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Abstract

Firstly, we establish a formula of FMP problems
by Triple I algorithm based on a family of implica-
tion operators L-λ-G. Secondly, we discuss fuzzy
systems based on Triple I algorithm and their re-
sponse ability. The results show that the fuzzy sys-
tem with a family of implication operators L−λ−G
has only step output property rather than universal
approximation; Finally, we expose its significance of
probability and give its probability distribution. It
seems that it plays a role of the kernel of system in
some fuzzy system.
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1. Introduction

In 1973, L.A.Zadeh proposed the ideal of fuzzy in-
ference and gave the famous CRI algorithm [1].
Fuzzy technology associated to fuzzy control is
widely applied to the various areas such as industry,
agriculture and science research. Due to it, much
economic benefit has been obtained. Wang [2] gave
the famous total implication Triple I algorithm with
respect to fuzzy inference in 1999. He generalized
the famous CRI algorithm and made it into the
frame of Fuzzy Logic. It was pointed out that fuzzy
system based on Triple I algorithm was a kind of in-
terpolation in nature in [3]. Fuzzy systems based on
CRI algorithm and Triple I Algorithm were inves-
tigated in [4] and [5], respectively. It was pointed
out that response ability of constructing fuzzy sys-
tem by the distinct implication operators may be
of much difference. Some fuzzy systems with im-
plication operators have universal approximation.
But some fuzzy systems with implication operators
have only step output property rather than univer-
sal approximation. Thus they can not be applied

to the fuzzy control systems. Wang [6] and Wu [7]
independently proposed implication operators with
parameters. Zhang [8] proposed a family of implica-
tion operators L-λ-G. Is it true that a constructed
fuzzy system with implication operators and para-
meters based on Triple I algorithm has universal ap-
proximation? We normally consider the problem.
Therefore, in the paper we study the response abil-
ity and probability representation of a constructed
fuzzy system with implication operators L-λ-G and
parameters based on Triple I algorithm.

2. Total implication Triple I
algorithm concerned about
FMP problems of a family of
implication operators L-λ-G

In reference [8], fuzzy implication operator
R(x, y) = x →λ y with parameter λ ∈ [0, 1] is
defined by

x →λ y =
{

1, x ≤ y
λ(1− x) + y, x > y

x, y ∈ [0, 1]. (1)

To be specific, if λ = 1, 0 then implication opera-
tors R(x, y) become Lukasiewiez implication oper-
ator RLu and Godel implication operator RG, re-
spectively. When λ varies in the interval [0, 1], all
operators R(x, y) defined in representation (1) are
called a family of implication operators RL−λ−G.

Firstly, the principle concerned about FMP
problem by total implication Triple I based on fuzzy
inference is given in the following:

Let the notions X and Y denote nonempty sets.
F(X) and F(Y ) denote the corresponding collec-
tions of all fuzzy subsets of X and Y . If conditions
A,A∗ ∈ F(X), B ∈ F(Y ) are given, we wish to
looks for a minimum fuzzy set B∗ ∈ F(Y ) such
that

(A(x) → B(y)) → (A∗(x) → B∗(y)) (2)



has maximal value for any x ∈ X and y ∈ Y .
The result describing the support solutions of

Triple I concerned about FMP problems of a family
of implication operators L-λ-G is stated as follows.

Theorem 2.1 The support solution B∗ of Triple I
concerned about FMP problems of a family of impli-
cation operators L-λ-G satisfies the following for-
mula

B∗(y) = sup
x∈X

{A∗(x) ∧ [(R(A(x), B(y))

−λ(1−A∗(x))) ∨ 0]}, y ∈ Y. (3)

Proof. For an arbitrary y ∈ Y and C ∈ F(Y )
satisfying C(y) ≥ B∗(y), formula (2) has a maximal
value 1. In fact, for any x ∈ X, we obtain from
C(y) ≥ B∗(y) and formula (3)

C(y) ≥ A∗(x) ∧ [(R(A(x), B(y))
−λ(1−A∗(x))) ∨ 0]. (4)

Note that the properties of the family of implica-
tion operators L-λ-G. They are non-increasing in
the first argument and non-decreasing in the sec-
ond argument. Thus two cases are considered as
follows

(i) If C(y) ≥ A∗(x), then (A(x) → B(y)) →
(A∗(x) → C(y)) ≥ (A(x) → B(y)) → (A∗(x) →
A∗(x)) = (A(x) → B(y)) → 1 ≡ 1.

(ii) If C(y) < A∗(x), then it yields that
C(y) ≥ R(A(x), B(y))− λ(1−A∗(x) from formula
(4). Therefore

(A(x) → B(y)) → (A∗(x) → C(y))
= R(A(x), B(y)) → (λ(1−A∗(x)) + C(y)) ≡ 1.

On the other hand, If there exists y0 ∈ Y sat-
isfying D(y0) < B∗(y0) and D ∈ F(Y ), then for-
mula (2) can not reach the maximum 1. Actually,
from D(y0) < B∗(y0) and formula (3), there exists
x0 ∈ X such that

D(y0) < A∗(x0) ∧ [(R(A(x0), B(y0))
−λ(1−A∗(x0))) ∨ 0]. (5)

If R(A(x0), B(y0)) − λ(1 − A∗(x0)) ≤ 0, there
is no D ∈ F(Y ) that satisfies D(y0) < B∗(y0).

If R(A(x0), B(y0)) − λ(1 − A∗(x0)) > 0, , we
get from (5)

(A(x0) → B(y0)) → (A∗(x0) → D(y0))
= (A(x0) → B(y0)) → (λ(1−A∗(x0)) + D(y0))
= λ(1−R(A(x0), B(y0))) + λ(1−A∗(x0))

+D(y0)
≤ 1−R(A(x0), B(y0) + λ(1−A∗(x0))

+D(y0)) < 1.

Putting together the results above, we claim
that B∗ is a minimal fuzzy set of F(Y ) satisfying
(2).

3. Fuzzy systems with a fam-
ily of implication operators
L − λ − G based on Triple I
algorithm and their response
ability

Suppose that the input universes X and the out-
put universe Y are limited to one-dimensional real
space R, i.e., X, Y ∈ B1, where B1 denotes one-
dimensional Borel σ− field. Pick A = {Ai|1 ≤ i ≤
n} ⊂ F(X) and B = {Bi|1 ≤ i ≤ n} ⊂ F(Y ).
A and B are respectively collections of some fuzzy
subsets of X and Y . Fuzzy sets Ai and Bi are called
language value. A and B are regarded as language
variable, and they get the values of Ai and Bi in
themselves. Thus n- pieces of fuzzy inference rules
can be formed as follows

if x is Ai, then y is Bi, i = 1, 2, · · · , n. (6)

x ∈ X and y ∈ Y are called basic variable with
respect to language variable A and B. Hence we
obtain the following relation

s∗ : A → B, Ai 7→ s∗(Ai) , Bi, i = 1, 2, · · · , n. (7)

The fuzzy relationship Ri ∈ F(X×Y )formed by the
i-th rule in (2) is also called truth universe. It is
defined by L−λ−G implication operator RL−λ−G.
Namely, Ri(x, y) , RL−λ−G(Ai(x), Bi(y)). These
n rules are linked by OR (it corresponds to union of
sets). Thus the whole inference rules is represented

by R̃ ,
n⋃

i=1

Ri, i.e.,

R̃(x, y) =
n∨

i=1
Ri(x, y)

=
n∨

i=1
RL−λ−G(Ai(x), Bi(y)). (8)

The process of forming the whole inference rules
by these parts of inference rules Ri is called rule
synthesis.

For an arbitrary given A ∈ F(X), an inference
result B ∈ F(Y ) is obtained from the whole infer-
ence rules R̃. This means that function relation s∗∗

is constructed, i.e.

s∗∗ : F(Y ) → F(Y ), A 7→ s∗∗(A) = B, (9)



where B is a minimal fuzzy set such that R̃(x, y) →
(A(x) → B(y)) has a maximal possible value for all
x ∈ X and y ∈ Y . Hence, according to Theorem
2.1, we have

B(y) = sup
x∈X

{A(x) ∧ [(
n∨

i=1
RL−λ−G(Ai(x), Bi(y))

−λ(1−A(x))) ∨ 0]}, y ∈ Y. (10)

For an arbitrary given x′ ∈ X, in order to use
(10), we set x0 = x′, fuzzify x′ and usually adopt a
fuzzy set A′ with single point:

A′(x) =
{

1, x = x′,
0, x 6= x′. (11)

Substituting it to (10), we obtain an inference result
B′ ∈ F(Y )

B′(y) =
n∨

i=1
RL−λ−G(Ai(x′), Bi(y)), y ∈ Y. (12)

Since B′ is a fuzzy set, a defuzzify-method is
used to obtain the accurate scalar y′ ∈ Y . If∫

Y
|y|B′(y)dy < +∞ and 0 <

∫
Y

B′(y)dy < +∞,
then center of gravity defuzzifier is often used to
obtain y′, i.e.

y′ =

∫
Y

yB′(y)dy∫
Y

B′(y)dy
. (13)

Note x′ and y′ are expressed in order to deduce
formula (13) clearly. Now we substitute x′ for x
and substitute y′ for s̄(x). Then we can get

s̄ : X → Y,

x 7→ s̄(x)

∆=
∫

Y

yB′(y)dy

/∫

Y

B′(y)dy. (14)

Suppose that A and B are fuzzy divisions of X and
Y , respectively. There is no lose of generality in
assuming that X = [a, b] and Y = [c, d] are both
real intervals, which are divided by means of a <
x1 < x2 < · · · < xn < b, c < y1 < y2 < · · · < yn <
d, where xi, yi are respectively peak points of Ai,
Bi. If X and Y are general measurable sets, the
following conclusion holds

Theorem 3.1 Under the assumptions above, the
fuzzy system with a family of implication operators
L−λ−G based on Triple I algorithm approximates
to a step function

F (x) =
1

yn − c

n∑

i=1

hiyi = const. (15)

Proof. Set h1 = y1 − c, hi = yi − yi−1(i =
2, 3, · · · , n). Because A and B denote respectively
fuzzy divisions of X and Y , They have Kronecher
property: Ai(xj) = δij = Bi(yj). From (15) and
the definition of definite integral, we have

y′ =

∫ d

c
yB′(y)dy

∫ d

c
B′(y)dy

≈

n∑
i=1

yiB
′(yi)hi

n∑
i=1

B′(yi)hi

=

n∑
i=1

hi[
n∨

k=1
RL−λ−G(Ak(x′), Bk(yi))]yi

n∑
i=1

hi[
n∨

k=1
RL−λ−G(Ak(x′), Bk(yi))]

=
1

yn − c

n∑

i=1

hiyi = const.

If F (x) = 1
yn−c

n∑
i=1

hiyi, then the theorem is proved.

Remark 1 Since 1/(yn − c) is a constant, F (x)
is also. Namely, the interpolation function of the
fuzzy system is a step function, i.e. a function with
constant. Obviously, it has not interpolation prop-
erty. From the aspect of function approximation,
F (x) is trivial. Therefore the fuzzy system can al-
most be unapplied in the practical fuzzy control
system.

Suppose that the input universes X, Y and
the output universe Z is limited to one-dimensional
space R, i.e., X, Y, Z ∈ B1, where B1 denotes one-
dimensional Borel σ− field. A = {Ai|1 ≤ i ≤ n} ⊂
F(X), B = {Bi|1 ≤ i ≤ n} ⊂ F(Y ), C = {Ci|1 ≤
i ≤ n} ⊂ F(Z) are respectively fuzzy divisions of
X, Y and Z. Similarly, we give the sign Z = [e, f ]
as shown above. Suppose that zi is a peak point of
Ci and satisfies e < z1 < z2 < · · · < zn < f . And
assume that Ci is a integrable function.

Theorem 3.2 Under the assumptions above, the
fuzzy system with a family of double input and sin-
gle output implication operators L−λ−G based on
Triple I algorithm approximates to a step function

F (x, y) =
n∑

i=1

hi

zn − e
zi = const.

Proof. Set A,B, C are language variables. Hence
n-pieces of fuzzy inference rules can be formed as
follows

if x is Ai and y is Bi,

then z is Ci, i = 1, 2, · · · , n. (16)

The whole truth universe R̃ =
n⋃

i=1

Ri formed by

the n pieces of rules is determined by L − λ − G



implication operator RL−λ−G. Namely,

R̃(x, y, z) =
n∨

i=1
Ri(x, y, z)

=
n∨

i=1
RL−λ−G(Ai(x) ∧Bi(y), Ci(z)).

Noting Theorem 2.1 and according to Triple I
algorithm, we obtain an inference result C ∈ F(Z)
for arbitrary given A ∈ F(X), B ∈ F(Y ):

C(z) = sup
(x,y)∈X×Y

{A(x) ∧B(y) ∧ [(R̃(x, y, z)

−λ(1−A(x) ∧B(y))) ∨ 0]}, z ∈ Z. (17)

For a input concrete vector (x′, y′) ∈ X × Y , it is
fuzzified by the following way

A′(x) =
{

1, x = x′,
0, x 6= x′, B′(y) =

{
1, y = y′,
0, y 6= y′.

Substituting it into (17), we obtain

C ′(z) =
n∨

i=1
RL−λ−G(Ai(x′) ∧Bi(y′), Ci(z)), z ∈ Z.

Since C ′ is a fuzzy set, a defuzzify-method is
used to obtain the accurate scalar z′ ∈ Z. If∫

Z
|z|C ′(z)dz < +∞ and 0 <

∫
Z

C ′(z)dz < +∞,
then center of gravity defuzzifier is often used to
obtain z′. i.e.

z′ =

∫
Z

zC ′(z)dz∫
Z

C ′(z)dz
.

Similar to (14), it follows that

s̄ : X × Y → Z

(x, y) 7→ s̄(x, y)

∆=
∫

Z

zC ′(z)dz

/∫

Z

C ′(z)dz. (18)

Set h1 = z1− e, hi = zi− zi−1(i = 2, 3, · · · , n).
Then

z′ =

∫
Z

zC ′(z)dz∫
Z

C ′(z)dz
≈

n∑
i=1

ziC
′(zi)hi

n∑
i=1

C ′(zi)hi

=

n∑
i=1

zi[
n∨

k=1
RL−λ−G(Ak(x′) ∧Bk(y′), Ck(zi))]hi

n∑
i=1

[
n∨

k=1
RL−λ−G(Ak(x′) ∧Bk(y′), Ck(zi)]hi

=
1

zn − e

n∑

i=1

hizi = const. (19)

If we choose F (x, y) = 1
zn−e

n∑
i=1

hizi, then the the-

orem is proved.

Remark 2 Since F (x, y) = const, this fuzzy
system has not interpolation property. Thus the
fuzzy system can almost be unapplied in the prac-
tical fuzzy control system.

Remark 3 Formula (16), which denotes a in-
terface rule base, is a customary notation in engi-
neering. The precise statement is seen in the refer-
ence [3] on the remark about completeness of rule.

Remark 4 ”approximates to” in Theorem
3.1 and Theorem 3.2 means a limit of sum, which
is regarded as integral. Indeed, greater n is, and
higher approximation is.

4. Probability expression of
fuzzy systems with a fam-
ily of implication operators
L − λ − G based on Triple I
algorithm

On the base of [9], we shall discuss probability ex-
pression of fuzzy systems with a family of implica-
tion operators L−λ−G based on Triple I algorithm.

Firstly, we consider the case of SISO. Noting
that B′(y) in (13) is related with x′. Therefore
B′(y) can be represented by

B′(y|x = x′) ∆= B′(y), (20)

which means that a rough output B′ ∈ F(Y ) is
obtained under the condition x = x′. Due to arbi-
trariness of x′ ∈ X, we directly rewrite B′(y|x = x′)
into the following form about a binary function
p : X × Y → R:

p(x, y) ∆= B′(y|x = x′) = B′(y). (21)

Thus formula (14) becomes

s̄(x) =
∫

Y

yp(x, y)dy

/∫

Y

p(x, y)dy. (22)

Function p(x, y) is prolonged to R2 and defined by
q(x, y):

q(x, y) ∆= p(x, y)IX×Y (x, y)

∆=
{

p(x, y), (x, y) ∈ X × Y,
0, (x, y) /∈ X × Y,

(23)

where IX×Y (x, y) is a characteristic function of X×
Y . If p(x, y) in (22) is replaced with q(x, y), then
s̄(x) in (22) is equivalent to a prolonged function in
R. For simplification, the prolonged function is still



denoted by s̄(x). The same assumption is made in
the following similar case. Thus (22) becomes

s̄(x) =
∫ +∞

−∞
yq(x, y)dy

/∫ +∞

−∞
q(x, y)dy. (24)

Further more, set

H(2, n, RL−λ−G,∨) ∆=
∫ +∞

−∞

∫ +∞

−∞
q(x, y)dxdy. (25)

H(2, n, RL−λ−G,∨) is called a H function with
the parameters (2, n, RL−λ−G,∨), where 2 denotes
the binary function, parameter n denotes the rule
number used in inference rule (6) which constructs
q(x, y), parameter RL−λ−G denotes a fuzzy impli-
cation operator, parameter ∨ denotes a kind of
residual triangle module used in synthesis relation-
ship.

The aim of importing the H function is
only in order to reduction to unity. If
H(2, n, RL−λ−G,∨) > 0, then set

f(x, y) ∆= q(x, y)/H(2, n, RL−λ−G,∨). (26)

It is obvious to see that (24) becomes

s̄(x) =
∫ +∞

−∞
yf(x, y)dy

/∫ +∞

−∞
f(x, y)dy. (27)

Theorem 4.1 The denotations on the fuzzy sys-
tem of SISO implication operator L− λ −G based
on Triple I algorithm are same as above. If∫

Y
|y|p(x, y)dy < +∞ and 0 <

∫
Y

p(x, y)dy < +∞,
there exists a probability space (Ω,F , P ) and a ran-
dom vector(ξ, η) defined in this space such that

E(η|ξ = x) = s̄(x),

which means that the value s̄(x) of function s̄ at
x is equal to conditional mathematical expectation
E(η|ξ = x) of random variable η under the condi-
tion ξ = x.

Proof. Let input universe and output universe
be basic sets. We construct two probability space
(X,B1, P1) and (Y,B2, P2), where B1 and B2 are
Borel σ− fields of X and Y respectively, then P1

and P2 are probability measures in B1 and B2 re-
spectively. Suppose that ξ and η are random vec-
tors respectively defined on X and Y . Choose
Ω ∆= X×Y , F ∆= B1×B2, and P

∆= P1×P2, where F
is a Borel σ− fields generated by cartesian product
of two Borel σ− fields B1 and B2. As well-known,
P is a product probability measure. Thus we ob-
tain the joint probability space (Ω,F , P ). Without

changing denotatins, define again the random vari-
ables ξ and η on Ω by the following way:

ξ : Ω → R, (x, y) 7→ ξ(x, y) ∆= ξ(x),

η : Ω → R, (x, y) 7→ η(x, y) ∆= η(y).

Then, (ξ, η) becomes a two-dimensional vector in
joint probability space. According to the given con-
ditions, a function defined by (26)

f(x, y) ∆= q(x, y)/H(2, n, RL−λ−G,∨)

=
[

n∨
i=1

RL−λ−G(Ai(x), Bi(y))]IX×Y (x, y)
∫

X

∫
Y

[
n∨

i=1
RL−λ−G(Ai(x), Bi(y))]dxdy

, (28)

satisfies the condition of probability density func-
tion of two-dimensional random vector. Thus, take
f(x, y) as the probability density function of ran-
dom vector (ξ, η). From the definition of condi-
tional mathematical expectation, in case of ξ = x
the conditional mathematical expectation of ran-
dom variable η in probability space (Ω,F , P ) is rep-
resented by

E(η|ξ = x) =
∫ +∞

−∞
yf(x, y)dy

/∫ +∞

−∞
f(x, y)dy.

Hence, we have E(η|ξ = x) = s̄(x).
Next, we consider the case of double input and

single output. Obviously, C ′(z) in (18) is correla-
tive to (x′, y′), which is taken as C ′(z) ∆= C ′(z|x =
x′, y = y′) or equal to the form of a triple function:
p : X × Y × Z → R, where

p(x, y, z) ∆= C ′(z). (29)

Thus, (18) becomes to

s̄(x, y) =
∫

Z

zp(x, y, z)dz

/∫

Z

p(x, y, z)dz. (30)

Similar to (23), p is prolonged to R3. Let
q(x, y, z) ∆= p(x, y, z)IX×Y×Z(x, y, z) and (30) is
translated into

s̄(x, y) =
∫ +∞
−∞ zq(x, y, z)dz

/∫ +∞
−∞ q(x, y, z)dz. (31)

In order to reduction to unity, set

H(3, n, RL−λ−G,∨)
∆=

∫

X

∫

Y

∫

Z

p(x, y, z)dxdydz. (32)



Suppose that H(3, n, RL−λ−G,∨) > 0, take

f(x, y, z) ∆= q(x, y, z)/H(3, n, RL−λ−G,∨). (33)

In accordance to proceding declaration, s̄(x, y) is
equal to s̄(x, y)IX×Y (x, y). By (31) we have

s̄(x, y) =
∫ +∞
−∞ zf(x, y, z)dz

/∫ +∞
−∞ f(x, y, z)dz. (34)

Theorem 4.2 The fuzzy system of fuzzy implica-
tion operator L − λ − G with double input and
single output is based on the Triple I algorithm.
Its denotations concerned are stated above. If∫

Z
|z|p(x, y, z)dz < +∞ and 0 <

∫
Z

p(x, y, z)dz <
+∞, then there exists a random vector (ξ, η, ζ) de-
fined on a probability space (Ω,F , P ) such that

E(ζ|ξ = x, η = y) = s̄(x, y).

Namely, the value s̄(x, y) of the function of s̄ at
(x, y) is the conditional mathematical expectation
E(ζ|ξ = x, η = y) of random variable ζ under the
condition of (ξ, η) = (x, y).

Proof. Assume that X and Y are input universes,
and Z is an output universe. We construct three
probability spaces as

(X,B1, P1), (Y,B2, P2), (Z,B3, P3),

where B1, B2 and B3 are Borel σ− fields in X, Y
and Z respectively, P1, P2 and P3 are probability
measures in B1, B2 and B3 respectively. Suppose
that ξ η, and ζ are random variables defined by
X, Y and Z respectively. Take Ω ∆= X × Y × Z,
P

∆= B1 × B2 × B3, and F ∆= P1 × P2 × P3. We get
joint probability space (Ω,F , P ). Without chang-
ing notations, renew ξ, η, and ζ defined in Ω

ξ : Ω → R, (x, y, z) 7→ ξ(x, y, z) ∆= ξ(x),

η : Ω → R, (x, y, z) 7→ η(x, y, z) ∆= η(y),

ζ : Ω → R, (x, y, z) 7→ ζ(x, y, z) ∆= ζ(z).

Then ξ, η, ζ becomes to be a three-dimensional ran-
dom vector in (Ω,F , P ). According to the given
conditions, the function defined by (33)

f(x, y, z) ∆= q(x, y, z)/H(3, n, RL−λ−G,∨) =

[
n∨

i=1
RL−λ−G(Ai(x) ∧Bi(y), Ci(z))]IX×Y (x, y, z)

∫
X

∫
Y

∫
Z

[
n∨

i=1
RL−λ−G(Ai(x) ∧Bi(y), Ci(z))]dxdydz

(35)

satisfies the condition of probability density func-
tion of three-dimensional random vector. Thus we
take f(x, y, z) as the probability density function
of random vector (ξ, η, ζ). From the definition of
conditional mathematical expectation, in case of
(ξ, η) = (x, y) the conditional mathematical expec-
tation of random variable ζ in probability space
(Ω,F , P ) is represented by

E(ζ|ξ = x, η = y)

=
∫ +∞

−∞
zf(x, y, z)dz

/∫ +∞

−∞
f(x, y, z)dz.

Hence, we have E(ζ|ξ = x, η = y) = s̄(x, y).
Remark 5 By Theorem 4.1 and Theorem 4.2,

we can construct a marginal density function, a
conditional probability density function, a proba-
bility distribution function and marginal probabil-
ity distribution function etc. from probability den-
sity function.

Remark 6 By (28) and (35), it follows two
meanings as follows: (i) From the aspect of
probability, probability density function f(x, y) or
f(x, y, z) is a kernel of fuzzy systems with a family
of implication operators L − λ − G, plays a ”sys-
tem kernel”role. It shows that it is essential that
a fuzzy system with a family of implication opera-
tors L−λ−G is a stochastic system. Consequently,
for a fuzzy system, if probability density function
f(x, y) or f(x, y, z) of a random variable (ξ, η) or
(ξ, η, η) is obtained by means of probabilistic and
statistical principle, then s̄(x) = E(η|ξ = x) or
s̄(x, y) = E(ζ|ξ = x, η = y) can be got. That is to
say that we comprehend this system. (ii) From the
construction process of fuzzy systems with a family
of implication operators L− λ−G, the probability
distribution of a stochastic system is determined by
(6)∼(14).
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