
Online Detect Polymorphic Exploit Based on Data
Mining

Wei Wang1 Huazhang Wang1 Daisheng Luo1 Yong Fang2
1 Institute of Image & Information, Sichuan University, Chengdu 610065, P.R. China

2 Institute of Security & Information. Sichuan University, Chengdu 610065, P.R. China

Abstract
In recent years, Internet worms increasingly threaten
the Internet hosts and service and polymorphic worms
can evade signature-based intrusion detection systems.
We propose DMPolD (Data Ming Polymorphism
Detection) to detect polymorphic exploit based on
semantic signature and data-mining. We analyze the
feature of polymorphic exploit and the feature of
perfect ones. We propose a method to online detect
worm through recognize JUMP address based on data-
mining i.e., Bayes. To prove this idea, we implement a
plug-in of Snort – ODMSnort and do the experiment
on it. The evaluation results show that DMPolD can
detect polymorphic exploit and has very low false-
positive.

Keywords: Data-mining, Polymorphic Worms,
Security

1. Introduction
In recent years, Internet worms increasingly threaten
the Internet hosts and service. Toward defending
against Internet worms, the research community has
proposed and built intrusion detection systems (IDSes).
A network administrator deploys the IDS at the
gateway between the network edges. The IDS searches
inbound traffic for known patterns, or signatures. The
signature is a tuple (IP-proto, dst-port, byteseq), where
byteseq is a variable-length, fixed sequence of bytes.
When traffic corresponds to signature, the IDS may
raise an alarm. To date, IDSes use fixed byteseq of
signature from worm’s payload. Matching techniques
include string matching at arbitrary payload offsets;
string matching at fixed payload offsets; and matching
of regular expressions within a flow’s payload. [1][2]

These systems all use fixed, contiguous substring
as worm’s signature and all make the same underlying
assumptions that there exists a single payload
substring that will remain invariant across worm
traffic, and will be sufficiently to identify the worm.

But those assumptions are naïve. When the well-
known attacks or worms are modified / transformed

differently, the IDS might fail due to its inability to
math them in signature database. We call these
transformed worms as polymorphic worms. A
polymorphic worm author may craft a worm that
substantially changed its payload every time, and thus
evades matching signature of IDS.

To detected polymorphic worms, we propose a
new method to detect polymorphic worms. In this
paper, our main contributions are as follows:

(1) Propose an exploit model – the OSJUMP
model.

(2) Based on the OSJUMP model, we analysis the
features of polymorphic exploits and features of
perfect ones.

(3) We propose methods to detect exploit through
recognize JUMP address based on data-mining such as
Bayes. The evaluation results show that DMPolD can
detect polymorphic exploits and has very low false-
positive.

The rest of this paper is organized as follows.
Section 2 describes the relative work. Section 3
proposes the worm attack model -- the OSJUMP
model. Section 4 discusses the polymorphic exploits
and perfect ones. Section 5 describes our methods.
Section 6 presents experiment results and Section 8
presents discussion.

2. Related work
Honeycomb[3], Autograph[4], and Earlybird[5] are
pioneers of systems which automatically generate
worm signatures. They automatic capture Internet
traffics, classify worm flows, and generate worm
signatures, but they didn’t consider the polymorphic
worms.

After recognize the risk of polymorphic worms,
several solutions have been proposed to detect
polymorphic attacks or worms.

One approach to detect buffer overflow attack
code is concentrate on the sledge (e.g. string of NOPs)
of the attack. The method has been presented in [6].

NGSEC proposed several solutions to detect
polymorphic worms using IDS [7]. Their solutions
include Shellcode payload decryption, signatures to

detect the decrypted engine, decrypted engine
emulation, and NOP section detection. They
concluded that NOP section detection was the best
technique.

But we found that the NOP section detection not
suit for exactly attacks because NOP section can be
uniform random under such situation.

TaintCheck[8] can semantic analysis overflow-
attack and can be used to generate exactly signatures,
but it needs to monitor CPU execution and data flow
in the memory. The performance overhead is too high
to suit for network environment.

Buttercup [9] is a system which uses range of
JUMP address to detect overflow attack, but it’s so
naïve that attacker can easily select JUMP address out
of the range and evade the Buttercup’s check.

Polygraph[10] uses multiple disjoint content
substrings as feature to detect polymorphic worms, but
the content substring features are also fixed.

Motivate by those work, we propose a new
method to detection polymorphic exploit by data-
mining. After setting up exploit generation attacking
model, we semantically analyze polymorphic exploits
and use critical part as signature. The critical part is
detected by data-mining such as Bayes rather than
directly match.

3. Exploit model
In mostly case, the propagation of the worm is base on
overflow holes and attacks. By deeply analyzing
overflow holes and worm exploit code, we propose the
model of exploit – the OSJUMP model, which can be
used for explaining the character of worm attack.

3.1. Definition of the OSJUMP
model

The OSJUMP means Overflow, Shellcode and JUMP,
all of three are critical elements in a successful
overflow attack.

The OSJUMP model is show as Figure 1.
The purpose of the three parts and the relationship

among them describe below.
1) Overflow: Construct Shellcode and overwrite

sensitive data. Overflow is the precondition of
overflow attack.

2) Shellcode: Target binary code for execute.
Shellcode is constructed by overflow. Successful
executing Shellcode is the purpose of the overflow
attack.

3) JUMP: Jump into Shellcode via system
execution flow such as function return, function called
or memory reallocates or free. JUMP is the most
critical element for successful overflow attack.

Fig. 1: The overview of OSJUMP model.

3.2. Discussion of the OSJUMP
model

Based on OSJUMP model, we can model many types
of overflow attacks, such as stack overflow, heap
overflow, virtual function overflow, and format
overflow. The results of modeling have put in Table 1.

Overflow Shellcode JUMP
Stack
Overflow

Constructed
in stack

Overwrite return IP
address, JUMPed when
function return

Heap
Overflow

Constructed
in heap

Overflow pointer of
heap manage struck,
JUMPed when allocate
or free again

Object
Overflow

Constructed
in virtual
function
table

JUMPed when system
call virtual functions

Format
Overflow

Constructed
in stack

JUMPed when system
call functions

Table 1: Use OSJUMP to modeling overflow attacks.

The OSJUMP model can be used in many

situations: overflow attacks, worm attacks, and etc. It
not just suit for Windows system but also suit for *nux
system. The worms have show that all of them follow
the OSJUMP model. Moreover, future overflow attack
technique and worm attack technique can be predicted
and analyzed by the OSJUMP model too.

4. Analysis of polymorphic exploit
Thanks to the OSJUMP model, we can understand the
exploit and can semantically analyze polymorphic
ones.

Hole of software

Overflow

JUMP

Method

Critical

Shellcode

Realize Construct

Into
Purpose

Precondition

4.1. Principle of polymorphic
exploit

‘Polymorphic’ means something which do not has fix
build. Polymorphic exploits are ones which can self-
change payload every time. Polymorphic exploits exist
because they can change two parts.

The ‘overflow’ part: this part just takes the space
of memory, so the ‘overflow’ part can be constructed
freely.

The ‘Shellcode’ part: this part depends on object
of attacker or worm, so it can be changed or encrypted
every time too.

Polymorphic exploit are generated based on those
two principles. Overflow part and Shellcode part are
different each time, so traditional IDS signature can’t
match the polymorphic exploit. An example format of
polymorphic exploit shows as Figure 2.

Fig. 2: An example format of polymorphic exploit

4.2. Polymorphic engine
There have some polymorphic engines that can
generate polymorphic worms automatically already.
Clet[11] and ADMmutate[12] are both polymorphic
engines. They can output encrypted code which is
completely different each time, and a decryption
routine that is obfuscated differently each time too.

But the outputs of engines have some common
substrings that present in all outputs. So they can’t
generate perfectly polymorphic worms. Polymorphic
engines can be improved and the detail analysis can be
found in [10].

4.3. Perfectly polymorphic exploit
The perfectly polymorphic exploit don’t have any
common substrings and can be generated by following
rules.

1) Overflow: this part doesn’t influence the attack,
so it can be filled by uniformly at random.

2) Shellcode: this part can be encrypted by
different key, and decryption routine is differently
each time.

3) JUMP: can be selected different value each time.
The perfectly polymorphic exploit which

generated according to above rules don’t have any
common substring with each others. So they can evade
any pattern match IDSes. Motivated by this, we
propose new polymorphic exploit’s detection methods
-- detect by data mining.

5. Detect Polymorphic by data-
mining

We describe our methods in this section and present
experiment results on the next section.

5.1. Definition
Here, we want to detect exploit online.

Definition 1: F is a network flow, we want to
online judge whether it is polymorphic exploit or not.
So we need to create a function (*)R , where

() 0R F = ; if F Normal=
() 1R F = ; if F PolAttack=

Since overflow can be uniform random and
Shellcode can be total different each time, we can’t
use they two as signature to judge polymorphic
exploits. However, position of JUMP must be fixed
and value of JUMP address can’t be selected
arbitrariness. The value only has some options in the
system; otherwise the overflow attack can’t successful
and can’t JUMP into Shellcode. For example, JUMP
position of Red Code worm is at 254 byte offset.

So we propose a new method for matching
exploits-- classify 4bytes substring at JUMP position
of flow. If the substring is classified to be a JUMP
address, we classify the flow to be a worm in
succession.

Definition 2: To classify 4bytes substring at

JUMP position of flow, we need create a function L(*),
where

() 0L x = ; if x JUMP≠ => F Normal=
() 1L x = ; if x JUMP= => F PolAttack=

To create function L(*) is a very challenge work.
We try to use data-mining such as Bayes match to
complete it. The worms and JUMP address they used
are show as Table 2.

WORM JUMP
RedCode 0x7801cbd3
Blaster 0x0018759F
Nachi 0x0100139D
Sasser 0x01004600
Witty 0x5e077663
Slammer 0x42b0c9dc

Table 2: JUMP addresses used by worms.

Besides JUMP address in Talbe1, we also include

some universe jump address such as 0x7FFA1571,
0x7FFA4512 in the list because they used widely in
the overflow exploit.

Overflow ShellcodeJUMP

5.2. Bayes match
Directly match JUMP address can be easily violate by
select some new option ones. So we consider classify
4bytes substring by Bayes match.

Each byte of 4bytes substring is associated with a
score and an overall threshold. In contrast with the
exact matching, Bayes match provide probabilistic
matching-- given a 4bytes substring, we compute the
probability that the string is a JUMP address. If the
resulting probability is over the threshold, we classify
the string to be a JUMP address and the flow to be a
worm.

A 4bytes substring x can be presented as
{ },1 4xi i≤ ≤

Let L(x) denote the true label of x, then
()L x JUMP= denotes x is a JUMP address

() ~L x JUMP= denotes x is not a JUMP address

Thus, to classify a sample{ }1, 2, 3, 4x x x x , we

wish to compute Pr(() |)L x JUMP x= and
Pr(() ~ |)L x JUMP x=

To calculate Pr(() |)L x JUMP x= , we use
Bayes law:

Pr(() |)
Pr(| ()) Pr(())

Pr()

L x JUMP x
x L x JUMP L x JUMP

x

=
=

= =

From the independence assumption of the naïve

Bayes model, we can compute this as follow:

1 4

Pr(()) Pr(| ())
Pr() i

L x JUMP xi L xi JUMP
x ≤ ≤

=
= =∏

We only need to calculate the radio of
Pr(() |)L x JUMP x=
and Pr(() ~ |)L x JUMP x= .

1 4

1 4

1 4

1 4

()
() ~

Pr(()) Pr(| ())
Pr()

Pr(() ~) Pr(| () ~)
Pr()

Pr(()) Pr(| ())

Pr(() ~) Pr(| () ~)

i

i

i

i

L x JUMP
L x JUMP

L x JUMP xi L xi JUMP
x

L x JUMP xi L xi JUMP
x

L x JUMP xi L xi JUMP

L x JUMP xi L xi JUMP

≤ ≤

≤ ≤

≤ ≤

≤ ≤

=
=

=
=

=
=

=

= =
=

= =

∏

∏
∏
∏

We just set the value of
Pr(| ())xi L xi JUMP= is 0.5. Then we calculate
each byte’s probability and compare to the threshold.

6. Evaluation
In this section, we present out test environment and
results.

6.1. Environment
In order to test our OMPOLD, we implement
ODMSnort as a plug-in in Snort 2.4.2. The Program
Language is C and file length is about 600 lines. We
add a key word “jumpdm” in the Snort system, so the
detection rule is “jumpdm: offset”, where “offset”
indicates offset of JUMP in the network flow. For
example, the detection rule of RPC vulnerability is

alert tcp $EXTERNAL_NET any ->

$HOME_NET 135 (msg:"found RPC jumpdm!";
jumpdm:916; reference:bugtraq,8205;
reference:cve,2003-0352; classtype:attempted-admin;
sid:1000831; rev:1;)

The detection machine which install Snort is Intel

Celeron 2.26G, 256M memory, and 80G hard disk.
The attack machine is Intel P4 1.4G, 256M

memory, 40G hard disk, the system type is Windows
XP SP2.

The target machine base on VMWare, the system
type is Windows 2000 SP1.

6.2. Detection rate
Training data: We use JUMP addresses show in
Table 2 plus some universe JUMP address as training
data.

Test data: We use Metaexploit attack framework,
select 5 actually attack exploits for Windows
environment. For each actual exploit, we produce 4
polymorphic exploits by automatically engine, and
generate 5 perfectly polymorphic ones by manual. So
the number of test data is 5*1+5*4+5*5 = 50 totally.

The detection rate results are showed in Table 3.

 Snort DMPolD
Origin (5) 100% 100%
Engine (20) 85.0% 100%
Manuel (25) 45.0% 75.0%
Totally 62% 80%

Table 3: The results of detection rate.

From the Table 3, we can see that our methods

can improve detection rate greatly.

For the origin exploits, each algorithm can detect
correctly.

But for the polymorphic exploits which produced
by engine, snort can’t match it in signature database
and produce 15% false negative, while our methods
still produce 0% false negative.

For perfectly polymorphic exploits, snort only can
detect part of them, while DMPolD can still detect
most of them. DMPolD can improve 18% detection
rate totally.

6.3. False positive alarm rate
As a new technique of NIDS, one key is false positive
alarm should not too high. Too many false positive
alarms will lead administrator to boring and can not
find really attack. So, we did a lot of experiment on
false positive alarm: relative false positive alarm rate,
absolutely false positive alarm rate, and worst positive
alarm.

Relative false positive alarm rate
Relative false positive alarm rate is defined as

radio of alarm number from DMPolD to the alarm
number from Snort based on the same test data.
Assume result of Snort is correct, then the number of
alarm will not increase after adding DMPolD plunge.

Definition 3:
Relative false positive alarm rate

DMPolD alarm number Snort alarm number
Snort alarm number

=
－

We do the experiment on the MIT2000 data set. Test
the origin Snort and DMPolD plunge on the same test
sets. The results show as Figure 3.

0

50

100

150

200

250

300

Inside Outside

Snort ALERTS

DMPolD ALERTS

Snort LOGGED

DMPolD LOGGED

Fig 3: The result of relative false positive alarm rate

Figure 3 shows that the alarm number of origin

Snort and one of DMPolD plunge are same. So, the
relative false positive alarm rate is zero. It means that
DMPolD plunge will not introduce relative false
positive alarms.

Absolutely false positive alarm rate
Absolutely false positive alarm rate is defined as

the alarm number of DMPolD on the normal flow.
Because it should not introduce alarm on the normal
flow, the alarm is false positive alarm.

Definition 4:
Absolutely false positive alarm rate

Number of DMPolD alarm =
Number of normal packet

We capture the normal flow on the gateway of
Institute of Image and Information, Sichuan University.
We get 10220 TCP packets, 2008 UDP packets, and
69 other packets, 12297 totally. We disable all plunge
of Snort except DMPolD and do the experiment on the
data set. The results show as Table 4.

No. of Packet 12297
ALERT 0
LOGGED 0
Absolutely Error 0.0%

Table 4: Absolutely false positive alarm rate on normal flow.

We can find that there is no false positive alarm on

the normal flow, which means DMPolD has very good
efficiency.

Worst positive alarm rate
In order to investigate the result of DMPolD on all

stings of normal flow, we change the implementation
of DMPolD to test all the string in the flow rather than
JUMP position. We call this test as worst positive
alarm rate. The goal of experiment is to do the most
strict false positive alarm test.

Definition 5:
Worst positive alarm rate

DMPolD alarm number=
Number of normal string check

There are 5233170 bytes in the normal flow we get,
and then test number is 5233170 * 4 = 20932680. In
our test, DMPolD only raise 44 alarms, the results
show as Table 5.

No. of Test t 20932680
ALERT 44
LOGGED 44
The Worst Error 0.00021％

Table 5: Worst false positive alarm.

There are only 0.00021 ％ positive alarm rate,

which is confirm the result from [9].

6.4. Performance evaluation

We also measured the performance of detection
algorithm. We record the detection time of Snort with
and without OMPolD plunge. The results show as
Figure 4. The results are average value of 10
experiments.

37

37.5

38

38.5

39

39.5

40

40.5

41

Inside Outside

T
im
e(
s)

Snort

DMPolD

Fig 4: Average detection time

From Figure 4, we can find that OMPolD plunge

only add a little performance overhead. The reason is
that the new methods only need to compute the
probability result of 4bytes substring at fix position
and not need to do string pattern match in a large
range.

7. Discussion
We can see from the above sections that DMPolD has
many advantages. Here we discuss some details in
DMPolD implementation.

7.1. Offset of JUMP position
Because the difference of system version (XP, 2000,
hot patch), some exploits’ jump positions are not the
same on different systems. So, one vulnerable hole
may needs multiple rules.

But in our experiments, JUMP offset is unique on
the same system, and the difference is not large among
different versions. So we can either create rule for
each system version, or check a range of position. We
can see from 6.3.3 that even worst false positive rate is
very low, which means check a range of position for
JUMP address also can get good results.

7.2. Rule creation
By DMPol, it’s very easy to create new rule for new
exploit.

Creators only need to known JUMP position in the
network flow and then can write the rules. In contrast

with traditional method, DMPol don’t not need to
complexly analyses and can reduce time cost greatly,
which is very important in worm defense battle. With
some Taint technical[8], DMPol can be used to
generate signature automatically.

7.3. Decode
In some network applications, network flow is

encoded by e.g. Base64, Unicode. And in some cases,
network flow is truncated or retransferred. But there
are so many plug-ins in snort can finish decode and re-
construct work. So we can enjoy the effect of our
OMPolD.

8. Conclusions
In this paper, we propose new methods based on data-
mining to detect polymorphic exploit. Experiment
results show that our methods are better than former
work and can improve false negative rate and
introduce nearly 0 false positive rate.

The future work will be focused on more deeply
semantic analysis of worms and get more information
for data-mining to improve the false negative and false
positive.

Acknowledgement
The authors would like to thank great help from many
anonymous.

References
[1] V. Paxson. Bro: a system for detecting network

intruders in real-time. Computer Networks, 31:23-
24, December 1999.

[2] T. S. Project. Snort, the open-source network
intrusion detection system. http://www.snort.org/.

[3] C. Kreibich and J. Crowcroft. Honeycomb -
creating intrusion detection signatures using
honeypots. 2nd Workshop on Hot Topics in
Networks (HotNets-II),2003.

[4] H.-A. Kim and B. Karp. Autograph: toward
automated, distributed worm signature detection.
Proceedings of the 13th USENIX Security
Symposium, August 2004.

[5] Automated Worm Fingerprinting
[6] T. Toth, C. Kruegel. Accurate Buffer Overflow

Detection via Abstract Payload Execution. RAID
2002. LNCS 2516. pp.274-291. 2002.

[7] Polymorphic Shellcodes vs. Application IDSs,
NGSEC White Paper, htto:liwuw nesec.com

[8] J. Newsome and D. Song. Dynamic taint analysis
for automatic detection, analysis, and signature
generation of exploits on commodity software.

Proceedings of the 12th Annual Network and
Distributed System Security Symposium (NDSS
05), Feb. 2005.

[9] A. Pasupulati, J . Coit, K. Levitt. S. F. Wu, S.H.
Li, J.C. Ku0,K.P. Fan. Buttercup: On network-
based detection of polymorphic buffer overflow
vulnerabilities. IEEE/IFIP Network Operation
and Management Symposium, 2004.

[10] J. Newsome, B.Karp and D. Song. Polygraph:
Automatically Generating Signatures for
Polymorphic Worms. Proceedings. 2005 IEEE
Symposium on Security and Privacy, pp. 226-41,
2005.

[11] T. Detristan, T. Ulenspiegel, Y. Malcom, and M.
V. Underduk.Polymorphic shellcode engine using
spectrum analysis.
http://www.phrack.org/show.php?p=61&a=9.

[12] K2, admmutate.
 http://www.ktwo.ca/c/ADMmutate-0.8.4.tar.gz.

