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Abstract 
We propose a new partition rule for DPLL-based SAT 
Solvers. Most of the complete SAT solvers usually are 
based on Davis, Logemann and Loveland (DPLL) 
rules. One most DPLL rule actually used in the 
modern algorithms is the Classical Partition Rule 
(CPR), that divides the problem into sub-problems 
(resolvents) and thereby it finds a solution through a 
decision tree. In this paper a new partition rule named 
Multiple Partition Rule (MPR) is presented. MPR 
generates a new decision tree according to clauses 
instead CPR which generates a decision tree according 
to variables. MPR can be used for developing new 
SAT’s algorithms and to improve existence ones that 
use CPR. Experimental results comparing MPR versus 
CPR show that using MPR makes more efficient 
solutions than CPR. 

Keywords: Propositional satisfiability problem, SAT, 
Np-Complete, Algorithms. 

1. Introduction 
All Since Cook proved that the propositional 
satisfiability problem (SAT) [1] was the first problem 
shown to be NP-Complete [2], many other problems 
have been considered in this category [3].  However, 
SAT remains at the core of this classification due: i) to 
its simple representation (this does not mean that SAT 
can be solved easily), and ii) it has been shown that 
many other NP-Complete problems can be 
transformed to a SAT instance in polynomial time [4]. 

Owing to its importance, many SAT algorithms 
have been developed based either on local search 
(incomplete) or backtrack search (complete) [5]-[6]. It 
is striking that most popular and useful complete 
algorithms for solving SAT are based on Davis, 
Logemann and Loveland algorithm (DPLL) rules [7]. 
DPLL [8] is a modified version of the algorithm 
proposed by Davis & Putnam in 1960 [7]. The DPLL 
corresponds to a backtrack search; the Boolean 
Constraint Propagation (BCP) use the Classical 

Partition Rule (CPR) [9] to make a decision tree to 
order the solution and apply backtracking. Modern 
SAT solvers like zchaff [10] and Grasp [11] have 
efficient BCP engines for detection of unit clauses, 
propagation unit literals and conflict detection. This 
solvers improve the basic backtrack search of DPLL 
implementing a non-chronology backtrack and conflict 
analysis, but using the basic BCP to partition the 
problem. In this sense, given the importance of CPR in 
the execution of SAT solvers, it is very important to 
create alternative rules in order to get more efficient 
SAT algorithms based in CPR rule. 

This paper introduces a new partition rule named 
Multiple Partition Rule (MPR) which focuses on 
solving clauses in contrast to CPR that solves 
variables, and generates a new decision tree in the SAT 
propagation process. To demonstrate the efficiency of 
MPR, it was implemented on an algorithm named 
MPR_Solver which involves a different partition 
mechanism, and CRP it was implemented on an 
algorithm named CPR_Solver. Results show that 
MPR’s efficiency outperforms CPR’s efficiency in 
fifty percent. The paper organization is as follows: in 
the next section basic definitions are provided, in 
section 3 the Classical Partition Rule (CRP) [7] is 
analyzed and discussed. In section 4, the Multiple 
Partition Rule (MPR) is presented and its application 
in a SAT algorithm named MPR_Solver to compare 
with CPR_Solver is discussed in Section 5.  

2. Basic Definitions 
To represent an instance of SAT, the next elements are 
required:  

 
• A set of variables which can be false (0) or 

true (1), n,x,x K1=β  
• A set of literals L. A literal is a variable that 

can be denied or not denied, this is: 
 

~x)(Lx):(Lx =∨=∈∃ β                         (1) 
 



• A set of clauses, m,c,cC K1=  where each 
one is a disjunction of literals, this is: 
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Where:  
 
 
 

• A boolean formula in CNF, this is: 
 

                                      (3) 
 
 
The CNF formula is also represented by a set of 

clauses, rather than as a conjunction. For example, an 
alternative way to represent φ is as the set {C1,..,Cm}.  
In this sense, a formal definition of SAT is given next:   

 
 

Definition 1. Find some true assignment for the 
variables, such that the formula φ is true; otherwise 
demonstrate that an assignment of values does not 
exist to evaluate φ as true. 

 
 
Many SAT instances are limited to the length k; 

such instances are denoted k-SAT. The most common 
instances of special interest are 2-SAT and 3-SAT. It 
has been proved that for k = 2 such instances are 
solved in polynomial time [12]-[13] while for k = 3 the 
instances are NP-complete [2]. In this paper, we use 3-
SAT instances in order to prove the MPR approach. 

The propagation for variable x is denoted by φ[x], 
that means: 
 

1. If x =1, remove  ~ x from φ´s clauses and 
remove clauses containing x from φ. 

2. If x =0, remove x from φ´s clauses and 
remove clauses containing  ~ x from φ. 

 
If φ contains no clauses, then φ=1 (true). The SAT 

problem represented by φ its satisfiable if there exist 
an assignment λ, such that φ=1 under λ, otherwise it is 
unsatisfiable. 

An empty clause denoted by ⊡ is a clause that 
does not have literals and always it’s unsatisfiable.  

3. Classical Partition Rule (CPR) 
The DPPL [7] is backtrack search algorithm. Two 
rules are the base for this algorithm: 
 

1. Classic Partition Rule (CRP), called also splitting 
Literal Rule: 

 
If the set φ can be expressed in the way:  

 
(4) 

 
where xi,j is the variable j of the clause i, then the 
following set is obtained: 

 

       (5) 
 

φ is unsatisfiable if and only if )..( 21 kϕϕϕ ∨∨∨  
is unsatisfiable; that  is, if all are unsatisfiable. 

 
2. Unit Clause Rule (UCR): 

If exist a clause ch = xn in φ, then φ[xn], if exist a 
clause ch = ~xn in φ, then φ[  ~ xn].  

 
CPR to divide the problem into two sets according 

to a selected variable; one set is evaluated with a true 
value and the other with a false value. The resulting 
sets are solved searching for one that is satisfiable or 
both are unsatisfiables. CPR also orders the solution 
search by creating a binary decision tree, which 
eliminates repetition of partial assignments proven 
previously. A possible decision tree formed by CRP is 
shown in the Fig. 1. 
 

Fig. 1: Possible decision tree formed by the CRP. 
 

In Fig. 1, each node represents a selected variable 
to be assigned, and each arch represents the 
propagation of this variable. The numbers of 
operations are counted when the selected variable is 
propagated. 
 

In the case of the possible decision tree for CRP 
shown in Fig. 1, the number of arches in the last level 
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is 2n. The first level involves the derivation of two 
arches, which then form two arches for the next level; 
the process continues in this way until the last level. 
Hereof, the total number of arches is: 

 
                           (6) 

 
 

Modern complete SAT solvers implement the CRP 
on the following way: A partial assignment ω, 
initialized empty, is maintained. A ω is extended by a 
BCP [14]; then, if the input φ is neither 1 nor 0 under 
ω, the CRP is used, the satisfiability of φ is recursively 
checked under {ω, x} and then under {ω, ~x}, as 
required. The x is a selected variable that is picked 
using some decision heuristic.  

4. The Multiple Partition Rule  
(MPR) 

In a SAT instance, clauses are formed by several 
variables joined with the disjunction operator (OR). It 
means that at least one variable in a clause needs to 
have a true value (1) to make its respective clause true. 
It also implicates not assigning the values that 
transforms the clause into an empty one without 
affecting the values that are assigned to the other 
variables. For example, the following is an 
examination of the clause ci=(x1 ∨  x2 ∨  x3) of an 
instance φ with a literal set {x1, x2, x3, x4, x5}. The 
clause ci indicates that any one of x1, x2 or x3 should 
take a true value to make this clause true; it also 
indicates that the assignment {  ~ x1,  ~ x2,  ~ x3} with 
any of the other variables is invalid. The set of invalid 
assignments is shown in the Fig. 2. 
 
{  ~ x1,  ~ x2,  ~ x3, x4 }, 
{  ~ x1,  ~ x2,  ~ x3, x4, x5}, 
{  ~ x1,  ~ x2,  ~ x3, x4,  ~ x5}, 
{  ~ x1,  ~ x2,  ~ x3,  ~ x4}, 
{  ~ x1,  ~ x2,  ~ x3,  ~ x4, x5}, 
{  ~ x1,  ~ x2,  ~ x3,  ~ x4,  ~ x5} 
 
= {  ~ x1,  ~ x2,  ~ x3, *} 

Fig. 2: Set of invalid assignments, clause (x1∨ x2∨  x3) 
 
In the case of the decision tree of CRP shown in 

Fig. 1, it accepts this invalid assignment despite the 
CPR is focused on the selected variable. In this sense, 
the CPR procedure (when the variable x1 has been 
selected to be propagated, and the variables  x2, x3, x4, 
and x5 remain in the clause) can be expressed by: 

CRP. If [ ] { }( )0),,,,,( 54321 =xxxxxωϕ  Then         (7)   

[ ] { }( )54321 ,,,,~, xxxxxωϕ  

 
From (7) it is clear that the CPR procedure divides 

the instance in two parts looking for the solution in 
any one of them: one assigning a true value to the 
selected variable (x1) and other with a false value (~ x1). 
It is also clear that invalid assignments will be taken 
into account in the propagation procedure. 

We propose a new partition rule (MPR) which 
focuses on the clause. MPR consider a clause by 
transforming the partition process according to the 
values that will be assigned to its variables avoiding 
invalid assignments. The MPR function is formed in 
the following way: 
 

MPR.  If [ ] { }( )0),,,,,( 54321 =xxxxxωϕ  Then        (8)   

      (If [ ] { }( )0),,,,~,( 54321 =xxxxxωϕ  Then 
 
         [ ] { }( )0),,,~,~, 54321 =xxxxxωϕ ) 
 

The valid values for the clause (x1 ∨  x2 ∨  x3) are 
{ x1,*}, {~ x1, x2,*} and {~ x1,~ x2, x3,*}. Using this 
function repeatedly, the multiple partition rule is 
intuitively designed as follows: 
 
Multiple Partition Rule (MPR): If the set φ can be 
expressed in the way: 

 
(9) 

 
where xi,j is the variable j of the clause i, then the 
following set is obtained: 

(10) 
 

φ is unsatisfiable if and only if )..( 21 kϕϕϕ ∨∨∨  
is 

unsatisfiable; that is, if all are unsatisfiable. 
 

With this new rule, the variable to be selected 
considers the result of a previous assignment in the 
clause. When MPR gives unsatisfiable in the 
evaluation process for a specific value of a selected 
variable xi, MPR now considers this variable with the 
contrary value. After xi has been assigned with true 
and false, MPR proceeds to select another variable to 
spread. This process is shown in Fig. 3. 
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Fig. 3: Possible decision tree formed by MPR. 
 

The application of this rule is an improvement 
since the number of selections decreases. In the 
decision tree formed by MPR (Fig. 3), the right arcs 
fix the value, and not propagation. This means that the 
decision tree decreases (and so the number of 
selections) according to: 

 
 

                       
(11) 

 
 
MPR reduces the number of operations for the 

assignment and propagation in comparison with CPR 
by 50%.  

5. CRP vs. MPR 
MPR can be used in the design of new algorithms or 
improve algorithms CRP based; but in the case of 
algorithms CRP based, their efficiency it depends on 
the programming and the philosophy of each one.  
 
 

CRP_Solver  (φ set of clauses, β set of variables) 

    if (exist Unit Clause) then propagate Unit Clauses; 

    φ[xk]; 

    if (φ = ⊡) then  return unsatisfiable; 

    if (β = Ø) then   

        return satisfiable; 

    Else 

   xk =(Select a variable in β); 

   if  (CRP_Solver ((φ∧ xk ),( β - {xk}))= satisfiable) then     

          return satisfiable; 

   return CRP_Solver ((φ∧ ~ xk ),( β - {xk})); 

    Endelse 

EndCRP_Solver 

Fig. 4: CRP_Solver Algorithm. 
 

Some modern algorithms use clauses for the 
detection and maintenance conflicts. For this reason, 
to prove to MRP against CRP basic algorithms were 
implemented: CRP_Solver which uses CRP and UCR 
(Fig. 4) and MRP_Solver which uses MRP and UCR 
(Fig. 5). 

 
Fig. 5: MPR_Solver Algorithm. 
 

To show the MPR performance let us consider an 
example with the following instance φ formed by three 
variables (x1 ,  x2 ,  x3) and eight clauses:  
 

φ  = {(x1 ∨  x2 ∨  x3),(  ~ x1 ∨  x2 ∨  x3) , 
(~ x1 ∨ ~ x2 ∨ ~ x3),(  ~ x1 ∨  ~ x2 ∨  ~ x3), 

 (x1 ∨ ~ x2 ∨ ~ x3), (x1 ∨  x2 ∨  ~ x3), 
 (x1 ∨ ~ x2 ∨  x3), (  ~ x1 ∨  x2 ∨  ~ x3)} 

   (12) 
 

The decision tree formed by CRP is shown in the 
Fig. 6 while the decision tree formed by MPR is 
shown in the Fig. 7. It can be observed that with MRP 
the number of operations is smaller than with CRP. 

 
 
Fig. 6: Assignments for the test instance using CPR. 

 

MPR_Solver  (φ List of clauses, C clause, β set of variables)

if (exist Unit Clause) then propagate Unit Clauses; 

if (C > Last Clause) then return satisfiable; 

if (C = Satisfiable) then  

    MRP_Solver((φ – C), Next clause, β); 

 if (C = Empty clause) then return unsatisfiable; 

 x1 = (first non assigned variable in C); 

 if ( MRP_Solver (( φ[ x1 ] – C), Next clause, (β – {x1})) =    

     satisfiable) then  

         return satisfiable; 

 x2 = (second non assigned variable in C); 

 if (exist  x2) 

     if ( MRP_Solver (( φ[ ~ x1, x2] – C), Next clause, 

         (β – {x1, x2 })) = satisfiable) then  

             return satisfiable; 

     x3 = (non assigned variable in C); 

     if (exist x3) 

         if ( MRP_Solver (( φ[ ~ x1, ~ x2, x3 ] – C), 

             Next clause, (β – { x1, x2, x3})) = satisfiable) then 

                 return satisfiable; 

 Endif 

 return unsatisfiable; 

EndMRP_Solver 
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Fig. 7: Assignments for the test instance using MPR. 
 

6. CRP vs. MPR 
In order to test MPR_Solver and to compare it with 
CPR_Solver some instances of SATLIB [15] were 
considered. The SAT instances were separated into two 
groups: satisfiable (uf) and unsatisfiable (uuf) and all 
of these were comprised of 50 variables and 218 
clauses.  

In Table 1 and Table 2, the comparative results of 
MPR_Solver and CPR_Solver are shown. It can be 
seen that MPR is always more efficient than CPR. 
 
The obtained results are as follows: 
 

• The results of the uf instances are shown in Fig. 
8. It can be seen that MPR reduces the solution 
time by 30% with respect to CPR (Table 1). 

• The results of the uuf instances evaluated with 
MRP and CRP can be seen in Fig. 9. In these 
instances, the solution time obtained with MPR 
was decreased about 66% with respect to CRP 
(Table 1). 

  
 
 

In general, results show that the MPR reduce the 
solution time of satisfiable and unsatisfiable instances 
by 57% with respect to CPR (Table 2). 

 
Time MRP uf CRP uf MRP uuf CRP uuf

Average 1,206.89 4,508.50 1,613.52 1,675.70
Medium 989.22 2,973.39 706.39 1,014.87
Maximum 5,535.13 13,294.37 9,931.29 11,836.25
Minimum 231.00 364.86 4.72 35.78

Table 1: Results of instances uf and uuf using MRP and CRP. 
 
 
 

Time MRP CRP 

Average 1,410.20 3,092.10 
Medium 847.81 1,994.13 

Maximum 9,931.29 13,294.37 
Minimum 4.72 35.78 

-57.48% 100.00% 
Table 2: MRP versus CRP. 

 

Fig. 8: Results instances uf (time): MRP (Gray) vs. CRP 
(Black) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9: Results instances uff (time): MRP (Gray) vs. CRP 
(Black)  

 
 
 
 

7. Conclusions 
In this paper, a new rule named the Multiple Partition 
Rule (MPR) is presented. After conducting a decision 
tree analysis, it was demonstrated that MPR is at least 
fifty percent more efficient than CPR because the 
maximum number of visited arcs with MPR is 2n in 
lieu of 2n+1 with CPR. This theoretical result was 
tested through experiments using CRP_Solver and 
MRP_Solver. The fact is that CPR is used in 
algorithms based on the DPLL rules like zchaff [10] 
and GRASP[11], therefore an improvement to CPR 
could redound to an improvement of the algorithms 
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based on her. But even, MPR can be used in the 
creation of a new type of algorithms. 

References 
[1] D. Ding-Zhu, G. Jun and P. Panos, Satisfiability 

problem: Theory and applications, DIMACS 
Series in Discrete Mathematics and Theoretical 
Computer Science, American Mathematical 
Society, 1997. 

[2] S. A. Cook, The complexity of theorem proving 
procedures, In: Proceedings of the third Annual 
ACM symposium on the Theory of Computing, 
ACM, 151-158, 1971. 

[3] R. M. Karp, Reducibility among combinatorial 
problems. In: Complexity of Computer 
Computations, Plenum Press, 85-103, 1972. 

[4] N. Creignou, The class of problems those are 
linearly equivalent to satisfiability or a uniform 
method for proving np-completeness. Lecture 
Notes in Computer Science 702, 115-133, 1993. 

[5] S. A. Cook and D. G. Mitchell, Finding Hard 
Instances of the Satisfiability Problem: A Survey. 
In Du, Gu, Pardalos, eds.: Satisfiability Problem: 
Theory and Applications. DIMACS Series in 
Discrete Mathematics and Theoretical Computer 
Science, American Mathematical Society, 1-17, 
1997. 

[6] Philippe Chatalic and Laurent Simon: Davis and 
Putnam 40 years later: a first experimentation. 
Technical report, LRI, Orsay, France. 
citeseer.ist.psu.edu/chatalic00davis.html , 2000.  

[7] G. Logemann, M. Davis and D. Loveland, A 
Machine Program for Theorem Proving. 
Communications of the ACM, 394-397, 1962. 

[8] M. Davis and H. Putnam, A computing 
procedure for quantification theory. J. ACM 7  
201-215, 1960。 

[9] C.L. Chang, R.C. Lee and R.C.T. Lee, Symbolic 
Logic and Mechanical Theorem Proving. 
Academic Press, Inc., Orlando, FL, USA, pp. 
331. 1997. 

[10] M. Moskewicz, C. Madigan, Y. Zhao, Zhang and 
Malik: Chaff: Engineering an efficient SAT 
solver. In Proceedings of the 39th Design 
Automation Conference (DAC) Las Vegas, 7, 
2001. 

[11] J.P. Marques-Silva and K.A. Sakallah, GRASP: 
A Search algorithm for propositional 
satisfiability. IEEE Transactions on Computers, 
48:506-521, 1999. 

[12] S. Even, A. Itai and A. Shamir, On the 
complexity of timetable and multicommodity 
flow problems. SIAM J. Comput. 5, 691-703, 
1976. 

[13] B. Aspvall, M.F. Plass and R.E. Tarjan, A linear-
time algorithm for testing the truth of certain 
quantified boolean formulas. Inf. Process. Lett. 8 
121-123, 1979. 

[14] R. Zabih and McAllester, A rearrangement 
search strategy for determining propositional 
satisfiability. In Proceedings of National 
Conference on Artificial Intelligence, 155-160, 
1988. 

[15] H. Hoos and T. Stutzle,  SATLIB: An Online 
Resource for Research on SAT. In SAT 2000, 
IOS Press, 283-292, 2000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


