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Abstract  
Based on the theory of topological degree and properties of 
M-matrix, by constructing proper vector Lyapunov functions, 
the existence and uniqueness of the equilibrium point and its 
global exponential stability are investigated for a class of 
neural networks with unbounded and varying delays. Without 
assuming the boundedness and differentiability of the 
activation functions, several new sufficient criterions for 
ascertaining the existence, uniqueness and global exponential 
stability of the equilibrium point of such neural networks are 
obtained. Since the criterion is independent of the delays and 
simplifies the calculation, it is easy to test the conditions of 
the criterion in practice. An example is given to demonstrate 
the feasibility of the criterion.   
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1.  Introduction 
In recent years, there has been increasing interest in the 
potential applications of the dynamics of artificial 
neural networks in many areas and has been extensively 
studied in many literature. It is well known that the 
signal transmissions in biological neural systems have 
time delays, and delays also exist in implementation of 
neural networks due to finite switching speed of circuit 
elements. Because the existence of time delays 
frequently causes oscillation or instability in neural 
networks, the study of stability of neural networks with 
delays is practically required. As a result, many criteria 
for testing the global stability of neural networks with 
delays have been derived; see, for example, [1-8]. 
Though delays arise frequently in practical applications, 
it is difficult to measure them precisely. In most 
situations, delays are variable, and in fact unbounded. 
Some results on the stability of neural networks 
involving unbounded time delays are given in [9-16],  
and the problem of exponential stability for neural 
networks with unbounded delays is studied in [14]–[16].  

To the best of our knowledge, recurrent neural 
networks with both unbounded and variable delays are 
seldom considered. However, unbounded delays in 

recurrent neural networks are more common in practice. 
Therefore, the studies of recurrent neural networks with 
both variable and unbounded delays are more important 
than those with constant or variable delays. Some 
conditions ensuring the globally asymptotic or 
exponential stability of recurrent neural networks with 
variable time delays are given in [6-8], but in which the 
unbounded delays were not involved.  

In this paper, on the basis of the structure of 
Hopfield neural networks and recurrent neural networks, 
we consider a class of general neural networks 
involving both unbounded and variable time delays. By 
constructing proper nonlinear integro-differential 
inequalities, applying M-matrix theory and vector 
Lyapunov function method, we obtain sufficient 
conditions for existence, uniqueness of the equilibrium 
point and its globally exponential stability of the class 
of neural networks with unbounded and variable time 
delays.  

2.  Notations and preliminaries 
For convenience, we introduce some notations. 

denotes a column vector.  
denotes the absolute-value vector given by 
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The neural networks with variable and unbounded 
time delays investigated in this paper can be described 
by the following integro-differential equations:  
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where  is the state of neuron i, , and n is 
the number of neurons.  
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are the connection matrices.  
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are the activation function of the neurons.  
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The initial conditions of Eqs. (1) are of the form 
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Assumption 2. For each , the 
activation functions and are 
globally Lipschitz continuous with Lipschitz constants 
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In the following, we let  
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Ref. [13] assume that is differentiable and  
satisfy the following condition 
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It is obviously that the assumptions on functions  
and  in Ref. [13] are more strict than Assumption 1 
and Assumption 2. 
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To obtain our results, we give the following 
definitions and lemmas. 

Definition 1 The equilibrium point  of (1) is 
said to be globally exponentially stable, if there exist 
constants 
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Definition 2[17]. A  real  matrix nn× A =( ) is 
said to be an M-matrix if , , 
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and all successive principal minors of A  are positive. 
Lemma 1[18]. Let A =( ) be a matrix with non-

positive off-diagonal elements. Then the following 
statements are equivalent: 

ija

(i) A is an M-matrix; 
(ii) The real parts of all eigenvalues of A are positive; 
(iii) There exists a vector 0>ξ , such that ; 0>Τ Aξ
(iv) A is nonsingular and all elements of  are 
nonnegative; 

A 1−

(v) There exists a positive definite diagonal 
matrix Q such that matrix is positive. 
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Lemma 2[12]. If  satisfies the 
following conditions: then  is a homeomorphism 
of  onto itself. 
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3. Existence and uniqueness of the 
equilibrium point 

The purpose of the present section is to give a sufficient 
condition ensuring the existence and uniqueness of the 
equilibrium point with respect to the class of 
unbounded activation functions and every input vector. 
Using the vector field associated with (1), we define a 
map as follows 
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It is well known that if  is a homeomorphism of 
, then system (1) has a unique equilibrium point.  
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Theorem 1. If Assumption 1 and Assumption 2 
are satisfied, and KCBLAD |)||(||| +−−  is an M-
matrix, then system (1) has a unique equilibrium point 
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Proof. In order to prove that system (1) has a 

unique equilibrium point , it is only to prove that 
 is a homeomorphism on . In the following, 

we shall prove that map  is a homeomorphism in 
two steps. 
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In the first step, we prove that  is an 
injective on . For purposes of contradiction, suppose 
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Let )0()()( HuHuH −= . To prove that  is a 
homeomorphism, if only suffices to show that 
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a homeomorphism. Since KCBLAD |)||(||| +−−  is 
an M-matrix, from Lemma 1, there exists a positive 
define diagonal matrix , such that },,,diag{ 21 nTTTT L=
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Then it is easy to see that 
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where ε  is a sufficiently small positive number and  
is the identity matrix. From (5), according to 
Assumption 1 and Assumption 2, we have   
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Using Schwarz inequality, from (6), it is easy to get  
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From steps 1 and 2, according to Lemma 2, we 
know that for every input u , map  is a 

homeomorphism on R , so system (1) has a unique 
equilibrium point. The proof is completed. 
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4. Global exponential stability of 
neural networks 

Due to vector Lyapunov method is a powerful tool to 
analyze the stability of large-scale system, see [19]. In 
the section, we apply the idea of vector Lyapunov 
method to analyze the stability of neural networks (1).  

Theorem 2. If Assumption 1 and Assumption 2 
are satisfied, and KCBLAD |)||(||| +−−  is an M-
matrix, then system (1) has a unique equilibrium point, 
which is globally exponentially stable. 

Proof. Since KCBLAD |)||(||| +−−  is an M-
matrix, from Theorem 1, system (1) has a unique 
equilibrium point . Let , system (1) 
can be written as 
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The initial condition of  (7) is *)()( uss −= φψ , 
0≤<−∞ s . So (7) have a unique equilibrium 0=x . 
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continuous functions. So there exists a constant 0>α , 
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calculating the upper right derivative of  along 
the solutions of (7), by using Assumption 1 and 
Assumption 2, we get 
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From Definition 1, the equilibrium point of (1) is 
globally exponential stable. The proof is completed.  

5.  An illustrative example 
Consider the two-dimensional neural network of the 
form 
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is a M-matrix, by Theorem 2, neural network (10) is 
globally exponential stable. 

6.  Conclusion 
In this paper, applying the idea of vector Lyapunov 
function method and M-matrix theory, we have 
obtained sufficient conditions for the existence and 
uniqueness of the equilibrium point and its global 
exponential stability of a class of neural networks with 
variable and unbounded delays. An illustrative example 
is presented which demonstrate the usefulness of the 
proposed results. In addition, due to sufficient 
conditions obtained are independent of the delays, the 
criteria can be easily checked in practice.  
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