV,(3,1)+YIV,(4,1)+3YIV,(4,2)]/6;

(V) Y[V ∗] = [(YV,(2,1)+YV,(4,1))+ (YV,(4,2)+YV,(5,2))]/4;

(VI) Y[V I∗] = [(YV I,(3,1))+1/2[YV I,(5,2)+YVI,(6,2)]]/2 = [2YV I,(3,1)+YVI,(5,2)+YVI,(6,2)]/4;

(VII) Y[V II∗] = [(YV II,(4,1))+1/3[YV II,(4,2)+YV II,(6,2)+YVII,(7,2)]]/2

= [3YV II,(4,1)+YV II,(4,2)+YV II,(6,2)+YV II,(7,2)]/6.

Next, we need to compute variances and covariances of the resulting input averages from all the

seven respondent groups. These are computed below.

Recall Σ11, representing the dispersion matrix of Y[I;(1,1)];YI;(5,2)];Y[I;(7,2)], has already been derived

in the form [(σ 2
e +σ 2

IR +σ 2
S ,0,0);(0,σ

2
e +σ 2

IR+σ 2
S ,σ

2
S );(0,σ

2
S ,σ

2
e +σ 2

IR +σ 2
S )].

Therefore, VMY[I∗] = [3σ 2
e +3σ 2

IR +4σ 2
S ]/8, upon simplification.

Likewise, for the other variance components, the expressions are given below.

VMY[II∗] = [3σ 2
e +3σ 2

IR +4σ 2
S ]/8, upon simplification.

VMY[III∗ ] = [3σ 2
e +3σ 2

IR +4σ 2
S ]/8, upon simplification.

VMY[IV ∗] = [2σ 2
e +3σ 2

IR +5σ 2
S ]/8, upon simplification.

VMY[V ∗] = [2σ 2
e +3σ 2

IR +4σ 2
S ]/8, upon simplification.

VMY[V I∗] = [3σ 2
e +3σ 2

IR +4σ 2
S ]/8, upon simplification.

VMY[V II∗] = [2σ 2
e +3σ 2

IR +3σ 2
S ]/6, upon simplification.

Next, towards computation of the covariance terms, we note that Σi j matrices are already displayed

before. Therefore, we only do the computations of the form x′Σy for different choices of x and y as

are relevant for the averages.

(i) COVM(Y[I∗],Y[II∗]) = (2 1 1)′Σ12(1 1 2)/16 = [2σ 2
IR +8σ 2

s ]/16;

(ii) COVM(Y[I∗],Y[III∗ ]) = (2 1 1)′Σ13(1 1 2)/16 = [2σ 2
IR +8σ 2

s ]/16;

(iii) COVM(Y[I∗],Y[IV ∗]) = (2 1 1)′Σ14(1 1 2 2)/24 = [2σ 2
IR +12σ 2

s ]/24;

(iv) COVM(Y[I∗],Y[V ∗]) = (2 1 1)′Σ15(1 1 2 2)/24 = [2σ 2
IR +12σ 2

s ]/24;

(v) COVM(Y[I∗],Y[V I∗]) = (2 1 1)′Σ16(2 1 1)/16 = [1σ 2
IR +8σ 2

s ]/16;

(vi) COVM(Y[I∗],Y[V II∗]) = (2 1 1)′Σ17(3 1 1 1)/24 = [1σ 2
IR +12σ 2

s ]/24;

(vii) COVM(Y[II∗ ],Y[III∗ ]) = (1 1 2)′Σ23(1 1 2)/16 = [σ 2
IR +8σ 2

s ]/16;

(viii) COVM(Y[II∗ ],Y[IV ∗]) = (1 1 2)′Σ24(1 1 2 2)/24 = [σ 2
IR +14σ 2

s ]/24;

(ix) COVM(Y[II∗ ],Y[V ∗]) = (1 1 2)′Σ25(1 1 2 2)/24 = [σ 2
IR +12σ 2

s ]/24;

(x) COVM(Y[II∗ ],Y[V I∗]) = (1 1 2)′Σ26(2 1 1)/16 = [2σ 2
IR +8σ 2

s ]/16;

(xi) COVM(Y[II∗ ],Y[V II∗]) = (1 1 2)′Σ27(3 1 1 1)/24 = [2σ 2
IR +12σ 2

s ]/24;

(xii) COVM(Y[III∗ ],Y[IV ∗]) = (1 1 2)′Σ34(1 1 2 2)/24 = [σ 2
IR +12σ 2

s ]/24;

(xiii) COVM(Y[III∗ ],Y[V ∗]) = (1 1 2)′Σ35(1 1 2 2)/24 = [σ 2
IR +12σ 2

s ]/24;

(xiv) COVM(Y[III∗ ],Y[V I∗]) = (1 1 2)′Σ36(2 1 1)/16 = [2σ 2
IR +8σ 2

s ]/16;

(xv) COVM(Y[III∗ ],Y[V II∗]) = (1 1 2)′Σ373 1 1 1)/24 = [2σ 2
IR +12σ 2

s ]/24;

(xvi) COVM(Y[IV ∗],Y[V ∗]) = (1 1 2 2)′Σ45(1 1 2 2)/36 = [12σ 2
IR +16σ 2

s ]/36;

(xvii) COVM(Y[IV ∗],Y[V I∗]) = (1 1 2 2)′Σ46(2 1 1)/24 = [2σ 2
IR +10σ 2

s ]/24;
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(xviii) COVM(Y[IV ∗],Y[V II∗]) = (1 1 2 2)′Σ473 1 1 1)/36 = [16σ 2
IR +18σ 2

s ]/16;

(xix) COVM(Y[V ∗],Y[V I∗]) = (1 1 2 2)′Σ56(2 1 1)/24 = [2σ 2
IR +12σ 2

s ]/24;

(xx) COVM(Y[V ∗],Y[V II∗]) = (1 1 2 2)′Σ573 1 1 1)/36 = [12σ 2
IR +18σ 2

s ]/36;

(xxi) COVM(Y[V I∗],Y[V II∗]) = (2 1 1)′Σ67(3 1 1 1)/24 = [1σ 2
IR +12σ 2

s ]/24.

In the next section, we discuss about relevant changes in the data analysis.

6. Data Analysis under Unblinded Submission

We will closely follow the data analysis in the blinded submission case and only suggest the changes

relevant to the current scenario.

(i)* unbiased estimate of T (T R) is given by M× the sample average of within cluster estimates

i.e., T ˆ(T R) = 10[Y[I∗]+ · · ·+Y[VII∗]].

(ii)* unbiased variance estimate is to be computed from

(a)* E1V2 component: It is just V2 given by M2/n2[∑i VM(Y[I∗])+∑∑i6= j COVM(Y[I∗],Y[J∗])]

(b)* V1E2 component: It is the difference between two expressions given by

First Expression: [M2(1/n−1/M)][∑ ∑i< j(Y[I∗]−Y[J∗])
2/n(n−1)];

Second Expression: [M2(1/n−1/M)][(n−1)∑i σ ∗
ii −∑∑i6= j σ ∗

i j]/n(n−1).

In the above, σ ∗
ii ’s refer to variances of Y[I∗]’s and σ ∗

i j’s refer to the covariances of Y[I∗],Y[II∗]’s.

It follows, upon simplification, that

∑
i

σ ∗
ii = 7/3σ 2

e +11/4σ 2
IR +7/2σ 2

s ;

∑∑
i< j

σ ∗
i j = 179/72σ 2

IR +94/9σ 2
s .

By combining the two from (a)* and (b)* above, we obtain the final expression for the unbiased

variance estimate as

[M2(1/n−1/M)][∑ ∑i< j(Y[I∗]−Y[II∗])
2/n(n−1)] [contribution from data]

PLUS

[M/n][∑i σ ∗
ii ]+ [M(M−1)/n(n−1)][∑∑i6= j σ ∗

i j].

This latter expression simplifies to

[M/n][7/3σ 2
e +11/4σ 2

IR +7/2σ 2
s ]+ [2M(M−1)/n(n−1)][179/72σ 2

IR +94/9σ 2
s ].

7. Concluding Observations

We believe that this is a modest start of a long-going project on study of interactive linear models

in survey sampling context, depicting the simplest-to-intricate involvements of the investigators

and/or supervisors in the data-gathering process till it reaches the data collection agencies. We have

assumed the variance components to be known which is a serious limitation of the study. The full

potential of mixed linear models has yet to be explored for estimation of the variance components.
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