
A Partition Rule for SAT Solvers: The Multiple
Partition Rule (MPR)

Juan Segura-Salazar1, Juan Frausto-Solís2
1Genomic Science Center, UNAM, P.O. Box 565-A, Av. Universidad s/n, C.P. 62210, Cuernavaca Morelos, México.

2ITESM, Cuernavaca Campus, A.P. 99-C, Paseo de la Reforma 182-A, C.P. 62589, Cuernavaca Morelos, México.

Abstract
We propose a new partition rule for DPLL-based SAT
Solvers. Most of the complete SAT solvers usually are
based on Davis, Logemann and Loveland (DPLL)
rules. One most DPLL rule actually used in the
modern algorithms is the Classical Partition Rule
(CPR), that divides the problem into sub-problems
(resolvents) and thereby it finds a solution through a
decision tree. In this paper a new partition rule named
Multiple Partition Rule (MPR) is presented. MPR
generates a new decision tree according to clauses
instead CPR which generates a decision tree according
to variables. MPR can be used for developing new
SAT’s algorithms and to improve existence ones that
use CPR. Experimental results comparing MPR versus
CPR show that using MPR makes more efficient
solutions than CPR.

Keywords: Propositional satisfiability problem, SAT,
Np-Complete, Algorithms.

1. Introduction
All Since Cook proved that the propositional
satisfiability problem (SAT) [1] was the first problem
shown to be NP-Complete [2], many other problems
have been considered in this category [3]. However,
SAT remains at the core of this classification due: i) to
its simple representation (this does not mean that SAT
can be solved easily), and ii) it has been shown that
many other NP-Complete problems can be
transformed to a SAT instance in polynomial time [4].

Owing to its importance, many SAT algorithms
have been developed based either on local search
(incomplete) or backtrack search (complete) [5]-[6]. It
is striking that most popular and useful complete
algorithms for solving SAT are based on Davis,
Logemann and Loveland algorithm (DPLL) rules [7].
DPLL [8] is a modified version of the algorithm
proposed by Davis & Putnam in 1960 [7]. The DPLL
corresponds to a backtrack search; the Boolean
Constraint Propagation (BCP) use the Classical

Partition Rule (CPR) [9] to make a decision tree to
order the solution and apply backtracking. Modern
SAT solvers like zchaff [10] and Grasp [11] have
efficient BCP engines for detection of unit clauses,
propagation unit literals and conflict detection. This
solvers improve the basic backtrack search of DPLL
implementing a non-chronology backtrack and conflict
analysis, but using the basic BCP to partition the
problem. In this sense, given the importance of CPR in
the execution of SAT solvers, it is very important to
create alternative rules in order to get more efficient
SAT algorithms based in CPR rule.

This paper introduces a new partition rule named
Multiple Partition Rule (MPR) which focuses on
solving clauses in contrast to CPR that solves
variables, and generates a new decision tree in the SAT
propagation process. To demonstrate the efficiency of
MPR, it was implemented on an algorithm named
MPR_Solver which involves a different partition
mechanism, and CRP it was implemented on an
algorithm named CPR_Solver. Results show that
MPR’s efficiency outperforms CPR’s efficiency in
fifty percent. The paper organization is as follows: in
the next section basic definitions are provided, in
section 3 the Classical Partition Rule (CRP) [7] is
analyzed and discussed. In section 4, the Multiple
Partition Rule (MPR) is presented and its application
in a SAT algorithm named MPR_Solver to compare
with CPR_Solver is discussed in Section 5.

2. Basic Definitions
To represent an instance of SAT, the next elements are
required:

• A set of variables which can be false (0) or

true (1), n,x,x K1=β
• A set of literals L. A literal is a variable that

can be denied or not denied, this is:

~x)(Lx):(Lx =∨=∈∃ β (1)

• A set of clauses, m,c,cC K1= where each
one is a disjunction of literals, this is:

mh,j,xc j
inih ≤≤≤≤−∨=

<<
111

1
 (2)

Where:

• A boolean formula in CNF, this is:

 (3)

The CNF formula is also represented by a set of

clauses, rather than as a conjunction. For example, an
alternative way to represent φ is as the set {C1,..,Cm}.
In this sense, a formal definition of SAT is given next:

Definition 1. Find some true assignment for the
variables, such that the formula φ is true; otherwise
demonstrate that an assignment of values does not
exist to evaluate φ as true.

Many SAT instances are limited to the length k;

such instances are denoted k-SAT. The most common
instances of special interest are 2-SAT and 3-SAT. It
has been proved that for k = 2 such instances are
solved in polynomial time [12]-[13] while for k = 3 the
instances are NP-complete [2]. In this paper, we use 3-
SAT instances in order to prove the MPR approach.

The propagation for variable x is denoted by φ[x],
that means:

1. If x =1, remove ~ x from φ´s clauses and
remove clauses containing x from φ.

2. If x =0, remove x from φ´s clauses and
remove clauses containing ~ x from φ.

If φ contains no clauses, then φ=1 (true). The SAT

problem represented by φ its satisfiable if there exist
an assignment λ, such that φ=1 under λ, otherwise it is
unsatisfiable.

An empty clause denoted by ⊡ is a clause that
does not have literals and always it’s unsatisfiable.

3. Classical Partition Rule (CPR)
The DPPL [7] is backtrack search algorithm. Two
rules are the base for this algorithm:

1. Classic Partition Rule (CRP), called also splitting
Literal Rule:

If the set φ can be expressed in the way:

(4)

where xi,j is the variable j of the clause i, then the
following set is obtained:

 (5)

φ is unsatisfiable if and only if)..(21 kϕϕϕ ∨∨∨
is unsatisfiable; that is, if all are unsatisfiable.

2. Unit Clause Rule (UCR):

If exist a clause ch = xn in φ, then φ[xn], if exist a
clause ch = ~xn in φ, then φ[~ xn].

CPR to divide the problem into two sets according

to a selected variable; one set is evaluated with a true
value and the other with a false value. The resulting
sets are solved searching for one that is satisfiable or
both are unsatisfiables. CPR also orders the solution
search by creating a binary decision tree, which
eliminates repetition of partial assignments proven
previously. A possible decision tree formed by CRP is
shown in the Fig. 1.

Fig. 1: Possible decision tree formed by the CRP.

In Fig. 1, each node represents a selected variable
to be assigned, and each arch represents the
propagation of this variable. The numbers of
operations are counted when the selected variable is
propagated.

In the case of the possible decision tree for CRP
shown in Fig. 1, the number of arches in the last level

⎪
⎩

⎪
⎨

⎧

=
=
=

=

−

ii

ii

i

xx
xx

x
j

~

{}

1

0

1

hmh
c

≤≤
∧=

1
ϕ

)..(..)..(,2,1,,12,11,11,11 kmmmk xxxxxxx ∨∨∨∧∧∨∨∨∧=ϕ

)..(..)..(~ ,2,1,,12,11,11,12 kmmmk xxxxxxx ∨∨∨∧∧∨∨∨∧=ϕ

)..(..)..(~ ,2,1,,12,11,1,1 kmmmkkmk xxxxxxx ∨∨∨∧∧∨∨∨∧=−ϕ

)..(..)..(~ ,2,1,,12,11,1, kmmmkkmk xxxxxxx ∨∨∨∧∧∨∨∨∧=ϕ

M

)..(..)..(,2,1,,12,11,1 kmmmk xxxxxx ∨∨∨∧∧∨∨∨

is 2n. The first level involves the derivation of two
arches, which then form two arches for the next level;
the process continues in this way until the last level.
Hereof, the total number of arches is:

 (6)

Modern complete SAT solvers implement the CRP
on the following way: A partial assignment ω,
initialized empty, is maintained. A ω is extended by a
BCP [14]; then, if the input φ is neither 1 nor 0 under
ω, the CRP is used, the satisfiability of φ is recursively
checked under {ω, x} and then under {ω, ~x}, as
required. The x is a selected variable that is picked
using some decision heuristic.

4. The Multiple Partition Rule
(MPR)

In a SAT instance, clauses are formed by several
variables joined with the disjunction operator (OR). It
means that at least one variable in a clause needs to
have a true value (1) to make its respective clause true.
It also implicates not assigning the values that
transforms the clause into an empty one without
affecting the values that are assigned to the other
variables. For example, the following is an
examination of the clause ci=(x1 ∨ x2 ∨ x3) of an
instance φ with a literal set {x1, x2, x3, x4, x5}. The
clause ci indicates that any one of x1, x2 or x3 should
take a true value to make this clause true; it also
indicates that the assignment { ~ x1, ~ x2, ~ x3} with
any of the other variables is invalid. The set of invalid
assignments is shown in the Fig. 2.

{ ~ x1, ~ x2, ~ x3, x4 },
{ ~ x1, ~ x2, ~ x3, x4, x5},
{ ~ x1, ~ x2, ~ x3, x4, ~ x5},
{ ~ x1, ~ x2, ~ x3, ~ x4},
{ ~ x1, ~ x2, ~ x3, ~ x4, x5},
{ ~ x1, ~ x2, ~ x3, ~ x4, ~ x5}

= { ~ x1, ~ x2, ~ x3, *}

Fig. 2: Set of invalid assignments, clause (x1∨ x2∨ x3)

In the case of the decision tree of CRP shown in

Fig. 1, it accepts this invalid assignment despite the
CPR is focused on the selected variable. In this sense,
the CPR procedure (when the variable x1 has been
selected to be propagated, and the variables x2, x3, x4,
and x5 remain in the clause) can be expressed by:

CRP. If [] { }()0),,,,,(54321 =xxxxxωϕ Then (7)

[] { }()54321 ,,,,~, xxxxxωϕ

From (7) it is clear that the CPR procedure divides

the instance in two parts looking for the solution in
any one of them: one assigning a true value to the
selected variable (x1) and other with a false value (~ x1).
It is also clear that invalid assignments will be taken
into account in the propagation procedure.

We propose a new partition rule (MPR) which
focuses on the clause. MPR consider a clause by
transforming the partition process according to the
values that will be assigned to its variables avoiding
invalid assignments. The MPR function is formed in
the following way:

MPR. If [] { }()0),,,,,(54321 =xxxxxωϕ Then (8)

 (If [] { }()0),,,,~,(54321 =xxxxxωϕ Then

 [] { }()0),,,~,~, 54321 =xxxxxωϕ)

The valid values for the clause (x1 ∨ x2 ∨ x3) are
{ x1,*}, {~ x1, x2,*} and {~ x1,~ x2, x3,*}. Using this
function repeatedly, the multiple partition rule is
intuitively designed as follows:

Multiple Partition Rule (MPR): If the set φ can be
expressed in the way:

(9)

where xi,j is the variable j of the clause i, then the
following set is obtained:

(10)

φ is unsatisfiable if and only if)..(21 kϕϕϕ ∨∨∨
is

unsatisfiable; that is, if all are unsatisfiable.

With this new rule, the variable to be selected
considers the result of a previous assignment in the
clause. When MPR gives unsatisfiable in the
evaluation process for a specific value of a selected
variable xi, MPR now considers this variable with the
contrary value. After xi has been assigned with true
and false, MPR proceeds to select another variable to
spread. This process is shown in Fig. 3.

.

222 1

1

−= +

=
∑ n

n

i

i

)..(..)..(,2,1,,12,11,1 kmmmk xxxxxx ∨∨∨∧∧∨∨∨

)..(..)..(..~~

)..(..)..(~
)..(..)..(

,2,1,,22,21,2,12,11,12

,2,1,,22,21,22,11,12

,2,1,,22,21,21,11

kmmmkk

kmmmk

kmmmk

xxxxxxxxx

xxxxxxxx
xxxxxxx

∨∨∨∧∧∨∨∨∧∧∧∧=

∨∨∨∧∧∨∨∨∧∧=

∨∨∨∧∧∨∨∨∧=

ϕ

ϕ

ϕ

M

Fig. 3: Possible decision tree formed by MPR.

The application of this rule is an improvement
since the number of selections decreases. In the
decision tree formed by MPR (Fig. 3), the right arcs
fix the value, and not propagation. This means that the
decision tree decreases (and so the number of
selections) according to:

(11)

MPR reduces the number of operations for the

assignment and propagation in comparison with CPR
by 50%.

5. CRP vs. MPR
MPR can be used in the design of new algorithms or
improve algorithms CRP based; but in the case of
algorithms CRP based, their efficiency it depends on
the programming and the philosophy of each one.

CRP_Solver (φ set of clauses, β set of variables)

 if (exist Unit Clause) then propagate Unit Clauses;

 φ[xk];

 if (φ = ⊡) then return unsatisfiable;

 if (β = Ø) then

 return satisfiable;

 Else

 xk =(Select a variable in β);

 if (CRP_Solver ((φ∧ xk),(β - {xk}))= satisfiable) then

 return satisfiable;

 return CRP_Solver ((φ∧ ~ xk),(β - {xk}));

 Endelse

EndCRP_Solver

Fig. 4: CRP_Solver Algorithm.

Some modern algorithms use clauses for the
detection and maintenance conflicts. For this reason,
to prove to MRP against CRP basic algorithms were
implemented: CRP_Solver which uses CRP and UCR
(Fig. 4) and MRP_Solver which uses MRP and UCR
(Fig. 5).

Fig. 5: MPR_Solver Algorithm.

To show the MPR performance let us consider an
example with the following instance φ formed by three
variables (x1 , x2 , x3) and eight clauses:

φ = {(x1 ∨ x2 ∨ x3),(~ x1 ∨ x2 ∨ x3) ,
(~ x1 ∨ ~ x2 ∨ ~ x3),(~ x1 ∨ ~ x2 ∨ ~ x3),

 (x1 ∨ ~ x2 ∨ ~ x3), (x1 ∨ x2 ∨ ~ x3),
 (x1 ∨ ~ x2 ∨ x3), (~ x1 ∨ x2 ∨ ~ x3)}

 (12)

The decision tree formed by CRP is shown in the
Fig. 6 while the decision tree formed by MPR is
shown in the Fig. 7. It can be observed that with MRP
the number of operations is smaller than with CRP.

Fig. 6: Assignments for the test instance using CPR.

MPR_Solver (φ List of clauses, C clause, β set of variables)

if (exist Unit Clause) then propagate Unit Clauses;

if (C > Last Clause) then return satisfiable;

if (C = Satisfiable) then

 MRP_Solver((φ – C), Next clause, β);

 if (C = Empty clause) then return unsatisfiable;

 x1 = (first non assigned variable in C);

 if (MRP_Solver ((φ[x1] – C), Next clause, (β – {x1})) =

 satisfiable) then

 return satisfiable;

 x2 = (second non assigned variable in C);

 if (exist x2)

 if (MRP_Solver ((φ[~ x1, x2] – C), Next clause,

 (β – {x1, x2 })) = satisfiable) then

 return satisfiable;

 x3 = (non assigned variable in C);

 if (exist x3)

 if (MRP_Solver ((φ[~ x1, ~ x2, x3] – C),

 Next clause, (β – { x1, x2, x3})) = satisfiable) then

 return satisfiable;

 Endif

 return unsatisfiable;

EndMRP_Solver

122/2
1

−=∑
=

n
n

i

i

Fig. 7: Assignments for the test instance using MPR.

6. CRP vs. MPR
In order to test MPR_Solver and to compare it with
CPR_Solver some instances of SATLIB [15] were
considered. The SAT instances were separated into two
groups: satisfiable (uf) and unsatisfiable (uuf) and all
of these were comprised of 50 variables and 218
clauses.

In Table 1 and Table 2, the comparative results of
MPR_Solver and CPR_Solver are shown. It can be
seen that MPR is always more efficient than CPR.

The obtained results are as follows:

• The results of the uf instances are shown in Fig.
8. It can be seen that MPR reduces the solution
time by 30% with respect to CPR (Table 1).

• The results of the uuf instances evaluated with
MRP and CRP can be seen in Fig. 9. In these
instances, the solution time obtained with MPR
was decreased about 66% with respect to CRP
(Table 1).

In general, results show that the MPR reduce the
solution time of satisfiable and unsatisfiable instances
by 57% with respect to CPR (Table 2).

Time MRP uf CRP uf MRP uuf CRP uuf

Average 1,206.89 4,508.50 1,613.52 1,675.70
Medium 989.22 2,973.39 706.39 1,014.87
Maximum 5,535.13 13,294.37 9,931.29 11,836.25
Minimum 231.00 364.86 4.72 35.78

Table 1: Results of instances uf and uuf using MRP and CRP.

Time MRP CRP

Average 1,410.20 3,092.10
Medium 847.81 1,994.13

Maximum 9,931.29 13,294.37
Minimum 4.72 35.78

-57.48% 100.00%
Table 2: MRP versus CRP.

Fig. 8: Results instances uf (time): MRP (Gray) vs. CRP
(Black)

Fig. 9: Results instances uff (time): MRP (Gray) vs. CRP
(Black)

7. Conclusions
In this paper, a new rule named the Multiple Partition
Rule (MPR) is presented. After conducting a decision
tree analysis, it was demonstrated that MPR is at least
fifty percent more efficient than CPR because the
maximum number of visited arcs with MPR is 2n in
lieu of 2n+1 with CPR. This theoretical result was
tested through experiments using CRP_Solver and
MRP_Solver. The fact is that CPR is used in
algorithms based on the DPLL rules like zchaff [10]
and GRASP[11], therefore an improvement to CPR
could redound to an improvement of the algorithms

5045403530252015105

1.25e+4

1.125e+4

1e+4

8750

7500

6250

5000

3750

2500

1250

x

y

x

y

5045403530252015105

1.125e+4

1e+4

8750

7500

6250

5000

3750

2500

1250

0

x

y

x

y

 Instances

Time

 Instances

Time

based on her. But even, MPR can be used in the
creation of a new type of algorithms.

References
[1] D. Ding-Zhu, G. Jun and P. Panos, Satisfiability

problem: Theory and applications, DIMACS
Series in Discrete Mathematics and Theoretical
Computer Science, American Mathematical
Society, 1997.

[2] S. A. Cook, The complexity of theorem proving
procedures, In: Proceedings of the third Annual
ACM symposium on the Theory of Computing,
ACM, 151-158, 1971.

[3] R. M. Karp, Reducibility among combinatorial
problems. In: Complexity of Computer
Computations, Plenum Press, 85-103, 1972.

[4] N. Creignou, The class of problems those are
linearly equivalent to satisfiability or a uniform
method for proving np-completeness. Lecture
Notes in Computer Science 702, 115-133, 1993.

[5] S. A. Cook and D. G. Mitchell, Finding Hard
Instances of the Satisfiability Problem: A Survey.
In Du, Gu, Pardalos, eds.: Satisfiability Problem:
Theory and Applications. DIMACS Series in
Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, 1-17,
1997.

[6] Philippe Chatalic and Laurent Simon: Davis and
Putnam 40 years later: a first experimentation.
Technical report, LRI, Orsay, France.
citeseer.ist.psu.edu/chatalic00davis.html , 2000.

[7] G. Logemann, M. Davis and D. Loveland, A
Machine Program for Theorem Proving.
Communications of the ACM, 394-397, 1962.

[8] M. Davis and H. Putnam, A computing
procedure for quantification theory. J. ACM 7
201-215, 1960。

[9] C.L. Chang, R.C. Lee and R.C.T. Lee, Symbolic
Logic and Mechanical Theorem Proving.
Academic Press, Inc., Orlando, FL, USA, pp.
331. 1997.

[10] M. Moskewicz, C. Madigan, Y. Zhao, Zhang and
Malik: Chaff: Engineering an efficient SAT
solver. In Proceedings of the 39th Design
Automation Conference (DAC) Las Vegas, 7,
2001.

[11] J.P. Marques-Silva and K.A. Sakallah, GRASP:
A Search algorithm for propositional
satisfiability. IEEE Transactions on Computers,
48:506-521, 1999.

[12] S. Even, A. Itai and A. Shamir, On the
complexity of timetable and multicommodity
flow problems. SIAM J. Comput. 5, 691-703,
1976.

[13] B. Aspvall, M.F. Plass and R.E. Tarjan, A linear-
time algorithm for testing the truth of certain
quantified boolean formulas. Inf. Process. Lett. 8
121-123, 1979.

[14] R. Zabih and McAllester, A rearrangement
search strategy for determining propositional
satisfiability. In Proceedings of National
Conference on Artificial Intelligence, 155-160,
1988.

[15] H. Hoos and T. Stutzle, SATLIB: An Online
Resource for Research on SAT. In SAT 2000,
IOS Press, 283-292, 2000.

