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Abstract 
Differential evolution algorithm (DE) is a simple efficient 
optimization technique, but it is easily trapped in the local 
optima. This paper presents an improved differential 
algorithm (IDE) based on Alopex (Algorithms of Pattern 
Extraction) where “noise” strategy according to the learning 
experience and memory selection are used. In order to seek 
for better result Alopex operator contracts searching area 
self-adaptively during iteration process. The performance of 
IDE is tested by several benchmark functions. Results show 
that the IDE algorithm overcomes the disadvantages of the 
original DE and possesses higher precision. Finally IDE is 
successfully applied to reaction kinetic parameters 
estimation. 

Keywords: Differential Evolution Algorithm, Alopex, 
Parameters Estimation 

1. Introduction 
Many practical problems are non-differentiable, non-linear, 
multi-dimensional noisy, flat, or have many local optima, 
constraints or randomicity. The traditional gradient-based 
algorithms are notorious for trapping into local optima. 
However, DE algorithm [1], proposed by Storn and Price, 
which is a stochastic, population-based for global 
optimization over continuous spaces, has become a new 
study focus. It is a simple and surprisingly efficient 
algorithm which is a stochastic, population-based for global 
optimization over continuous spaces. Its effectiveness and 
efficiency have been successfully demonstrated in many 
application fields such as pattern recognition [1], 
communication [2], mechanical engineering [3] and so on.  

Parameters and learning strategies involved in DE are 
highly dependent on the problems under consideration. 
Compared to other optimizing algorithms, such as Particle 
Swarm Optimization (PSO), Genetic Algorithm (GA) and 
Simulate Anneal (SA), DE is much faster, easier to be 
programmed and has comparative global searching ability. 
However, it has lower precision and not easily gets into 

convergence. This motivates us to develop an improved 
algorithm to solve general problems more efficiently.  

In the proposed IDE algorithm, the Alopex [4] operator 
and natural immune memory were used. In Alopex, “noise” 
strategy which redounds to improve local searching ability 
was proposed; self-adaptive step length makes searching 
process go forwards to global optimum; immune memory 
selection help get candidate solution which has better fitness 
value, self organizing and highly distribution [5]. To sum up 
IDE has advantages of combining global searching and local 
searching. 

The reminder of the paper is organized as follows: In 
section 2, DE and Alopex are briefly described. The 
proposed IDE algorithm and implementation are provided in 
section 3. Then Benchmark functions are used to measure 
the performance of IDE, The results are presented in section 
4. After that in section 5, IDE is applied to reaction kinetic 
parameters estimation. Finally, Section 6 concludes the 
paper.  

2. A brief description of DE and Alopex 

2.1. DE algorithm  
DE algorithm is a population-based [6]-[7] search type 
algorithm. To start DE, we generate Np design vectors 
randomly as the initial population, namely 

p

0 0 0
1 2 N[x ,x ,...x ] .The size of population, Np, is held constant 

throughout the optimization process. The dimension of each 
vector was determined by the problem which requires to be 
optimized. 

To generate the new population, the algorithm extracts 
distance and direction information from the current 
population members and adds random deviation for diversity. 
Considering k

ix  as the target point in kth iteration, a related 
mutation vector is

p

k k k k
i i1 i2 iN={ , ,..., }V x x x , generally, there are 

several typical strategies in mutation phase [8] such as:  

“DE/best/1”: 1
2i1( )k k k k

i ibest FV x x x+ = + −�  (1) 



“DE/rand/1”: 1
1 2 3( )

k k k k
i i i iFV x x x+

+= −�  (2) 

“DE/rand to best/l”: 

1
1 2best( ) ( )k k k k k k

i i i i iF FV x x x x x+ = + +− −� �  (3) 

“DE/best/2”:  

1
1 2 3 4( ) ( )k k k k k k

i i i i ibest F FV x x x x x+ = + +− −� �  (4) 

“DE/rand/2”: 

1
51 2 3 4( ) ( )k k k k k k

i ii i i iF FV x x x x x+ = + +− −� �  (5) 

Where F is a scaling factor (known as the mutation 
constant) in [0,2], which controls the amplification of the 
difference between two individuals, so as to avoid the 
stagnation of evolving procedure [9], “ i1,i2,i3,i4,i5 ” 
represent the index of individuals selected randomly, “k” is 
the generation index and k

bestx is the best member of the 
previous generation.  

The strategy highly depends on the problems under 
consideration, meanwhile it also determines the performance 
of optimization [10]-[11]. In this article, “DE/best/1” 
(strategy1), “DE/rand/1” (strategy 2) and “DE/rand to best/l” 
(strategy3) were used to test the performance of benchmark 
function in section 4. 

In order to increase the diversity among the mutant 
parameter vectors, crossover is introduced. The trial vector 
is k k k k

j,i 1i 2i niU ={U ,U ,...,U } and the binomial crossover operation 
can be described by (6), 

, ( )
( 1, 2, , )

,

k
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if rand CR
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otherwise
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⎩

L  (6) 

After that, in order to determine whichever k
jiV or k

jix  is 
transferred into the next generation, the objective function 
value of the two, namely k

if( )v and k
if( )x , are compared and 

if an offspring has a lower objective function value than a 
predetermined population member, the new individual 
replaces the old one, as in (7), 
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x otherwise
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 (7) 

This evolving procedure continues until a stopping 
criterion is met. 

2.2. The Alopex algorithm 
Alopex has randomicity which can get rid of local optima 
and find the best solution, meanwhile it has heuristic search 
from the infection of objective function which depends on 
changes of last independent variables. So this algorithm 
could find global optimum gradually.  

A practical optimized problem can be summed up a 
problem which seeking extremum of objective 
function 1 2 nE(x ,x ,...x ) , where 1 2 n(x ,x x )... are independent 
variables. The optimization strategy [12] of basal Alopex is: 

( 1) ( ) ( 1)x t x t ti i iδ+ = + +  (8) 

Where iδ (t) is learning-rate (also known as the step size 
of independent variable) at the time of tth . 
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1 exp( ( ) / )i
i

p t
c t T

=
+ m

 (10) 

Where ip (t)  is the direction choosing probability of 
variable ( )i tx  at the time of t, “+” indicates seeking 
maximum, “-” means seeking minimum, T is annealing 
“temperature” parameter. 

( 1) ( 2) ( ( 1)) ( ( 2))( ) [ ] [ ]

( ) ( )

t t E x t E x t

E

c t x x
i i i i i

x t t
i

− − − − −= −

= Δ Δ

�

�
 (11) 

Where iΔx (t)  is the difference between independent 
variable i (t-1)x  and i (t-2)x ; meanwhile ΔE(t)  is the 
difference between the values of objective function. 

At each iteration, the algorithm makes a choice of 
direction randomly (has a forward direction or reverse 
direction. ip (t) depends on the correlation between 

iΔx (t) andΔE(t) , as given by (10). 
T is the important parameter in optimization which 

affects the performance of the algorithm mostly. At the 
beginning of the algorithm, T is large to ensure “grabbling 
ability”, and then gradually reduces along with the searching. 
As in [13], this paper adopts a method in which T parameter 
updated every N iterations (for a suitably chosen N), the 
following annealing schedule refer to (12), 

1 ' '

1 ( ') ( ')
m t t

i
i t t N t t N

T c t E t
Nm N

η
= = − = −

= = Δ∑ ∑ ∑  (12) 

From the annealing schedule given by (12), it is clear 
that T has corresponding decrease along with the reduction 
of the ΔE(t') . 

3. Implementation of IDE algorithm  
In Alopex, iδ (t)  has important influence over algorithm’s 
performance. Usually, it needs to be decreased gradually, so 
as to not only keep global searching, but also actualize local 
search in corresponding extension for precision. The 
experiments show that if iδ (t)  is too small, the convergence 
rate can’t be guaranteed; on the other hand if iδ (t)  is big 



enough, it may be miss the optimum closer current solution. 
The expression is given by (13),  

( ) ( )1
20i it x tδ = ×Δ   (13) 

Immune system is seen as a complex of cells, organs 
that protect organisms against infections. In IDE algorithm, 
immune memory selection was added, the objective function 
corresponds to antigen; candidate solution of problems 
denotes antibody; Fitness value means affinity which 
depends on comparability of problems’ solution; Alopex 
operation is similar to stimulation of antibodies which is 
good for improving the searching efficiency around the best 
solution. Memory is constructed of candidate solutions 
which have lower fitness value. When the searching 
stagnates in local optimum, Alopex generate reverse 
searching for the sake of getting rid of local optimum.  

For convenience, we introduce the operating procedure 
of IDE algorithm using strategy 2.  

Step1: Set iter=0, randomly generate Np points 

p

0 0 0
1 2 Nx ,x ...x as the initial population and select NM 

(generally NM=0.3Np) individuals randomly as memory 
variables， meanwhile， set the first point as the best one 
namely Gbest; 

Step2: Calculate the fitness value, iter=iter+1; 
Step3: For each point k

ix (1 ≤ i ≤ Np), select three 
individuals randomly, generate an mutant vector k+1

iV  by 
(2), 

Step4: Suppose k
i1x is an independent variable value at 

iterations (t-2), compute the corresponding objective 
function value k

if( )x ; 
Step5: Generate a random number, (0,1)rand ∈ , when 

rand CR≤ , execute binomial crossover operation by (6);  
Step6: The offspring k+1

ix  was generated by (7); 
Step7: Suppose k+1

ix  is an independent variable value at 
the time of (t-1) , k 1

if( )x ＋  is the corresponding objective 
function value, then compute the differences between k+1

ix  
and k

i1x  (namely iΔx (t) ) and difference of two objective 

functions (namely ( )E tΔ ) at the time of (t-1) and (t-2) 
respectively; 

Step8: According to (10), compute the possibility of 
choice of direction, Update the independent variables by (9), 
(13) and (8); 

Step9: Add memory individuals to new population, then 
calculate their objective function value. After that select the 
former NM candidate solutions construct new memory, 
thereinto the best one as Gbest, re-update the population 
using the former Np  individuals; 

Step10: If a stopping criterion (iter=Niter, or 
k+1 k -5
best bestG -G 10≤ ) is met, stop the algorithm and output the 

result, otherwise turn to step 2. 
By introducing Alopex operator and memory selection 

technique, the IDE algorithm is endowed with  self-learning 
and exploiting ability which can get rid of local optimum in 
a great extend, Meanwhile it has no need for the objective 
function to be differentiable, and has a high potential for 
parallelism. 

4. Results of Test Functions and 
Discussions  

Benchmark functions were used to measure the performance 
and analyze the influence of differential strategy involved in 
DE and IDE. These test functions are Schaffers, Grievank, 
Sphere and Ackly whose expressions and parameters are 
demonstrated in the following table1 [14]-[15]. 

In DE and IDE algorithms, same parameters used were 
population size Np=50, scaling factor F=0.6, crossover rate 
CR=0.3, N=100 and iteration number Niter=2000. Table 2 
lists the statistic results of performances comparison of DE 
and IDE for 30 times. optP denotes the probability of finding 
global optimum, minS  indicates the minimal generation of 
finding global minimal and avg.S  means the average 
generation of finding global minimum.  

 

Function Expressions Dim Bounds Optima

Schaffers 
2 2 2

1 2
2 2 2

1 2

( s i n ) 0 .5
( ) 0 .5

[1 0 .0 0 1( ) ]
x x

f x
x x

+ −
= −

+ +
 2 [-100, 100] 1 

Grievank 2

1 1

1
( ) ( ) co s( ) 1

4 0 0 0

nn
i

i
i i

x
f x x

i= =

= − +∑ ∏  30 [-600, 600] 0 

Sphere 2

1

( )
n

i
i

f x x
=

= ∑  30 [-100,100] 0 

Ackly 2

1 1

1 1
( ) 2 0 e x p 0 .2 e x p c o s ( 2 ) 2 0

n n

i i
i i

f x x x e
n n

π
= =

= − − − + +
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ 30 [-32,32] 0 

Table 1: The definition of benchmark test function. 
 

The four functions’ convergence maps of the IDE 
and DE algorithm are illustrated in figures 1-4, 
respectively. Abscissa axis denotes the evolutionary 
generation of algorithms; Vertical axis represents the 

fitness of test function. For clarity, logarithmic format 
was used in vertical axis. 

Generally speaking, the strategy varies with 
respect to the number of other random individuals that 



are used to construct a new trial vector, as well as 
whether or not the current individual or the global best 
individual would be used. Meanwhile the strategy 
determines the performance of optimization mostly. 

  
DE IDE 

Function Strateg
y 

optP  minS  avg.S  optP  minS avg.S

1 63% 300 415 76% 120 322

2 100% 970 1424 100% 280 847Schaffers 

3 0 N/A N/A 3% 860 860

1 70% 770 815 74% 540 561

2 100% 1750 1846 100% 1040 1080Grievank 

3 100% 710 917 100% 690 828

1 100% 520 534 100% 370 387

2 100% 1180 1212 100% 730 770Sphere 

3 100% 470 481 100% 450 467

1 100% 830 844 100% 540 555

2 100% 1870 1897 100% 1020 1076Ackly 

3 100% 730 750 100% 540 545

Table 2: The performances comparison of DE and 
IDE algorithms. 

The experimental results show that strategy 1 has 
faster convergence rate than strategy 2 and strategy 3 
mostly, nearly about half or even less than other 
strategies, inasmuch as strategy 1 joins the current best 
member to construct a new trial vector which leads to 
get higher convergence rate. But for some functions, 
its astringency can’t be fully guaranteed, e.g. Schaffers 
and Grievank functions, the probability of finding 
global minimal about 60%-70%. However, strategy 2 
has the advantage of finding global optimum nearly all 
the time. We explain that strategy 2 constructs new 
vector of 3 random individuals which maintains good 
diversity for a long time [16]. Compared with Strategy 
1 and 2, generally, strategy 3 seems to combine the 
characters of two strategies with average convergence 
rate and ordinary capability. However it’s not 
changeless, take Schaffers function for instance, it 
can’t find any global optimum solution at all over 30 
runs for strategy 3.  

 

 
Fig. 1: Convergence Graph for Schaffers. 
 

 
Fig. 2: Convergence Graph for Grievank. 
 

 
Fig. 3: Convergence Graph for Sphere. 
 

 
Fig. 4: Convergence Graph for Ackly. 

 
When compared IDE with DE, it is clear that the 

IDE has better performance of global convergence, 
namely larger probability and fewer average 
generations of finding global optima using three 
differential strategies. Concretely, take strategy 1 for 
example, for Schaffers function, DE needs 415 



generations to find global optimum, however IDE only 
requires 322 average generations, meanwhile the 
percentage of finding global optimum increased from 
63% to 76%. Similarly, the IDE also shows its 
superiority of Grievank Sphere and Ackly functions. It 
indicates that the IDE improves the speed and 
accuracy of convergence, especially for those 
functions which have multi-modality. Therefore IDE 
algorithm is more effective than original DE algorithm. 

5. Application of Kinetic Parameters 
Estimation 

As the disadvantage of the existing transaction 
technique of the wastewater, a new high efficient 
technique supercritical water oxidation which can 
degrade organic compound thoroughly without 
deleterious byproducts becomes one of the most 
popular reaction processes. 

Kinetic parameters estimation in Supercritical 
Water Oxidation is a problem with high dimension, 
high non-linearity besides possess many local extreme 
points. Up to now, several methods came into use. 
Literatures [17] elaborated the result of an 
investigation into the global kinetics of and reaction 
products from 2-chlorophenol (2CP) oxidation in 
supercritical water oxidation using the way of 
nonlinear regression. Literatures [18] expounded a 
chaos genetic algorithm based on chaos variable in 
genetic operation. It made the individuals of 
subgeneration distribute uniformly in the defined 
space and avoided its prematurity. Literatures [19] 
brought forward a eugenic evolution programming 
based on the feature analyses of deterministic 
algorithms and evolution algorithms. It integrates two-
point gradients method and evolution programming in 
the evolutionary process of individuals. Furthermore 
the evolution operations are adjusted for global 
searching. All of these algorithms were successfully 
applied in kinetic parameters estimation in 
supercritical water oxidation process. 

In chemical reaction, the removing rate is the 
most important index mark. Estimating the parameters 
exactly can figure out each factor’s influence and 
consequently establish foundation of designing and 
optimizing industrial devices. 2-chlorine carbolic acid 
is a representational organic wastewater, and it can be 
decomposed to carbon dioxide, hydrochloride and 
water. The speed of the reaction depends on 
temperature, 2-chlorine carbolic acid concentration 
and oxidant concentration.  

The objectives of our global kinetics analysis 
were to determine the Arrhenius parameters (A and Ea) 
and the reaction orders (a, b, and c) for 2CP, the rate 

expression for 2CP disappearance during SCWO 
given in (14). These rate laws typically capture the 
general trends in the data, but they cannot be expected 
to capture the details of the complex oxidation 
chemistry.  

2 2exp( )[2 ] [ ] [ ]a b caE
A CP O H O

RT
Rate = − (14) 

Combining the rate law of (14) with the definition 
of conversion and the design equation for a constant-
volume, plug-flow reactor leads to: 

2 2
1

0exp( )[2 ] [ ] [ ](1 ) b ca a aEdX
A CP O H O

d RT
X

τ
−= − −  

(15) 
The object function constitutes sum of squares of 

deviation between measured value and calculated 
value. By means of integrate (15) with initial 
condition τ 0＝ , X=0 , the transformed equality is 
(16).The experimental date reference to literature [17]. 

1

1
0 2 0 2 0

[(1 ) 1]

( 1) exp( )[2 ] [ ] [ ]

a

a b ca

X
Ea A CP O H O
RT

τ

−

−

− − =

− −
  

(16) 

Suppose sample size is n, the removing rate of 2-
chlorine carbolic acid in ith sample is iX . The sum of 
squares of deviation record as: 

' 2

1
( , , , , ) ( )

n

a i i
i

MSE a b c A E X X
=

= −∑     (17) 

Parameters estimation is searching for 
aA E a b、 、 、 、and c which make (17), reaches the 

minimum. Optimization parameters in various 
literatures are listed in Table 3. In 20 runs, the IDE 
algorithm proposed in this article converges on 
required value every time. 

 

Parameter Literature 
[17] 

Literature 
[18] 

Literature 
[19] IDE 

a 0.88 0.8181 0.8067 0.8081
b 0.41 0.4750 0.4425 0.4444
c 0.34 0.3276 0.3336 0.3239
A 100 70.4 71.06 63.5416
E0 46200 45153.2 46502 45625

MSE 0.2494 0.2225 0.2177 0.21769

Table 3: Optimization results comparison about 
reaction dynamics parameter. 

 



From the Table 3, IDE algorithm is better than 
literatures [17]-[18] and corresponds to literature [19]. 
It’s worthy to mention that convergence rate is very 
fast. In this experiment, the mean generation of get the 
prospective goal is forty in 30 runs. The results 
illustrate that IDE algorithm is just as effective in 
optimization of complex function. 

6. Conclusions 
An improved DE algorithm based on Alopex operator 
and memory selection was proposed. As can be seen 
from the previous results of the performance-testing 
experiment, with regard to the precision of global 
optimum and the convergence rate, IDE was clearly 
and consistently superior compared to original DE for 
global optimization of continuous space functions. 
Finally IDE was applied to reaction kinetic parameters 
estimation and also demonstrated its preferable 
capability. 
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