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Abstract 

Comprehensive Ocean Observation Information 
Systems (COOIS) comprises a massive and complex 
resource data, which is vital to an increasingly 
important application of Integrated Intelligent Ocean 
Information Management System (IIOIMS). IIOIMS 
is just complex, but uses a holistic approach to deal 
with the sophistication. The application domain and 
its resource require a tool of matching characteristics, 
which is facilitated by the current wide availability of 
high performance computing. In this paper, we first 
build the COOIS network and experimental platform 
to aggregate the comprehensive ocean observation 
information. Then, we present a fuzzy-based data 
assimilation framework and its algorithm for doing 
with the sophistication of COOIS. Data assimilation 
is widely applied for those different type data, but we 
firstly propose to solve this problem with fuzzy set. 
Theoretically, this will efficiently reduce the 
complexity and enhance the accuracy and utility of 
COOIS. Finally, we provide a demonstrated example 
to demonstrate the efficiency of the fuzzy-based data 
assimilation algorithm. 

Keywords: COOIS, Fuzzy Set, Data Assimilation, 
Intelligent System 

1. Introduction 
Integrated Intelligent Ocean Information 
Management System (IIOIMS) emphasizes both on 
the complexity of physical oceanography, but also on 
the recognized user for monitoring and forecasting 
information [1]. Oceanographic services have already 
been established in many ocean facing countries, and 
they do provide forecast for winds, waves, surges, 
tides, ice coverage etc., as such with value added 
services concerning adjacent sectors such as oil spill 
prediction, eutrophication, coastal erosion, etc. [2].  

The development of comprehensive ocean 
observation information systems (COOIS) may be 
viewed a platform for oceanographic services, which 
get a vast quantity and diversity of ocean information 
from various observation equipments, instruments, 
and system, such as Buoy system, earthquake 
observation system, weather observation system, and 

satellite. 
Databases concerned with the natural 

environment may be grouped into several broad 
categories, and special attention has also to be paid to 
the relationships of these databases with land 
databases at the coast. Oceanographic databases 
concerned with the sea itself: Surface and water 
column, are also extensive historically and similarly 
complemented by modern remote sensing data [3]. 
Tidal observations in particular are of long standing. 
Systematic large-scale data sets are based on 
scientific surveys, and deal with temperature, salinity 
and other variables. Again the purposes of data 
collection have been a combination of prediction and 
pure science considerations [4]. The amount of 
information is prodigious, much of which originates 
in ports at local level from whence national statistics 
are derived, while scientific data are collected by the 
IIOIMS. The vast quantity and diversity of ocean 
information can appear bewildering at first sight. 
Making sense of it in management terms involves 
specifying how it is used [5]. 

Ocean information system development on the 
Internet provides a large number of benefits, such as 
increased information provision and accessibility, 
enhanced communications and networking within the 
community [6]. Current developments fall into two 
categories. The first one concerns metadatabases, 
where the systems available provide the pointers to 
databases. The second one serves as a platform for 
the community to exchange ideas and information. 

However, in order to provide oceanographic 
services and value added services, the IIOIMS firstly 
deal with the various data in the databases. One of 
the development technologies is data assimilation. 
Many assimilation techniques have been developed 
for oceanography. They are different in their 
numerical cost, optimality, and suitability for 
real-time data assimilation. Direct insertion method 
or re-initialization method are two simple methods 
for data assimilation [7]. Crossman analysis and 
related methods is a common method assumed to be 
univariate and represented as grid-point values [8]. 
Other methods include Simulated Annealing [9], 
Genetic Algorithm, and Hybrid algorithm, etc.. The 
recent trend in data assimilation is to combine the 
advantages of 4D-Var and the Kalman filter 
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techniques[10]. 
In order to assimilate those data, the data 

assimilate system should firstly fuzzifiy their verges 
for efficient utilization. Data unified facilitate system 
supports much more services concerning adjacent 
sectors. So, inspired from fuzzy set theory [11], in 
this paper, we build the COOIS network and 
experimental platform to aggregate the 
comprehensive ocean observation information. Then 
we present a fuzzy-based data assimilation 
framework and its algorithm. In order to demonstrate 
its efficiency, we provide a demonstrated example. 
Finally, we conclude the paper and point out the 
future work of COOIS. 

2. The COOIS Network and 
Experimental Platform 

In order to appreciate the scope of these database 
developments, it is worth considering several 
examples databases: Ocean and coastal information 
systems on the Internet. A distributed information 
exchange infrastructure GENIE (Global 
Environmental Network for Information Exchange) 
is being developed for data sets on global 
environmental change, including meteorological 
records, sea level changes, population growth and 
migration, hydrological records, agricultural statistics, 
and satellite imagery. The project aims to simplify 
the search for finding what data are available in these 
fields, and to some extent facilitate the interchange of 
information between the researchers using WWW. 
One fundamental technique of this system is data 
assimilation. 

So, in order to aggregate the comprehensive 
ocean observation information, we build the COOIS 
network and experimental platform as shown in Fig. 
1. This network comprises with buoy observation 
system, earthquake observation system, weather 
observation system, etc. communicating with data 
center through the satellite. Each observation system 
includes lots of subsystems, equipments and 
instruments. All of observation data will be sent to 
data center for further processing. One of the 
processing steps is fuzzy-based data assimilation as 
shown in Fig. 2. 
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Fig. 1: The COOIS experimental platform. 
 

3. Fuzzy-Based Four-Dimensional 
Data Assimilation 

We present a fuzzy-based data assimilation 
framework as shown in Fig. 2. Fuzzy set is used for 
assimilation while processing greatly different 
information. 
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Fig. 2: Fuzzy-based data assimilation framework. 
 

3.1. Data assimilation 
Data assimilation is an analysis technique in which 
the observed information is accumulated into the 
model state by taking advantage of consistency 
constraints with laws of time evolution and physical 
properties [12]. There are two basic approaches to 
data assimilation: Sequential assimilation and non- 
sequential. Sequential assimilation only considers 
observation made in the past until the time of 
analysis, which is the case of real-time assimilation 
systems. Non-sequential, or retrospective 
assimilation can use observation from the future, for 
instance in a reanalysis exercise. Another distinction 
can make between methods that are intermittent or 
continuous in time [13]. In an intermittent method, 
observations can be processed in small batches, 
which is usually technically convenient. In a 
continuous method, observation batches over longer 
periods are considered, and the correction to the 
analyzed state is smooth in time, which is physically 
more realistic. 

In a real-time assimilation system, 4D-Var over a 
short time interval is a very efficient analysis method 
[14, 15]. A Hessian estimation method can provide a 
good estimation of the analysis error covariance 
matrix. A simplified forecast step based on the 
extended Kalman filter is then used to estimate the 
forecast error covariance at the time of the next 
analysis, which must be combined with an empirical, 
more static model of the background error covariance. 
It is hoped that a good compromise between these 
algorithms can be achieved. There can be some 
constructive interactions with the problems of 
ensemble prediction, and specific studies of analysis 
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quality like sensitivity studies and observation 
targeting. These new methods provide many 
by-products which still remain to be used as 
diagnostic tools for improving the assimilation and 
forecast system. 

The 4D-Var assimilation method can be described 
in the following way. First, a cost function is 
conceived to measure the error between the forecast 
and the observations. Then the adjoint equations, 
which are used to evaluate the gradient of this cost 
function, are obtained by applying a variation 
procedure to the Lagrangian problem. The cost 
function and its gradient are minimized by a 
minimization algorithm, such as the steepest descent, 
in order to find the optimal initial conditions that will 
give the optimal forecast. 

Compared to a 3D analysis algorithm in a 
sequential assimilation system, 4D-Var has the 
following characteristics: 

1) It works only under the assumption that the 
model is perfect. Problems can be expected if model 
error is large. 

2) It requires the implementation of the rather 
special operators, the so-called adjoins model. This 
can be a lot of work if the forecast model is complex. 

3) In a real-time system, it requires the 
assimilation to wait for the observations over the 
whole 4D-Var time interval to be available before the 
analysis procedure can begin, whereas sequential 
systems can process observations shortly after they 
are available. 

4) It used as the initial state for a forecast, then by 
construction of 4D-Var one is sure that the forecast 
will be completely consistent with the model 
equations and the 4D distribution of observations 
until the end of the 4D-Var time interval (the cutoff 
time). This makes intermittent 4D-Var a very suitable 
system for numerical forecasting. 

5) 4D-Var is an optimal assimilation algorithm 
over its time period. It means that it uses the 
observations as well as possible, even if is not perfect, 
to provide in a much less expensive way than the 
equivalent Kalman Filter. 

Over a given time interval, under the assumption 
that the model is perfect, with the same input data 
(initial background and its covariance, distribution of 
observations and their covariance), the 4D-Var 
analysis at the end of the time interval is equal to the 
Kalman filter analysis at the same time. A special 
property of the 4D-Var analysis in the middle of the 
time interval is that it uses all the observations 
simultaneously, not just the ones before the analysis 
time. It is said that 4D-Var is a smoothing algorithm. 

3.2. Fuzzy-based data assimilation 
In oceanography, there are many linguistic fuzzy 
words, some of which are warm, cloudy, foggy, 
dense, high, low, dry, wet, small, etc. For instance, 
any statement about the weather temperature includes 

uncertainty in the forms of vagueness or ambiguity. If 
the temperature at a place changes between almost T0 
and T1 0C, then this domain of change should have 
linguistically some subsets by considering everyday 
conservation. In general, the temperature is either 
cold or cool or warm or hot. Hence, there are four 
subsets of the temperature universal set at a location. 
Within the whole universal set, it is not possible to 
define the delimitation of these linguistic words with 
certainty. 

Accordingly constructed triangles represent the 
approximate properties of cold, cool, warm and hot 
fuzzy subsets. Any meteorological factor can be 
subdivided into fuzzy sets that interfere with each 
other. However, a subjective point in delimiting the 
fuzzy subsets can be avoided by employing actual 
data and/or expert opinions as will be explained in 
the application section of this paper. 

In any diagnostic or prognostic study in 
oceanography for the application of fuzzy-based data 
assimilation, there are four interdependent steps. A 
successful execution of these steps leads to the 
solution of the problem in a fuzzy environment, i.e., 
the solution procedure digests any type of uncertainty 
in the basic evolution of the event concerned. The 
algorithm is as shown in Fig. 3. 
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Fig. 3: Algorithm for fuzzy-based data assimilation. 
 
 In Fig. 3, the fuzzy controller includes the 
following components. 

1) Fuzzification: All data are considered as 
having ambiguous characteristics and therefore their 
domain of change are divided into many fuzzy 
subsets which are complete, normal and consistent 
with each other. Hence the domain of change is 
fuzzified. This stem is applied to each oceanography 
factor considered in the solution of the problem. 

2) Inference: This step, in fact, relates 
systematically pair wise all the data that take place in 
the solution depending on the purpose of the problem. 
This part includes many fuzzy conditional statements 
to describe a certain situation. For instance, if two 
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type data X and Y are interactive then they are 
dependent on each other. Conditional statements 
express the dependence as the following verbally 
without any equation as used in the classical 
approaches, 

Ri: If iX  is )(nAi  Then iY  is )(nBi    (1) 
where )(nAi  and )(nBi are the linguistic 
description of X and Y, respectively, and they are 
fuzzy subsets of X and Y that cover the whole domain 
of change of X and Y. The fuzzy conditional 
statements in Eq.(1) can be formalized in the form of 
the fuzzy relation R(X, Y) =Also (R1; R2; R3; …; RN) 
where Also represents a sentence connective which 
combines Ri's into the fuzzy relation R(X, Y), and Ri 
denotes the fuzzy relation between X and Y 
determined by the i-th fuzzy conditional statement. 
After having established the fuzzy relationship R(X, 
Y), the compositional rule of inference is applied to 
infer the fuzzy subset B for Y, given a fuzzy subset A 
for X as B=A o R(X,Y), where “o” is a compositional 
operator. 

3) Defuzzification: The result from the previous 
step is in the form of fuzzy statement and in order to 
calculate the deterministic value of a linguistic 
variable Y the defuzzification method must be 
applied as 

L
y
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where P(x) is a fuzzy basis function and y is 
particular value of the linguistic variable Y. yj is the 
support value in which the membership function 
reaches its maximum grade of membership, and 
finally L is number of rules and M the number of 
inputs. 

Fuzzy controller by means of the first order 
structural dependence along a given time series 
provides simple prediction process provided that the 
fuzzy subsets of the variability domain are divided 
into meaningful fuzzy intervals. Once the fuzzy data 
subsets are provided, it is then possible to train 
sequentially the data time series so as to find the 
steady state percentages, i.e., probabilities in the 
transitional matrix. These are final fuzzy associative 
matrix elements. After training period the following 
fuzzy rule base is obtained for the maximum data 
prediction. 

This fuzzy rule-base is the main tool in prediction 
the future likely maximum data values. It is obvious 
that the periodic pattern in the daily data sequences is 
modeled successfully with the proposed fuzzy logic 
model, because the relative error appears less than 10 

percent. In the non-training part, the actual values 
and predicted ones do not fall on each other and 
consequently the error amount is XX ˆ− . However, 
in order to asses the validity of fuzzy prediction, it is 
necessary to have an overall measure of the 
individual errors in the form of average performance 
error (APE) defined as follows 

100×
−

=
∑

∑
∧

n

i i

n

i ii

x
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APE           (5) 

Data assimilation: 4D is a simple generalization 
of 3D for observations that are distributed in time. 
The equations are the same, provided the observation 
operators are generalized to include a forecast model 
that will allow a comparison between the model state 
and the observations at the appropriate time. 

Over a given time interval, the analysis being at 
the initial time, and the observations being 
distributed among n times in the interval, we denote 
by the subscript i  the quantities at any given 
observation time i . Hence, iy , ix  and tix  are the 
observations, the model and the true states at time i , 
and iR is the error covariance matrix for the 
observation errors )( tiii xHy − . The observation 

operator iH  at time i  is linearized as iH . The 
background error covariance matrix B is only defined 
at initial time, the time of the background bx  and of 

the analysis ax . 
So, in its general form, it is defined as the 

minimization of the following cost function: 
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Which can be proven, like in the 3D case detailed 
previously, to be equivalent to finding the maximum 
likelihood estimation of the analysis subject to the 
hypothesis of Gaussian errors? 

The 4D assimilation problem is by convention 
defined as the above minimization problem subject to 
the strong constraint that the sequence of model 
states ix  must be a solution of the model equations: 

)(0 xMxi ii →=∀  
Where 

iM →0
 is a predefined model forecast 

operator from the initial time to i . The 4D 
assimilation problem is thus a nonlinear constrained 
optimization problem which is very difficult to solve 
in the general case. 

4. A Demonstration Example 
Fuzzy controller by means of the first order structural 
dependence along a given time series provides 
simple prediction process provided that the fuzzy 
subsets of the variability domain are divided into 
meaningful fuzzy intervals. The application of the 
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methodology proposed in the previous sections is 
presented for daily temperature records. In this study, 
only the daily maximum temperature records of the 
most recent two years duration are used. First of all, 
the maximum temperature domain is divided into 7 
triangular subsets that are normal, consistent and 
complementary. Here, normality implies that fuzzy 
subset has membership value equal to 1 at least for 
one of the members. They are complementary in the 
sense that at any temperature value there are 
distinctive fuzzy temperature subsets and their 
membership degrees summation at a given 
temperature is equal to 1. On the other hand, these 7 
fuzzy subsets, namely iA (i=1,2,. . . ,7) and they are 
treated equivalently for the input and output 
maximum temperature values. Herein, the input is 
the maximum temperature of any day and the output 
the maximum temperature for the following day. 

Once the fuzzy temperature subsets are provided, 
it is then possible to train sequentially the 
temperature time series so as to find the steady state 
percentages, i.e., probabilities in the transitional 
matrix. The first 365 daily temperature values are 
employed for determining the transition matrix 
elements from the fuzzy subsets in Table 1. These are 
final fuzzy associative matrix elements. 

Table 1 shows an example of the table. 
 

 A1 A2 A3 A4 A5 A6 A7 
A1 0.3 0.5 0.2 0 0 0 0 
A2 0.05 0.29 0.43 0.21 0.01 0 0 
A3 0.01 0.13 0.36 0.35 0.12 0.02 0.01
A4 0 0.03 0.23 0.37 0.24 0.06 0 
A5 0 0 0.04 0.20 0.26 0.22 0.01
A6 0 0 0 0.03 0.24 0.01 0 
A7 0 0 0 0 0.36 0.5 0.14

Table 1: Relative transition matrix 
 
After training period the following fuzzy rule 

base is obtained for the maximum temperature 
prediction. The fuzzy rule-base is the main tool in 
prediction of the future likely maximum temperature 
values. It is obvious that the periodic pattern in the 
daily temperature sequences is modeled successfully 
with the proposed fuzzy logic model, because the 
relative error appears less than 10 percent. In the 
non-training part, the actual values and predicted 
ones do not fall on each other and consequently the 
error amount is XX ˆ− . However, in order to asses 
the validity of fuzzy prediction it is necessary to have 
an overall measure of the individual errors in the 
form of average performance error (APE) defined as 
follows. For the daily temperature series calculated in 
this study APE=7.12%. This is less than practically 
acceptable limit of 10%. 

That is, those observation temperature data are 
fuzzified for assimilating with other data. The 
processing process of the other data is very similar. 
These fuzzified data are assimilated together to 

provide oceanographic services and value added 
services. 

5. Conclusions and Future Work 

The ocean information management systems are 
characterized by three major themes: the information 
database, provision of access, and networks. 
Databases are useless without their applications. In 
considering applications, pure science may be 
thought of as important, even though the resources 
for the provision for most information have been 
provided to meet the requirements related to specific 
ocean industries. Access and overall use will benefit 
from continued development of networks-based 
integrated information management. However, all of 
uses depend on all the observation information 
disposed. Data assimilation is the important step of 
processes of disposal. In the future, we will further 
study on the method of data assimilation. Meanwhile, 
in order to efficiently utilize the data and obtain 
accuracy information products, we will adopt 
intelligent algorithms such as genetic algorithm and 
immune algorithm to research the information 
management system. 
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