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Abstract

Based on the theory of topological degree and properties of
M-matrix, by constructing proper vector Lyapunov functions,
the existence and uniqueness of the equilibrium point and its
global exponential stability are investigated for a class of
neural networks with unbounded and varying delays. Without
assuming the boundedness and differentiability of the
activation functions, several new sufficient criterions for
ascertaining the existence, uniqueness and global exponential
stability of the equilibrium point of such neural networks are
obtained. Since the criterion is independent of the delays and
simplifies the calculation, it is easy to test the conditions of
the criterion in practice. An example is given to demonstrate
the feasibility of the criterion.
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1. Introduction

In recent years, there has been increasing interest in the
potential applications of the dynamics of artificial
neural networks in many areas and has been extensively
studied in many literature. It is well known that the
signal transmissions in biological neural systems have
time delays, and delays also exist in implementation of
neural networks due to finite switching speed of circuit
elements. Because the existence of time delays
frequently causes oscillation or instability in neural
networks, the study of stability of neural networks with
delays is practically required. As a result, many criteria
for testing the global stability of neural networks with
delays have been derived; see, for example, [1-8].
Though delays arise frequently in practical applications,
it is difficult to measure them precisely. In most
situations, delays are variable, and in fact unbounded.
Some results on the stability of neural networks
involving unbounded time delays are given in [9-16],
and the problem of exponential stability for neural
networks with unbounded delays is studied in [14]-[16].
To the best of our knowledge, recurrent neural
networks with both unbounded and variable delays are
seldom considered. However, unbounded delays in

recurrent neural networks are more common in practice.
Therefore, the studies of recurrent neural networks with
both variable and unbounded delays are more important
than those with constant or variable delays. Some
conditions ensuring the globally asymptotic or
exponential stability of recurrent neural networks with
variable time delays are given in [6-8], but in which the
unbounded delays were not involved.

In this paper, on the basis of the structure of
Hopfield neural networks and recurrent neural networks,
we consider a class of general neural networks
involving both unbounded and variable time delays. By
constructing  proper nonlinear integro-differential
inequalities, applying M-matrix theory and vector
Lyapunov function method, we obtain sufficient
conditions for existence, uniqueness of the equilibrium
point and its globally exponential stability of the class
of neural networks with unbounded and variable time
delays.

2. Notations and preliminaries

For convenience, we introduce some notations.
u=(u,---,u, )" eR" denotes a column vector. |u]|
denotes the absolute-value vector given by
[ul=(u,],---,Ju, )", Jlu|| denotes a vector norm

defined by
A=(a;)
denotes the inverse of A , [A]° is defined as
[AF =(A"+A)/2 , and |A| denotes absolute-value
matrix given by | Al=(|a,),.,., | Al denotes a matrix

1/2

lull= (uf +---+u?) For matrix

A" denotes the transpose of A, A™

nxn !

norm defined by || Al|= (max{4: A is an eigenvalue of
ATA})UZ .

The neural networks with variable and unbounded
time delays investigated in this paper can be described
by the following integro-differential equations:

du,(®) _
Erre A CA0)



+ g[au f (u; () +b;9; (u; (=7, ()))]

+2 [k (t=9)g,(u,Nds+3,, (1)
=
where u, is the state of neuroni, i=12,---,n,and nis
the number of neurons.

A= (au)nxn ' B = (bu)nxn ! C = (C|j)n><n '

are the connection matrices.

f(u)=(f,(u), f,u,), f,u)",

g(u) =(9,(u,), 9,(u,), -+, 9,(u,))",
are the activation function of the neurons.

J= (J1"]2!"'! ‘]n)T:

is the constant input vector. The delays 0< 7, (t)<r
(i,j=212,---,n) are bounded functions, the kernels
k; :[0,00) >[0,0) (i, j=12,---,n ) are piecewise
continuous on [0,00) and satisfy

[ ek (s)ds=p,;(B), i,j=12,,n. 2)
where p, (/) are continuous functions in [0,5), 6 >0,
and p,(0)=1.

The initial conditions of Egs. (1) are of the form
u(s)=¢(s) , s<0 , where ¢ is bounded and
continuous on (—o0,0].

In this paper, we also make the following
assumptions:

Assumption 1. d, is continuous on R, and for
di(Xi)_di(yi)
X =Y

Assumption 2. For each je{,2---,n} , the
activation functions f,:R—R and g,:R—>R are
globally Lipschitz continuous with Lipschitz constants
L,>0and K, >0.1ie.,forall x,,y,,

()= £0) IS L 1% -y ]
| gj(xj)_gj(yj)|S Kj |Xj _yj |
In the following, we let
D =diag(D,,D,,---,D,),
L =diag(L,, L,, -, L,),
K =diag(K,,K,,--,K,).
Ref. [13] assume that d, is differentiable and g,
satisfy the following condition

0<(g,(x)=9,(y (X, —y) <K (X, -y))".
It is obviously that the assumptions on functions d,
and g, in Ref. [13] are more strict than Assumption 1

and Assumption 2.
To obtain our results, we give the following
definitions and lemmas.

all x,, vy, >D,>0,i=12,--,n.

Definition 1 The equilibrium point u* of (1) is
said to be globally exponentially stable, if there exist
constants 4 >0 and M >0 such that

[ui®)—u;*| <M ||g—u*|le*, for all t=0, where
| ¢ —u*|l=max sup [d(s)—u;*|.
1<i<N 5¢(—o0,0]

Definition 2[17]. A real nxn matrix A=(a;) is
said to be an M-matrix if a, <0, i, j=12,---,n, i#],
and all successive principal minors of A are positive.

Lemma 1[18]. Let A =(a, ) be a matrix with non-

positive off-diagonal elements. Then the following
statements are equivalent:
(i) A is an M-matrix;
(i) The real parts of all eigenvalues of A are positive;
(i) There exists a vector & >0, such that £"A>0;

(iv) A is nonsingular and all elements of A™* are

nonnegative;
(V) There exists a positive definite nx ndiagonal

matrix Q such that matrix AQ + QA" is positive.
Lemma 2[12]. If H(x)eC® satisfies the
following conditions: then H(X) is a homeomorphism
of R" onto itself.
(i) H(x) isinjectiveonR";
() fim|H (0] > <o -

3. Existence and uniqueness of the
equilibrium point

The purpose of the present section is to give a sufficient
condition ensuring the existence and uniqueness of the
equilibrium point with respect to the class of
unbounded activation functions and every input vector.
Using the vector field associated with (1), we define a
map as follows

Hu)=-du)+Af(u)+(B+C)gw)+J, (3)
where

d =diag(d,,d,,--,d ), H=(H,H,---H)".

It is well known that if H(u) is a homeomorphism of

R", then system (1) has a unique equilibrium point.

Theorem 1. If Assumption 1 and Assumption 2
are satisfied, and D—|A|L—(|B|+|C|)K is an M-
matrix, then system (1) has a unique equilibrium point
u*.

Proof. In order to prove that system (1) has a
unique equilibrium point u*, it is only to prove that
H(u) is a homeomorphism on R". In the following,
we shall prove that map H(u) is a homeomorphism in

two steps.
In the first step, we prove that H(u) is an

injective on R". For purposes of contradiction, suppose



that there exist x,yeR" with Xx=Yy , such that
H(x) = H(y) . From (3), by Assumption 1 and
Assumption 2, we get

[HO)—=HW) [ = -d(x) —d(y)]+ ALT(x) - f(y)]
+(B+C)[g(x)-g(Y]
2 d(x)—d(y) |-[ Al £ ()= F(Y) |
=(IB[+ICDIg(x)—a(y)]
2D[x=y[-[A[L|x-Y]
—(IB|+[CDK[x-y]
=[D-[AIL-(B|+[CDK]Ix-Yy]|. (4)
Since D—|A|L-(|B|+]|C|)K isan M-matrix, by
Lemma 1 and the supposition H(x) = H(y) , from(4),
we have
[X=y[<[D-|A[L=(IB[+|CDK]*[H(x)-H(y)[]=0.
So x-y=0, i.e, x=y. From the supposition X#Y,
this is a contradiction. Thus map H(u) is a injective.
In the second step, we prove that I|m|| H() ||>.

[0
Let H(u)=H(u)-H(0) . To prove that H(u) is a
homeomorphism, if only suffices to show that H (u) is
a homeomorphism. Since D—|A|L-(|B|+|C|)K is
an M-matrix, from Lemma 1, there exists a positive
define diagonal matrix T =diag{T,,T,,---,T,}, such that
[T(O-(AIL-(B[+|C)K)] >0.

Then it is easy to see that

[TD+(AIL+(IB|+|CDK)F <-¢E,<0, (5)
where ¢ is a sufficiently small positive number and E,

is the identity matrix. From (5), according to
Assumption 1 and Assumption 2, we have

[Tul"H (u) =[Tu]"(H (u) - H(0))
=[Tu]'[(d (u) -d(0))
+A(f () - 1(0)+(B+C)(g(u) - £(0))]
<[Tul'[~(d (u) - d(@)+ | Al f (u)- f(0)|
+H(|BI+|CDIg(u)- (O]
Sul [T(-D+|A[L+(B[+|C)K)]I|u]
Sul" [T(-D+[A|L+(B|+|CK)] |u]
<-¢llulf. (6)
Using Schwarz inequality, from (6), it is easy to get
gllulP<IT Il A @I,
S0 we have
ellull
IHW) >~ T
It is obviously that || H (u) ||~ +c . Therefore we get
|| H() |-+ as ||ul—> +oo.

From steps 1 and 2, according to Lemma 2, we
know that for every input u , map H(u) is a

homeomorphism on R", so system (1) has a unique
equilibrium point. The proof is completed.

4. Global exponential stability of
neural networks

Due to vector Lyapunov method is a powerful tool to
analyze the stability of large-scale system, see [19]. In
the section, we apply the idea of vector Lyapunov
method to analyze the stability of neural networks (1).
Theorem 2. If Assumption 1 and Assumption 2

are satisfied, and D—|A|L—(|B|+|C])K is an M-
matrix, then system (1) has a unique equilibrium point,
which is globally exponentially stable.

Proof. Since D—|A|L—(|B|+|C|)K is an M-
matrix, from Theorem 1, system (1) has a unique
equilibrium point u*. Let x(t) =u(t)—u*, system (1)
can be written as

B0 g0+ Sa,F 0,0

+ ZbijGj (Xj (t — T (t)))

+3 ¢, K, (t=5)G, (U, (9))ds, )
where i=1,2,---,n, j=1---,n, and

di () =d; (x; +u;*)—d; (u;*),
Fi(x)=Fj(xj +u;*) —F;(u;*),
Gj(x;)=9g;(xj+u;*)—g;u;*).

The initial condition of (7) is w(s)=¢(s)—-u™*,
—0<5$<0. So (7) have a unique equilibrium x=0.
Since D—|A|L—(|B|+|C|)K is an M-matrix, from

Lemma 1, there exist & >0, i=12,---,n, such that

D&+ g[8, IL,+ (b, [ +]¢, DK, <0, =12
Constructing the function
=

+(& by [+]c; | p; (L)K(], 1=12,---,n
Obviously S;(0)<0 . From (2), we know S, (u) are
continuous functions. So there exists a constant o >0,
such that
5D @)+ 24l 1L,

+(“ by [+]c; | p(@)K;]<0. ©))
Let
Vi (t) =e” | X (t) | y V= (\/11\/2""’Vn)T .
calculating the upper right derivative of Vv, (t) along

the solutions of (7), by using Assumption 1 and
Assumption 2, we get



Dv,(t) =e“ sgnx {~d,(x, 1))
+ 208, (6, 0) +b,6, (¢, (t~7, ()
¢, [ K, (t=9)G, (x, ())dsI} +ae” (1)
<e"{(-D +a) % (O] + ZIL, I3, I1x,0)]
K, (b, [ %, (t— 7, )]
+ley 1]k, (t=s)1x,(s) [ds)I}
<D a)le O]+ XIL 13, e x, ()]

+K; € [b, |6 x, (t—7, (1))

+K, ¢, [k, (t—s)e e x (s) lds]
<(-D, +a)v, (t)+§[|_j la, [V, ()

+K, e |b, |v,(t—7, (1)

+K, Jc, 1]k, (t—s)e““ v (s)ds]. 9)

Let
gmax = max{éi}l gmin = min{fi}!

1<i<n I<izn

o=@+ w1/ Sy
where 6 >0 is a constant. Then, we get that
vi(s)=e” |y, (s)I<&l, , —o<s<0, i=12:n.

We claim that

v, (t) <&, for te[0,400),i=12,---,n.
If it is not true, then there exists some i and t, , such
that

vit)=¢ly, D7(v(t))=0, v,(t) <&,
for —o<t<t, j=12,---,n. However, from (9) we get

D" (v,(t,)) <{&(-D, +a)+§[L, a, |

+ K by [+]c; | py ()] H, <0

This is a contradiction, so v,(t) < &I, for t>0.
Furthermore,
Ix <&l e
SA+) Ny N1 &/ Ene ™
=M|lw|e*, i=42,---,n,t>0,

where M =(1+98)¢,,, /£, - Thus, we obtain

lui () —u*[ <M [ g—ux|le™".
From Definition 1, the equilibrium point of (1) is
globally exponential stable. The proof is completed.

5. An illustrative example

Consider the two-dimensional neural network of the
form
u, (t) =—-d,(u,(t)) + 0.2 f,(u,(t) - 0.3f, (u,(t))

—0.49,(u,(t —7,,(t)) +0.3g,(u,(t—7,(t)))
+0.15[" k,(t—s)g,(u,(s))ds
+0.3[" K, (t—9)g, (u,(s))ds +J, , (10a)
U, (t) =-d,(u,(t)) + 0.1, (u,(t) + 0.2 f,(u,(t))
+0.25¢, (u, (t — 7, (t)) —0.29, (u, (t — 7,,(t)))
+0.1f" K, (t—s)g, (u,(s))ds
+0.10" K, (t—s)g,(u,(s))ds +J, . (10b)
where
d,(u)=2u,d,(u)=u;k{t)=e",k,(t)=2/1+t°);
f,(u) =sin((v2/2)u) +u, f,(u) =sin(u) ;
9,(u)=g,(u)=(e"—e")/(e" +e™).
It is easy to verify that d,(u) and d,(u) satisfy
Assumption 1 with D,=2, D,=1; f(u), f,(u) and
g,(u), g,(u) satisfy Assumption 2 with
L =1++2/2,L,=1and K, =K, =1;
k,(t) and k,(t) satisfy initial condition (2). Thus we
have

02 -03 -04 03 0.15 0.3
A= ,B= ,C = ,
0.1 0.2 025 -0.2 01 01

2 0 1.707 O 10
D= , L= , K= .
{0 l} { 0 1} {O 1}

So we obtain

-0.5207 05

is a M-matrix, by Theorem 2, neural network (10) is
globally exponential stable.

11086 —0.9
D-[A[L-(IB|+|CK =

6. Conclusion

In this paper, applying the idea of vector Lyapunov
function method and M-matrix theory, we have
obtained sufficient conditions for the existence and
uniqueness of the equilibrium point and its global
exponential stability of a class of neural networks with
variable and unbounded delays. An illustrative example
is presented which demonstrate the usefulness of the
proposed results. In addition, due to sufficient
conditions obtained are independent of the delays, the
criteria can be easily checked in practice.
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