
An Improved Differential Evolution Algorithm and its
Application in Reaction Kinetic Parameters

Estimation
Dan Xu Shaojun Li Feng Qian

Institute of Automation, East China University of Science and Technology, Shanghai 200237, P. R. China

Abstract
Differential evolution algorithm (DE) is a simple efficient
optimization technique, but it is easily trapped in the local
optima. This paper presents an improved differential
algorithm (IDE) based on Alopex (Algorithms of Pattern
Extraction) where “noise” strategy according to the learning
experience and memory selection are used. In order to seek
for better result Alopex operator contracts searching area
self-adaptively during iteration process. The performance of
IDE is tested by several benchmark functions. Results show
that the IDE algorithm overcomes the disadvantages of the
original DE and possesses higher precision. Finally IDE is
successfully applied to reaction kinetic parameters
estimation.

Keywords: Differential Evolution Algorithm, Alopex,
Parameters Estimation

1. Introduction
Many practical problems are non-differentiable, non-linear,
multi-dimensional noisy, flat, or have many local optima,
constraints or randomicity. The traditional gradient-based
algorithms are notorious for trapping into local optima.
However, DE algorithm [1], proposed by Storn and Price,
which is a stochastic, population-based for global
optimization over continuous spaces, has become a new
study focus. It is a simple and surprisingly efficient
algorithm which is a stochastic, population-based for global
optimization over continuous spaces. Its effectiveness and
efficiency have been successfully demonstrated in many
application fields such as pattern recognition [1],
communication [2], mechanical engineering [3] and so on.

Parameters and learning strategies involved in DE are
highly dependent on the problems under consideration.
Compared to other optimizing algorithms, such as Particle
Swarm Optimization (PSO), Genetic Algorithm (GA) and
Simulate Anneal (SA), DE is much faster, easier to be
programmed and has comparative global searching ability.
However, it has lower precision and not easily gets into

convergence. This motivates us to develop an improved
algorithm to solve general problems more efficiently.

In the proposed IDE algorithm, the Alopex [4] operator
and natural immune memory were used. In Alopex, “noise”
strategy which redounds to improve local searching ability
was proposed; self-adaptive step length makes searching
process go forwards to global optimum; immune memory
selection help get candidate solution which has better fitness
value, self organizing and highly distribution [5]. To sum up
IDE has advantages of combining global searching and local
searching.

The reminder of the paper is organized as follows: In
section 2, DE and Alopex are briefly described. The
proposed IDE algorithm and implementation are provided in
section 3. Then Benchmark functions are used to measure
the performance of IDE, The results are presented in section
4. After that in section 5, IDE is applied to reaction kinetic
parameters estimation. Finally, Section 6 concludes the
paper.

2. A brief description of DE and Alopex

2.1. DE algorithm
DE algorithm is a population-based [6]-[7] search type
algorithm. To start DE, we generate Np design vectors
randomly as the initial population, namely

p

0 0 0
1 2 N[x ,x ,...x] .The size of population, Np, is held constant

throughout the optimization process. The dimension of each
vector was determined by the problem which requires to be
optimized.

To generate the new population, the algorithm extracts
distance and direction information from the current
population members and adds random deviation for diversity.
Considering k

ix as the target point in kth iteration, a related
mutation vector is

p

k k k k
i i1 i2 iN={ , ,..., }V x x x , generally, there are

several typical strategies in mutation phase [8] such as:

“DE/best/1”: 1
2i1()k k k k

i ibest FV x x x+ = + −� (1)

“DE/rand/1”: 1
1 2 3()

k k k k
i i i iFV x x x+

+= −� (2)

“DE/rand to best/l”:

1
1 2best() ()k k k k k k

i i i i iF FV x x x x x+ = + +− −� � (3)

“DE/best/2”:

1
1 2 3 4() ()k k k k k k

i i i i ibest F FV x x x x x+ = + +− −� � (4)

“DE/rand/2”:

1
51 2 3 4() ()k k k k k k

i ii i i iF FV x x x x x+ = + +− −� � (5)

Where F is a scaling factor (known as the mutation
constant) in [0,2], which controls the amplification of the
difference between two individuals, so as to avoid the
stagnation of evolving procedure [9], “ i1,i2,i3,i4,i5 ”
represent the index of individuals selected randomly, “k” is
the generation index and k

bestx is the best member of the
previous generation.

The strategy highly depends on the problems under
consideration, meanwhile it also determines the performance
of optimization [10]-[11]. In this article, “DE/best/1”
(strategy1), “DE/rand/1” (strategy 2) and “DE/rand to best/l”
(strategy3) were used to test the performance of benchmark
function in section 4.

In order to increase the diversity among the mutant
parameter vectors, crossover is introduced. The trial vector
is k k k k

j,i 1i 2i niU ={U ,U ,...,U } and the binomial crossover operation
can be described by (6),

, ()
(1, 2, ,)

,

k
ji jk

ji k
ji

if rand CR
j n

otherwise

V
x

U
≤

= =
⎧
⎨
⎩

L (6)

After that, in order to determine whichever k
jiV or k

jix is
transferred into the next generation, the objective function
value of the two, namely k

if()v and k
if()x , are compared and

if an offspring has a lower objective function value than a
predetermined population member, the new individual
replaces the old one, as in (7),

1 ()
, (() ()

1, 2,...
, p

k k k
i i i

k
i

k
i

U if f U f x
i N

x otherwise
x + =

⎧ <
=⎨

⎩
 (7)

This evolving procedure continues until a stopping
criterion is met.

2.2. The Alopex algorithm
Alopex has randomicity which can get rid of local optima
and find the best solution, meanwhile it has heuristic search
from the infection of objective function which depends on
changes of last independent variables. So this algorithm
could find global optimum gradually.

A practical optimized problem can be summed up a
problem which seeking extremum of objective
function 1 2 nE(x ,x ,...x) , where 1 2 n(x ,x x)... are independent
variables. The optimization strategy [12] of basal Alopex is:

(1) () (1)x t x t ti i iδ+ = + + (8)

Where iδ (t) is learning-rate (also known as the step size
of independent variable) at the time of tth .

{ ()

()

()

1 ()
(1) i

i

i

i

t with

t with

probability

probability

p t

p t
ti

δ

δ
δ

−

+
=

−
+ (9)

1
()

1 exp(() /)i
i

p t
c t T

=
+ m

 (10)

Where ip (t) is the direction choosing probability of
variable ()i tx at the time of t, “+” indicates seeking
maximum, “-” means seeking minimum, T is annealing
“temperature” parameter.

(1) (2) ((1)) ((2))() [] []

() ()

t t E x t E x t

E

c t x x
i i i i i

x t t
i

− − − − −= −

= Δ Δ

�

�
 (11)

Where iΔx (t) is the difference between independent
variable i (t-1)x and i (t-2)x ; meanwhile ΔE(t) is the
difference between the values of objective function.

At each iteration, the algorithm makes a choice of
direction randomly (has a forward direction or reverse
direction. ip (t) depends on the correlation between

iΔx (t) andΔE(t) , as given by (10).
T is the important parameter in optimization which

affects the performance of the algorithm mostly. At the
beginning of the algorithm, T is large to ensure “grabbling
ability”, and then gradually reduces along with the searching.
As in [13], this paper adopts a method in which T parameter
updated every N iterations (for a suitably chosen N), the
following annealing schedule refer to (12),

1 ' '

1 (') (')
m t t

i
i t t N t t N

T c t E t
Nm N

η
= = − = −

= = Δ∑ ∑ ∑ (12)

From the annealing schedule given by (12), it is clear
that T has corresponding decrease along with the reduction
of the ΔE(t') .

3. Implementation of IDE algorithm
In Alopex, iδ (t) has important influence over algorithm’s
performance. Usually, it needs to be decreased gradually, so
as to not only keep global searching, but also actualize local
search in corresponding extension for precision. The
experiments show that if iδ (t) is too small, the convergence
rate can’t be guaranteed; on the other hand if iδ (t) is big

enough, it may be miss the optimum closer current solution.
The expression is given by (13),

() ()1
20i it x tδ = ×Δ (13)

Immune system is seen as a complex of cells, organs
that protect organisms against infections. In IDE algorithm,
immune memory selection was added, the objective function
corresponds to antigen; candidate solution of problems
denotes antibody; Fitness value means affinity which
depends on comparability of problems’ solution; Alopex
operation is similar to stimulation of antibodies which is
good for improving the searching efficiency around the best
solution. Memory is constructed of candidate solutions
which have lower fitness value. When the searching
stagnates in local optimum, Alopex generate reverse
searching for the sake of getting rid of local optimum.

For convenience, we introduce the operating procedure
of IDE algorithm using strategy 2.

Step1: Set iter=0, randomly generate Np points

p

0 0 0
1 2 Nx ,x ...x as the initial population and select NM

(generally NM=0.3Np) individuals randomly as memory
variables， meanwhile， set the first point as the best one
namely Gbest;

Step2: Calculate the fitness value, iter=iter+1;
Step3: For each point k

ix (1 ≤ i ≤ Np), select three
individuals randomly, generate an mutant vector k+1

iV by
(2),

Step4: Suppose k
i1x is an independent variable value at

iterations (t-2), compute the corresponding objective
function value k

if()x ;
Step5: Generate a random number, (0,1)rand ∈ , when

rand CR≤ , execute binomial crossover operation by (6);
Step6: The offspring k+1

ix was generated by (7);
Step7: Suppose k+1

ix is an independent variable value at
the time of (t-1) , k 1

if()x ＋ is the corresponding objective
function value, then compute the differences between k+1

ix
and k

i1x (namely iΔx (t)) and difference of two objective

functions (namely ()E tΔ) at the time of (t-1) and (t-2)
respectively;

Step8: According to (10), compute the possibility of
choice of direction, Update the independent variables by (9),
(13) and (8);

Step9: Add memory individuals to new population, then
calculate their objective function value. After that select the
former NM candidate solutions construct new memory,
thereinto the best one as Gbest, re-update the population
using the former Np individuals;

Step10: If a stopping criterion (iter=Niter, or
k+1 k -5
best bestG -G 10≤) is met, stop the algorithm and output the

result, otherwise turn to step 2.
By introducing Alopex operator and memory selection

technique, the IDE algorithm is endowed with self-learning
and exploiting ability which can get rid of local optimum in
a great extend, Meanwhile it has no need for the objective
function to be differentiable, and has a high potential for
parallelism.

4. Results of Test Functions and
Discussions

Benchmark functions were used to measure the performance
and analyze the influence of differential strategy involved in
DE and IDE. These test functions are Schaffers, Grievank,
Sphere and Ackly whose expressions and parameters are
demonstrated in the following table1 [14]-[15].

In DE and IDE algorithms, same parameters used were
population size Np=50, scaling factor F=0.6, crossover rate
CR=0.3, N=100 and iteration number Niter=2000. Table 2
lists the statistic results of performances comparison of DE
and IDE for 30 times. optP denotes the probability of finding
global optimum, minS indicates the minimal generation of
finding global minimal and avg.S means the average
generation of finding global minimum.

Function Expressions Dim Bounds Optima

Schaffers
2 2 2

1 2
2 2 2

1 2

(s i n) 0 .5
() 0 .5

[1 0 .0 0 1()]
x x

f x
x x

+ −
= −

+ +
 2 [-100, 100] 1

Grievank 2

1 1

1
() () co s() 1

4 0 0 0

nn
i

i
i i

x
f x x

i= =

= − +∑ ∏ 30 [-600, 600] 0

Sphere 2

1

()
n

i
i

f x x
=

= ∑ 30 [-100,100] 0

Ackly 2

1 1

1 1
() 2 0 e x p 0 .2 e x p c o s (2) 2 0

n n

i i
i i

f x x x e
n n

π
= =

= − − − + +
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ 30 [-32,32] 0

Table 1: The definition of benchmark test function.

The four functions’ convergence maps of the IDE
and DE algorithm are illustrated in figures 1-4,
respectively. Abscissa axis denotes the evolutionary
generation of algorithms; Vertical axis represents the

fitness of test function. For clarity, logarithmic format
was used in vertical axis.

Generally speaking, the strategy varies with
respect to the number of other random individuals that

are used to construct a new trial vector, as well as
whether or not the current individual or the global best
individual would be used. Meanwhile the strategy
determines the performance of optimization mostly.

DE IDE

Function Strateg
y

optP minS avg.S optP minS avg.S

1 63% 300 415 76% 120 322

2 100% 970 1424 100% 280 847Schaffers

3 0 N/A N/A 3% 860 860

1 70% 770 815 74% 540 561

2 100% 1750 1846 100% 1040 1080Grievank

3 100% 710 917 100% 690 828

1 100% 520 534 100% 370 387

2 100% 1180 1212 100% 730 770Sphere

3 100% 470 481 100% 450 467

1 100% 830 844 100% 540 555

2 100% 1870 1897 100% 1020 1076Ackly

3 100% 730 750 100% 540 545

Table 2: The performances comparison of DE and
IDE algorithms.

The experimental results show that strategy 1 has
faster convergence rate than strategy 2 and strategy 3
mostly, nearly about half or even less than other
strategies, inasmuch as strategy 1 joins the current best
member to construct a new trial vector which leads to
get higher convergence rate. But for some functions,
its astringency can’t be fully guaranteed, e.g. Schaffers
and Grievank functions, the probability of finding
global minimal about 60%-70%. However, strategy 2
has the advantage of finding global optimum nearly all
the time. We explain that strategy 2 constructs new
vector of 3 random individuals which maintains good
diversity for a long time [16]. Compared with Strategy
1 and 2, generally, strategy 3 seems to combine the
characters of two strategies with average convergence
rate and ordinary capability. However it’s not
changeless, take Schaffers function for instance, it
can’t find any global optimum solution at all over 30
runs for strategy 3.

Fig. 1: Convergence Graph for Schaffers.

Fig. 2: Convergence Graph for Grievank.

Fig. 3: Convergence Graph for Sphere.

Fig. 4: Convergence Graph for Ackly.

When compared IDE with DE, it is clear that the

IDE has better performance of global convergence,
namely larger probability and fewer average
generations of finding global optima using three
differential strategies. Concretely, take strategy 1 for
example, for Schaffers function, DE needs 415

generations to find global optimum, however IDE only
requires 322 average generations, meanwhile the
percentage of finding global optimum increased from
63% to 76%. Similarly, the IDE also shows its
superiority of Grievank Sphere and Ackly functions. It
indicates that the IDE improves the speed and
accuracy of convergence, especially for those
functions which have multi-modality. Therefore IDE
algorithm is more effective than original DE algorithm.

5. Application of Kinetic Parameters
Estimation

As the disadvantage of the existing transaction
technique of the wastewater, a new high efficient
technique supercritical water oxidation which can
degrade organic compound thoroughly without
deleterious byproducts becomes one of the most
popular reaction processes.

Kinetic parameters estimation in Supercritical
Water Oxidation is a problem with high dimension,
high non-linearity besides possess many local extreme
points. Up to now, several methods came into use.
Literatures [17] elaborated the result of an
investigation into the global kinetics of and reaction
products from 2-chlorophenol (2CP) oxidation in
supercritical water oxidation using the way of
nonlinear regression. Literatures [18] expounded a
chaos genetic algorithm based on chaos variable in
genetic operation. It made the individuals of
subgeneration distribute uniformly in the defined
space and avoided its prematurity. Literatures [19]
brought forward a eugenic evolution programming
based on the feature analyses of deterministic
algorithms and evolution algorithms. It integrates two-
point gradients method and evolution programming in
the evolutionary process of individuals. Furthermore
the evolution operations are adjusted for global
searching. All of these algorithms were successfully
applied in kinetic parameters estimation in
supercritical water oxidation process.

In chemical reaction, the removing rate is the
most important index mark. Estimating the parameters
exactly can figure out each factor’s influence and
consequently establish foundation of designing and
optimizing industrial devices. 2-chlorine carbolic acid
is a representational organic wastewater, and it can be
decomposed to carbon dioxide, hydrochloride and
water. The speed of the reaction depends on
temperature, 2-chlorine carbolic acid concentration
and oxidant concentration.

The objectives of our global kinetics analysis
were to determine the Arrhenius parameters (A and Ea)
and the reaction orders (a, b, and c) for 2CP, the rate

expression for 2CP disappearance during SCWO
given in (14). These rate laws typically capture the
general trends in the data, but they cannot be expected
to capture the details of the complex oxidation
chemistry.

2 2exp()[2] [] []a b caE
A CP O H O

RT
Rate = − (14)

Combining the rate law of (14) with the definition
of conversion and the design equation for a constant-
volume, plug-flow reactor leads to:

2 2
1

0exp()[2] [] [](1) b ca a aEdX
A CP O H O

d RT
X

τ
−= − −

(15)
The object function constitutes sum of squares of

deviation between measured value and calculated
value. By means of integrate (15) with initial
condition τ 0＝ , X=0 , the transformed equality is
(16).The experimental date reference to literature [17].

1

1
0 2 0 2 0

[(1) 1]

(1) exp()[2] [] []

a

a b ca

X
Ea A CP O H O
RT

τ

−

−

− − =

− −

(16)

Suppose sample size is n, the removing rate of 2-
chlorine carbolic acid in ith sample is iX . The sum of
squares of deviation record as:

' 2

1
(, , , ,) ()

n

a i i
i

MSE a b c A E X X
=

= −∑ (17)

Parameters estimation is searching for
aA E a b、 、 、 、and c which make (17), reaches the

minimum. Optimization parameters in various
literatures are listed in Table 3. In 20 runs, the IDE
algorithm proposed in this article converges on
required value every time.

Parameter Literature
[17]

Literature
[18]

Literature
[19] IDE

a 0.88 0.8181 0.8067 0.8081
b 0.41 0.4750 0.4425 0.4444
c 0.34 0.3276 0.3336 0.3239
A 100 70.4 71.06 63.5416
E0 46200 45153.2 46502 45625

MSE 0.2494 0.2225 0.2177 0.21769

Table 3: Optimization results comparison about
reaction dynamics parameter.

From the Table 3, IDE algorithm is better than
literatures [17]-[18] and corresponds to literature [19].
It’s worthy to mention that convergence rate is very
fast. In this experiment, the mean generation of get the
prospective goal is forty in 30 runs. The results
illustrate that IDE algorithm is just as effective in
optimization of complex function.

6. Conclusions
An improved DE algorithm based on Alopex operator
and memory selection was proposed. As can be seen
from the previous results of the performance-testing
experiment, with regard to the precision of global
optimum and the convergence rate, IDE was clearly
and consistently superior compared to original DE for
global optimization of continuous space functions.
Finally IDE was applied to reaction kinetic parameters
estimation and also demonstrated its preferable
capability.

Acknowledgment
This work is supported by National Natural Science
Foundation of China for Distinguished Young
Scholars (Grand No. 60625302), and by Shanghai
Natural Science Foundation (Grand No. 06ZR14027).

References
[1] R. Storn and K.V. Price, Differential evolution-

A simple and efficient heuristic for global
optimization over continuous spaces. Journal of
Global Optimization, 11:341-359, 1997.

[2] J. Ilonen, J.K. Kamarainen and J. Lampine,
Differential evolution training algorithm for
feed-forward neural networks. In Neural
Processing Letters, 7(2):93-105, 2003.

[3] R. Storn, Differential evolution design of an
IIRfilter. In Proceedings of IEEE Int. Conference
on Evolutionary Computation (ICEC96), New
York, pp. 268-273, 1996.

[4] P.S. Sastry, M. Magesh and K.P. Unnikrishnan,
Two timescale analysis of Alopex algorithm for
optimization. Journal of Neural Comput,
14(11):2729-2750, 2002.

[5] L.N. De Castro and F.J. Von Zuben, Learning
and optimization using the clonal selection
principle. IEEE Transaction on Evolutionary
Computation, Special Issue on Artificial Immune
Systems, 6(3):239-251, 2002.

[6] K.V. Price, R. Storn and J. Lampinen,
Differential evolution: A practical approach to
global optimization. Berlin: Springer-verlag,
2005.

[7] J. Lampinen, A constraint handling approach for
the differential evolution algorithm. In
Proceeding Congress on Evolutionary
Computation (CEC 2002), Honolulu, Hawaii, pp.
1468-1473, 2002.

[8] K. Price, Differential evolution vs. the functions
of the 2nd ICEO. In Proceeding of 1997 IEEE
International Conference on Evolutionary
Computation (ICEC 97), Indianapolis, USA, pp.
153–157, 1997.

[9] D.K. Tasoulis, N.G. Pavidis, V.P. Plagianakos
and M.N. Vrahatis, Parallel differential evolution.
IEEE Transaction, pp. 2023-2029, 2004.

[10] J.Y. Sun and Q.f. Zhang, DE/EDA: A new
evolutionary algorithm for global optimization.
Journal of Information Sciences, 169:249-262,
2005.

[11] A.K. Qin and P.N. Suganthan, Self-adaptive
differential evolution algorithm for numerical
optimization. IEEE Transaction, pp. 1785-1791,
2005.

[12] C.N. Patel, Differential evolution-A method of
global optimization. Master dissertation,
Department of Mechanical Engineering, Texas
University, Arlington, 2002.

[13] A. Bia, Alopex-B:A new, simpler, but yet faster
version of the Alopex training algorithm. Journal
of Neural Systems, 11:497-507, 2001.

[14] A. Ratnaweera, S.K. Halgamuge and H.C.
Watson, Self-organizing hierarchical particle
swarm optimizer with time-varying acceleration
coefficients. IEEE Transaction Evolution
Comput, 8(3):240-255, 2004.

[15] J.G. Digalakis and K.G. Margaritis, An
experimental study of benchmarking functions
for genetic algorithms. Journal of Computer
Math, 79(4):403-416, 2002.

[16] J. Liu and J. Lampinen, A fuzzy adaptive
differential evolution algorithm. 2002 IEEE
Region 10 Technical Conference on Computers
Communications, Control and Power
Engineering, I-III:606-611, 2002.

[17] R.k. Li, P.E. Savage and D. Szmukler, 2-
Chlorophenol oxidation in supercritical
water:global kinetics and reaction products.
Journal of AIChE, 39(1):178-187, 1993.

[18] X.F. Yan, D.Z. Chen, S.X. Hu and J.W. Ding,
Estimation of kinetic parameters using chaos
genetic algorithms. Journal of Chemical industry
and Engineering, 53(8):810-814, 2002.

[19] B. Zhang, D.Z. Chen and J. Rao, Estimation of
kinetic parameters by using eugenic evolution
programming. Journal of Chemical Engineering
of Chinese Universities, 18(5):638-642, 2004.

