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Abstract

In this paper , we combine fuzzy topological
structures with algebraic structures on X , and
investigate their corresponding structures and
properties. In the section 3, the relationship between
fuzzy topological structure and increasing(decreasing)
fuzzy syntopogenous structure is studied. In the
section 4 the definition of continuity of a preordered
L-fuzzy syntopogenous space (X, S,<) and an
example is given. In the section 5 the equivalent
depictions of continuity are researched. In the section
6 the boundedness and its properties are discussed.
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1. Introduction

In [39] A-Csaszar introduced the concept of a
syntopogenous structure to develop a unified approach
to the three main structures of set-theoretic-topology:
topologies, uniformities and proximities. This enable
him to evolve a theory including the foundations of the
three classical theories of topological spaces,uniform
spaces and proximity spaces.In the case of the fuzzy
structures there are at least three notions of fuzzy
syntopogenous structures. The first notion worked out
in [4,5,6,12] presents aunified approach to the theories
of Chang fuzzy topological spaces[1], Hutton fuzzy
uniform spaces[2] and Liu fuzzy proximity spaces[7].
The second notion worked out in [36,37] agree very
well with Lowen fuzzy topological spaces[20],
Lowen-Hohle fuzzy uniform spaces [17,21] and
Artico-Moresco fuzzy proximity spaces[14]. The third
notion worked out in [23] agree with the framework of
a fuzzifying topology[25-28]. In [29], sostak
introduced a new approach for a fuzzy topology as a
fuzzy subset of the fuzzy powerset I*(i.e. a mapping
7 : I — 1) satisfying certain axiom, the
corresponding theory of fuzzy topological spaces
containing Chang’s approach as special, in a certain
sense crisp case, was developed in a series of

subsequent papers[29-35]. Based on the first notion of
fuzzy  syntopogenous  structure the  authors
[9]established the general theory of syntopogenous
structures on a completely distributive lattice and
researched the unified question of cotopology, quasi-
uniformity and T-structure. In [10], we combined
fuzzy topological structure on X with algebraic
structure on X, and investigated their corresponding
structures and their properties. Concretely , we
studied the preorder relation generated by an L-fuzzy
syntopogenous structure. Conversely we researched
the L-fuzzy syntopogenous structure defined by a
preorder relation. And the increasing (decreasing) L-
fuzzy syntopogenous space with preorder were
defined , their properties were studied and an
important example of an increasing L-fuzzy
syntopogenous space (R, Sg,<) was given. In this
paper, we continue the research of [10]. In the
section 3, the relationship between fuzzy topological
structures and increasing(decreasing)fuzzy
syntopogenous structures is studied. In the section 4
the definition of continuity of a preordered L-fit
syntopogenous space (X ,S,<)and two examples are
given. In the section 5 the equivalent depictions of
continuity are researched . In the section 6 the
boundedness and its properties are discussed. In this
paper we use notation,which is standard for the “fuzzy
mexthematics”, usually without explanation.

2. Preliminaries

In this paper, L =<L,<A,v,'>always denotes a
completely distributive lattice with order-reversing
involution “” . Let O be the least element and 1 be
the greatest one in L . Suppose X is a
nonempty(usual)set, an L-fuzzy set in X is a mapping
A:X — L, and L will denote the family of all
L-fuzzy sets in X . It 1is clear that
L =< L*, <AV, > is a fuzzy lattice, which has
the least element 0 and the greatest one 1, where
0(x)=0,1(x)=1, forany Xe X .

Definition 2.1.[4]) A binary relation << on L* is
called an L-fuzzy semi-topogenous order if it satisfies



the following axioms (1)0<<0 and 1I<<1 ;

() A<< B implies A<B ;

(3) A £A<<B<B, implies A <<B, . The
complement of an L-fuzzy semi-topogenous order <<
is the L-fuzzy semi-topogenous order <<° defined by
A<<*B iff B' << A An L-fuzzy semi-
topogenous order << is called : (i)symmetrical if
<<=<<" ; (ii)topogenous if A <<B, and
A <<B, imply AAA <<B AB, and
A v A <<B VB, ; (iii)perfect if
A <<B;, j€J implies v A; <<VB; 5 (iv)eo-
perfect if A; << B J-,j €J implies NA<<AB; ;

(v)biperfect if it is perfect and co-perfect.

Suppose that <<;, <<, are L-fuzzy semi-
topogenous orders on X , we call << finer than
<<, (e <<, is coarser than <<, ) if for any
ABel”, A<<, B implies A<<, B, it is
denoted by <<,<<<; If <<,<<<, and
<<,S<<,, then <<=<<,. For a given L-fuzzy
semi-topogenous  order << we  define
<<P,<<', << as follows : A<<PB iff there exist
A.iel , such that A=VvA' , and for any
I, A << B;A<<' B iff there exist Bj,j € J such
that B=naB; and B<<B; for any
. b . .

JeJ;A<<" B iff  there  exist A,
iel,B;,jeJ such that A=vA,B=AB; and
A1<<éj foranyiel,jeld.

Definition 2.2.([6]) An L-fuzzy syntopogenous
structure on X is a nonempty family S of L-fuzzy
topogenous orders on X having the following two
properties:(LFS1)S is directed in the sense that given
any two members of S there exists a member of S finer
than both ; (LFS2)for any << in S there exists <<,
in S such that A << B implies the existence of an L-
fuzzy set C with A<<, C <<, B.

Let S(X) be the set of all L-fuzzy
syntopogenous structures on X . If S is an L-fuzzy
syntopogenous structure on X , then the pair
(X,S) is called an L-fuzzy syntopogenous
space . An L-fuzzy syntopogenous structure S
consisting of a single topogenous order is called a
topogenous structure and the pair(X,S) s called an
L-fuzzy topogenous space . O is called perfect
(resp. co-perfect, biperfect) if each member of S is
perfect(resp . co-perfect, biperfect). An L-fuzzy
syntopogenous structure S, is called finer than another
one 32 , if for each << in 82 there exists a member
of S, finer than <<. In this case we also say that S, is
coarser than Sl, denoted by 52 < Sl. If S1 is finer
than S, and S, finer thanS,, thenS,, S, are called
equivalent, denoted by S, ~S,. To every L-fuzzy
syntopogenous  structure correspond two  L-fuzzy

topologies 7, . T T, given by the interior
operator 4~ =Sup {p > p<<u for some
<<e Sy, 7, given by the closure operator

H=nN{p:u << p for some <<€ S} L If
{<<,;a e l}is a family of L-fuzzy semi-topogenous
orders on X then <<=V __, <<, is the fuzzy semi-
topogenous  order defined by wu<<p iff
U<<, p for some ael If S is a fuzzy
syntopogenous structure, then it is easy to see that
<<= Vv{<<i<<e S} is an L-fuzzy topogenous order
and than {<<.} is an L-fuzzy topogenous
structure . Moreover, p €T, iff u <<Sp M and
Her, iff g << y'. To every L-fuzzy topology
7 on X corresponds a perfect L-fuzzy topogenous
structure ,  S_ ={<<} where (<< p iff there
exists c € 7 with £ <o < p, and a co-perfect L-
fuzzy topogenous structure S: ={<<} , where
U<<p iff there exists E'er  with
HU<E<p. Moreover, 7=75 and T=1..,
conversely, to every perfect(or co-perfect)L-fuzzy
topogenous structure S = {<<} corresponds the L-
fuzzy topology 7 =7 (or T =7 : ) where u € 7 iff
U<<por g << ). To two different L-fuzzy
topologies correspond different perfect(or co-
perfect)L-fuzzy topogenous structures.

3. Topology and preorder

A preorder on X is a binary relation “<” on X which
is reflexive and transitive. A preorder on X which is
also anti-symmetric is called a partial order or simply
an order. By a preordered (resp. an ordered) set we
mean a set with a preorder (resp. a partial order) on
it.

Definition 3.1.([3]) Let (X,<) be a preordered
set. AeL” is called:

(i)increasing, if X<V implies A(X) < A(Y);
(i)decreasing , if X<y implies A(Y)< A(X) ;
(iii)order  convex if Yy<X<Z implies
A(Y) A A(Z) < A(X) .

Definition 3.2. Let (X,<) be a preordered set,
define mappings p, a, c:L* — L* . as follows :
for any
Ae L™, xe X, p(A)(X) = v{A(Y): Y < x};
a(A)(X) = A{A(Y) : X < ¥} C(A) = p(A) Aa(A).
Lemma 3.1.([10] theorem 3.1) Let(X,S) be an L-
fuzzy syntopogenous space, define a binary relation
<, on X as follows : for any X,y € X, X<, Y iff
for Ae LX,<<€ S,AelL, 2#0 and y, <<A
implies X, < A. Then “<"is a preorder on X, it is
called the preorder generated by S on X.

Lemma 3.2.([10] theorem 3.5) Let (X,<) be a
preordered set, define <<on L* as follows : for any
ABel” A<<B iff X<Yy implies
A(Y)<B(X) , then S_={<<} is an L-fuzzy
biperfect topogenous structure , and for  any
X,y € X, X<V implies X<,_ Y.

—s<



Definition 3.3.([10] Def 4.1) Let (X,<) be a
preordered set, S be an L-fuzzy syntopogenous
structure on X , then (X,S,<) is called increasing
(decreasing)if for  X,ye X,X<y  implies
S V(Y 5 %)

Lemma 3.3. ([10] Theorem 4.3) S*(S") is the finest
one of all increasing (decreasing)L-fuzzy
syntopogenous structures which are coarser than S on
S(X) , where S¥*=v{S"'eS(X):(X,S,<
increasing, S'<S};

S'=v{S' eS(X):(X,S",<) decreasing ,
S'<S}.
Proposition 3.4. Let (X, 7) be an L-fuzzy topological
space, then the set of increasing(decreasing) t-open
set is an L-fuzzy topology on X , denoted by

(7).

Proof . We prove Proposition 3.4 by [3]
Proposition 3.2.
Theorem 3.5. Let (X, Z') be an L-fuzzy topological
space and = {<<} , then
T., =1" T =T

“Proof . ‘if Ae r , as S:” < S: by [10]
Proposition 2.1 TS » §T; =7 , also by [10]
Propositon 4.1 °, S <S_ hence
Acr,A'<<_ A", ieAez and X<y implies
A(Y)<AX) G e A 1ncreasmg) So we have
completed the proof of Ts <7*. Conversely, if
Ber” (ie. Ber and B 1ncreas1ng) then
B'<<. B’ and by [10] Corollary 3.6 B'<< B,
let <<,=<<. 0<<_, as <<Os<<<,<<os<< by
Proposmon 3 5 [5], we know that (X So=

(<<} , 2 is increasing, and S, < S, thus
S, <SS, i . But B'<<, B 1mplies
B( U <<)'B’, and by Propos1t10n 2.1 [10]

B’ edi, so z'" <r
51m11ar1y prove =1 R
Let (X,0) be an *L- -fuzzy proxnmty space (see
[7]). by Proposition 2.2[10]. S ={<<;} is an L-
fuzzy symmetrical_topogenous structure , where
A<<;B iff ASB' . Let’s define O, as
follows: AJ, B iff A<<B' , for some
<<eS”. 1l easy to prove that O, is an L-fuzzy
proximity, denoted by 0. We have the following
0" depiction theorem.
Theorem 3.6. AS' B iff there exist an increasing L-
fuzzy proximity 0, (i.e. (X,{<<g},<) increasing)
which is coarser than & and families of L-fuzzy

thus 7 ., = =7%. We can

sets {A :im1,...,m} and {B j=1,....n} such
that A = VA, B=v B and A0,Bj for
ie{l,2,.. ]m}je{12“ n}

(<<t =(8")', WU <<, )q a,ely=S", so
A<<B'"iff AUZ<, ) B, by Proposition 3.1[6]
there gxist (A, h..., 'A,} {B’, ..., B} and

A= VAI B'—/\B for any i , j ,
j=1

Proof. Ai A§ B iff << B
(L

AI(U <<, )BJ , thus there is @; € | such that
A a, IB re. Ao, B.
Theorem 3.7. Let (X, <j be a preorder set, define a
binary relation <<, on L" as follows: for
any A Bel” A<< B iff X<y implies
AX) < A(Y) . "Then S ={<<,} is an L-fuzzy
biperfect topogenous structure , and for any
X,ye X, X<y implies X<.. Y.
Proof . Please see the proof of theorem 3.5

[10].
Theorem 3.8. Let (X,<) be a preordered set,

={Eecl*:E is increasing on

( <)}, Hy={Eel":E is decreasing on
(X ,S)} We define binary relations <<, ,<<,

as follows : A <<, B iff there exists E € H, suc(h
that A<E<B; A <<H, B iff there "exists
EeH, such that
A<E < B . Then(1) <<y, <<y, are L-fuzzy
biperfect topogenous orders;

() (<< } =S i<y 125,

Proof. (1)We can prove the results immediately
by Proposition 3.2[3]. (2)As A<<, B iff there
exists E € H; such that ASE < B , also X<y
implies A(X) <E(X)SE(y)< B(y) , SO
A(X) < B(y) , thus A<<, B ,
e {<<y P <{<<,} = S..

Conversely , if A<<,B ,  choose
E=p(A)eH, , aa A<<,B , so X<y
implies A(X)<B(Yy) , hence AL p(A)<B,
thus A<<, B ie.
{<<t=S.<{<yy } Therefore {<< = S..

Slmllarly for <<, =S_.

Corollary 3.9. Let(X ;<) be a preordered set, S be
an L-fuzzy syntopogenous structure on X, then
(X,S,<) is increasing iff S < §,, = {<<_ } .

Proof. We can prove the result immediately by

Proposition 4. 2(3)[10].

4. Definition of continuity

A preordered (resp, an ordered) set (X ,<) on which
there is a given L-fuzzy syntopogenous structure S is
called a preordered (resp, an ordered) L-fuzzy
syntopogenous space, denoted by (X,S,<
Definition 4.1. A preordered L-fuzzy syntopogenous
space (X,S,<) is called continuous iff for every
<<€ S, there exists <<,€S such that A<<B
implies P(A) <<, p(B) and a(A) <<, a(B).

Example 4.1. Any L-fuzzy syntopogenous space
(X,S) can be regarded as a preordered L-fuzzy
syntopogenous space (X,S,=) where “=" is the
relation of the equality on X. Such space is always
continuous.

Example 4.2. Let (X,<) be a preordered set,
define binary relation <<, on L~ as follows: for any



ABeL*,A<<, B iff X<y implies
A(x) < A(y) by Theorem 3. 7, S.={<<,} is
an L- fuzzy biperfect topogenous structure .  Then
(X, S<,<) is continuous.

In fact , if A<<,B and X<y ,
then A< B,z< X implies Z<Yy, A(z)<B(2),
therefore

P(AYX) = V{A(z): < X} < p(B)(Y) = v{B(2):

z<yy o, P(A)<<, p(B)
a(A) <<, a(B).
Theorem 4.1. Let (X,7) be an L-fuzzy topological
space , S ={<< } , then preordered L-fuzzy
syntopogenous space (X,S,<)is continuous iff for
any p €7 implies p() €7 and a(u)er.
Proof. Sufficiency: for any pe 7, u <<, u,
implies p(u) <<, p(x) , a(u) <<, a(y) ,
p(u) e and a(u) e v . Necessity: if He_p,
then there exists t4, € T such that 1 < 1, < p, so
P(1) < p(uy) < P(p) and
a(u) <a(uy) <a(p), p(uy) er,a(y) €7,

hence P(u) <<, P(p) and a(u) <<, a(p).
Proposition 4.2. Let(X,0) be an L-fuzzy proximity

space([7]) , S = {<<a} then (X,S,<) is
contlnuous iff for every increasing (or decreasmg) set
pelX, we have that p(u)Sp implies udp (or
a(u)op implies uop).

The proof'is omitted.
Proposition 4.3. Let U be an L-fuzzy uniformity
structure ([2])on X , S, (see[5]) is induced by U ,
then (X,S,,<)is continuous iff for every Ue€U ,
there exists U, €U , such that U(A) < B implies
0,(p(A)) < P(B) and u,(a(A) < a(B).

The proof is omitted.

Similarly

5. Definition of continuity

Theorem 5.1. Let (X,<) be a preordered set , <<
be an L-fuzzy semi- topogenous order on X, we
define bmary relations <<’ and <<" on X as
follows: 11 <<' p iff there exist 4, € L*, p, e L
such that ,u << p and

7R a(yl) a(p) < p,u<<"p iff there exist
Y7y = L such  that g <<p,  and

M << p(;”])? P, )"S pP-
Then << and <<" are L-fuzzy semi-topogenous

orders on X . Let
p(<<) =<<"%a(<<) =<<". If S is an L-fuzzy
syntopogenous structure on X , the
pP(S) ={p(<<) <<e S} and
a(S) ={a(x<) <<e S} are L-fuzzy

syntopogenous structures on X.

Proof. We can verify straightly from definition
2.1, 2.2.

In the same way we can define C(<<) and

c(S).

Proposition 5.2. Let (X,<) be a preordered set,
<< be an L-fuzzy semi-topogenous order, then
p(<<?)< p(<<)? , and a(<<P)<a(<<)? ,
c(<<?)<c(<<)? . And if S is an L-fuzzy

syntopogenous structure on X , then
P(S”) < |0(S)p a(s")<a(S)",c(S?)<c(s)’
and ¢(S") ~

Then proof is omltted.
Proposition 53. If a preordered L-fuzzy
syntopogenous space (X,S,<) is continuous, then
(X,S°,9),(X,8,<) and (X,S",2) are
continuous.

The proof is omitted.
Proposition 5.4. For every jelJ,(X,S,<) is
continuous, then (X, v §,,<) is continuous.

The proof is omitted’
Theorem 5.5. Let(X,S,<) be a preordered L-fuzzy
syntopogenous space, then the following conditions
are equivalent : (1) (X,S,<) is continuous ;
2 p(S)<S and a(S)<S ;(3) ¢(S)XS ; (4
c(S)* <S, where a€{t,p,b,tp}.

Proof. (Diff(2). If(X,S,<) is continuous,
then for <<€ S, there exists <<€ S such that

A<<B implies

P(A) <<, p(B) a(A) <<, a(B) , hence
p(<<) <<< =<<;,a(<<) <<<“_<< Conversel

y, if p(S)<S and as) < S then <<eS§,

there exist <<€ S, <<,€ S such  that
P(<<) <<, and a(<<) <<<,, by Definition 2.2
there exists <<'eS$S Such that
<< U<<,<<" . Thus if A<<B , then
P(A)p(<<)p(B) and a(A)a(<<)a(B) , so
p(A) <<" p(B) and a(A) <<"a(B).

(2)iff (3) is obvious.

(3)iff (4). Because of C(S)<c(S)*, but
c(S)*<S , so ¢(S)<S , conversely , if
c(S)<S, then c(S)* <S%~s.

Corollary 5.6. Let (X, S) be a preordered set, T be
a topology on X S={<<} Let
» = {P(): e T}G, “{a(u):puer)
=06, Vv Gp, the topology generated by the
subbase G, (resp. G, , G ) is depoted by

p (resp. Z' ,T¢,)» then e =Ty N {l< ~
(<< )p << } ~ {;(<<) }{<<T Fp ~
c(<<,)P ’

The proof is omitted.

Corollary 5.7. Let (X,0) be an L-fuzzy proximity
space, “<’be a preorder on X,S ={<<;},

o, ?‘p(« » ,0, 53(«) , then (1) AJB iff
A< /\ p(x ),B < v Vi where X;0y;, and Y,
is decreasmg, A, B,xj,yj el’1<j<n.



) Ao,B iff A< /\a(x) B<vyJ ,
where  X;0y; and y ;s
X .
A,B,xj,yJ el ,1<)<n.
The proof is omitted.
Corollary 5.8. Let (X,<) be a preordered set, U be

1ncreas1ng s

an L-fuzzy quasi-uniformity structure , let

p(S,)’ ={p(<<)° : <<eS,} , the L-fuzzy

quasi-uniformity ~structure induced by P(S ”)b

denoted by M, , similarly

,ua,,uC ,upvya,SH 5SS, Sﬂa then
= p(S, ) , S, =a(s, )° and
=c(S, ).

The proof is omitted.

6. Boundedness and its depictions

Definition 6.1. A preordered L-fuzzy syntopogenous
space (X,S,<) is called bounded iff for every
<<e S, there exists & = L* such that A<< B
implies there exists C € & with ASC <B.
Theorem 6.1. If (X,S,<) is totally bounded,
then (X, S,<) is bounded.

Proof. We can prove the result immediately by
theorem 3.4[12].
Theorem 6.2. A preordered L-fuzzy syntopogenous
space (X, S,<) is bounded iff for every <<€ S,
there exists <<,€ S and o < L such that A<< B
implies there exist C,Deco with
A<C< D<B.

Proof. Necessity : We can prove the result by
choose £ =0 .

Sufficiency : For <<€ S, by (LFS,) there
exists <<; with <<<<<; 0 <<, 0 <<, . As <<€ S
and (X,S,<) is bounded So there is ¢ C L

with Ay <<, B, , therefore exists C, € & with
A <C,<B, Now  for A<<B ,
<< O << 0<<, , S0 there exist

C, DeL wrth A<< C<<,D<<, B . Thus
there are C,,D, ¢ such that A<C <C ,
D<D <B , also C1SC<<1DSD1 So

C, <<, D,. Above all give <<€ S, there exist
<< € S and ec L such that A<<B implies
there is C.,De¢ satisfying
A<C <<, D<B , therefore the theorem is
obtained.

Proposition 6.3. (1) If S;,S € S(X),S<S, and

S, is bounded , then S is bounded . (2)If
S eS(X) then S is bounded iff S° is
bounded.

The proof is omitted.
Theorem 6.4. Suppose f : X—) Y is a mapping,
S'eS(Y) and S=f(S)". (MIf S is

bounded, then S is bounded. (2)If fis onto and S’

is bounded, then S'is bounded.

Proof. (1)Suppose <<'e S',<<= f (<),
by def. 6. 1 there is &€ < L' such that A, <<'B,
implies  that  there exists C, €&  with
A,<C,<B,.

Now suppose A<< B , so
f(A)<<[f(B")]', therefore for some C € & such
that f(A)<C<[f(B ) , and
A< f(C)<B.

(Z)Suppose <<'e S’ and
<<= f(<<),e c X such that A <<B,
implies there exists C,e¢ with
A, <C, < B01 Now suppose A<<B', so
f_l(A) << 17(B) : thus  for  some
cee, ' (A)SC<E(B). therefore

A< f (C)<B.
Theorem 6.5. Suppose S € S(X),S" € S(Y) and
f:(X,S)—>(,S") is (S,S’) -continuous onto
mapping, If S is bounded, then S’ is bounded.
Proof . As f is (S S') -continuous , so
f'(S)<S, therefore f'(S’) is bounded. By
theorem 6.4(2) S’ is bounded.
Theorem 6.6. S € S(X),S is bounded iff for every
<<e S, there exist <, el , and <<,€S
such that <<<<<,= (U <MI .I)q <<<,, where < o,
defined as fellows: A<, , B iff
A<p <p <Bu,p el

Proof. Sufficiency : For <<€ S, by theorem
6.2 , there exist <<,€S and o L*, set
<<= )q where (0,,0,)€0%x0 and

o, <g @'Zz)ealWe easrly prove <<S<<, << .
Necessity: For <<€ S, there is << € S and
<<= ((J<, )" such that <<<, <<< . Set
o={pue ", u=0, or u=1, or,u V/\,um
H=NApPy , where My € el}, We ca drove o

satlsfymg the condition. In fact, if H<<p, as
<K<, , so ,u <<, p, therefore exist
A, B;f, =1,2,.n,K,j=12,...N  such that
Hu=v A,p= /\BJ, A << B; .  where
<20 <up "for A, <<’ , there exists
my; %iilAk <Imul P kB A M, </0mkJ <B, =
H=V AKS v NSE(\/,DmkSBJK

= fr= v REA VU TS AN Ry <A By =
choose C'2 A Vk,ulk le o’ DIE'R v kb Jéla
So u<CLDBX p" also as <2/<<<”, hence

U <<, pi,iel, and C <<, D, so the theorem is
obtain.
Theorem 6.7. Suppose (X,S,,<),_, is a family of
preordered L-fuzzy

Syntopogenous spaces . so S =V, S, is
bounded < forevery A € A, S, is bounded.

Proof. If S is bounded, as S, <S , by
proposition 6. 3(1) S, is bounded. Conversely,
for <<€ S , suppose <<= (U <<, )q where

_p,



<</1,€Sz’ A €N, as Sz is bounded, order

g, C L satisfying AI <<, Bj= for
some C €¢, with A < C B pr suppose
A<<B , so A=v"T il A ,B= A B, and

A <<, By, where <<0— i1 <<I , for G, k
ex1sts C € &= ,U&‘l with A <C, K < B, .
therefore A <v A C '<B. By the deﬁnltlon 6.1,

we obtain the tHeorelm
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