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Abstract

In this paper we study a supply chain in which
a supplier sells a single product to an indepen-
dent retailer facing a price-sensitive demand while
the sales price is endogenously determined by the
retailer, and compare the performance of supply
chain between push and pull model. We prove
that for the multiplicative form of end-customer
demand, at optimality, the wholesale price, order
quantity and the retail price in pull model are
greater than in push model, respectively. We fur-
ther demonstrate that the supplier obtains greater
profit in pull model than in push model, but it is
opposite to the retailer.

Keywords: Supply chain management, Push, Pull,
Price-sensitive demand

1. Introduction

A supply chain consists of independent firms each
having his own profit concern, in general, does
not achieve optimal performance, i.e., supply chain
coordination. However, optimal performance is
achievable in a decentralized supply chain if the
firms coordinate by contracting on a set of transfer
payments such that each member’s objective be-
comes aligned with the supply chain’s objective.

In a decentralized supply chain system, each
firm’s decisions will affect other firms’s actions.
Then, other firms in the supply chain will react
to those actions in a spectrum of ways. In one
extreme of this spectrum, the pull model, the dis-
tributor would agree to a per-unit price to pay the
supplier and then pull as many units of the item as
it needed to satisfy demand. The supplier would
then order a quantity of the item in anticipation
of how many units would be pulled when the dis-
tributor responses to the demand realization. Since
the supplier would bear the cost of any items that
were ordered and were not subsequently pulled by
the distributor, he would bear the inventory risk.

At the other end of the spectrum, push model, the
suppliers would specify prices for their items, and
the distributor would determine the quantities to
order. In this case, the distributor would agree to
receive whatever quantities she orders regardless of
the realization of demand, and she would bear all of
the inventory risk. There are two other situations
that can be represented by a pull contract: Vendor
Managed Inventory(VMI) with consignment inven-
tory(the supplier decides how much inventory to
stock at the retailer and owns that inventory), or
drop shipping(the supplier holds the inventory and
ships directly to consumers, bypassing the retailer).
In practice, most supplier-distributor relationships
fall somewhere between these two extremes. For ex-
ample, Dell typically provides at least some assur-
ance as to the minimum quantities of certain spe-
cialized components, e.g. a newly released version
of CPU. However, for items that are more stan-
dard, e.g. memory chips, it is more likely to let
suppliers bear the full inventory risk. In fact, it
is the lead-time, or the length of time from send-
ing orders to receiving products they ordered, that
persuades the supplier or retailer to bear the in-
ventory risk. In this paper, we study a simplified
version of supply chain. There is only one order
opportunity both in push model and pull model,
which occurs well before the selling season due to
the long order lead time. The customer demand is
price-dependent, stochastic. We consider the push
contract and pull contract when the supply chain is
composed of only one supplier and one retailer. The
rest of the paper is organized as follows. Section 2
contains a brief review of the relevant literature on
pull contract and push model of a supply chain as
well as on price-sensitive demand. Section 3 de-
scribes the basic model when there is single retailer
and presents the comparisons of performance under
there different scenarios: centralized, pull and push
model. Section 4 concludes the paper with a sum-
mary of results and discussion of future research
directions.



2. Brief Review of the Litera-
ture

Our research relates most closely to existing re-
search on wholesale-price-only supply contracts and
on price-dependent demand. Following a large
amount of research on relatively elaborate coordi-
nation mechanisms, e.g. returns policies, quantity
flexibility, revenue sharing, etc., Lariviere and Por-
teus (2001) were the first to formally model a linear
wholesale-price-only supply contract. They consid-
ered a setting in which the retail price is fixed and
the supplier moves first by announcing a wholesale
price, then the retailer responds by ordering as a
newsvendor. (This setting was later described by
Cachon (2004) as a push mode of operations be-
cause the inventory is pushed down to the retailer,
who bears all of the risk.) Among the more inter-
esting conclusions of Lariviere and Porteus is that
the retailer’s price sensitivity is increasing in the
coefficient of variation for demand, and that the
retailer can become worse off as demand variability
decreases. It was also shown that, in many set-
tings, a price-only contract achieves a high level of
supply chain efficiency, suggesting that more elabo-
rate contractual mechanisms my be unnecessary in
many settings.

Cachon and Lariviere (2001) considered a
closely related setting in which a two-firm supply
chain, here consisting of a supplier and a manufac-
turer, facing newsvendor demand. However, here it
is the downstream firm, i.e. the manufacturer, that
moves first to set the contractual terms, and it is the
upstream firm that determines the amount to invest
in capacity or inventory(This setting was also later
described by Cachon (2004) as a pull model of oper-
ations because the inventory is pulled up to the up-
stream firm, who bears all of the risk). They study
a number of contractual relationships, but their fo-
cus is on how these contracts affect the manufac-
turer’s incentive to accurately report its demand
forecast to its supplier.

Cachon (2004) unifies this line of research by
considering both the setting in which the upstream
firm sets the price, which he characterizes as a push
mode of operation, and the setting in which the
downstream firm sets the price, which he character-
izes as a pull mode of operation. Among the con-
clusions of this paper is that supply chain efficiency
is higher under equilibrium pull than under equilib-
rium push modes of operation. Taylor (2004) also
considers both push and pull modes of operation,
to which he refers as early and late sales to the re-
tailer. However, his model is based on price depen-

dent demand with an uncertainty parameter, and
he focuses on how the retailer’s private information
about demand or ability to influence demand affect
which mode of operation is preferred. Zhang, Ou
and Gilbert (2007) study an assemble-to-order en-
vironment involving a single product sold in two
different configurations, both of which require a
unique component stocked in advance and are as-
sembled on the same capacity limited equipment,
whose assembly capacity is allocated to maximize
system profit for any given product demands and
components availability. They first solve for the
first-best stocking policy when the components are
produced internally. Then they investigate how dif-
ferent forms of contract between the assembler and
the component suppliers will affect coordination of
the supply chain as well as each party’s profit when
the components are procured from external suppli-
ers. Finally, they show that it is possible to co-
ordinate the supply chain with a single-price con-
tract between each supplier and the assembler while
awarding all parties positive profit.

A distinguishing feature of the above papers
is that they all consider the setting in which the
retail price is fixed. As noted by Kandel (1996),
with the price-dependent demand, it is consider-
ably more complicated, because the retailer should
choose his retail price in addition to his order quan-
tity. However, in general, the incentives provided
to align one action(e.g., the order quantity) may
cause distortions with the other action(e.g., the re-
tail price).Granot and Yin (2005) study the effec-
tiveness of returns policies in the price-dependent
newsvendor model. They focus on whether the in-
troduction of buy-back contract can improve the
channel efficiency for some expected demand func-
tions.

Some related work has been done on the com-
parisons of performance of supply chain between
push model and push model, e.g. Cachon (2004),
Gerchak and Wang (2003) and Wang and Gerchak
(2003), etc. However, Cachon (2004) focuses on
the allocation of inventory risk among the sup-
ply chain’s members when the retail price is fixed.
Gerchak and Wang (2003) and Wang and Gerchak
(2003) compare push and pull modes of operation
and show how the relative performance of the two
modes depends upon the assembly firm’s share of
total costs and the number of suppliers. Gurnani
and Gerchak (2004) consider a similar framework,
but they allow for the suppliers to be subject to
random yields.

Although our work also focuses on comparing
the performance of supply chain between push



model and pull model, in contrast to the papers
described above, we do not assume a stationary
retail price. Instead, we consider a situation
where the demand of end-customer market is
price-dependent, i.e., the retailer can adjust the
demand via its retail price.

3. Model formulation: Single
retailer

Consider a supply chain, wherein a risk-neutral
supplier, who orders/or produces a single product
at a fixed marginal cost c, sells that product at
a wholesale price w per unit to a risk-neutral re-
tailer, who then sells it at a marginal retail price
p to a end-customer market, over a single season.
We assume in this paper that demand of the re-
tailer during the selling season is stochastic with
a multiplicative form D = D(p)ε, D(p) is the ex-
pected amount of demand D, which decreases in
the retail price p, and ε(ε ≥ 0) is the random part
of demand D, which is a positive random variable
with mean normalized to 1. The multiplicative de-
mand model, which is commonly used in the eco-
nomics and operations management literature, was
initially proposed by Karlin and Carr (1962), and
it could induce a constant coefficient of variation
for any retail price while the variance of demand
increases with expected demand. D has a density
function satisfying f(x|p) = 1

D(p)fε( x
D(p) ), forx ≥ 0,

where fε() is the density of a positive random vari-
able with mean 1. For the purpose of gaining some
insights into the dynamics of the problem, through-
out this paper, we adopt the same assumption as
Emmons and Gilbert (1998) had made that fε(x)
is a uniform distribution on the interval [0, 2], i.e.,
the density function is of the form

fε(x) =
{

1
2 x ∈ [0, 2]
0 otherwise (1)

We further note that, for any retail price p, the
highest demand from the end-customer market is
2D(p), because it is easy to note that the Cumula-
tive Distribution Function(CDF) of demand is

FD(x) =





0 x < 0
1

2D(p)x x ∈ [0, 2D(p)]
1 x > 2D(p)

(2)

Although our choice of the uniform distribution
is somewhat arbitrary, it is easy for a manager to
visualize and it allows us to illustrate the dynamics

of the problem. To keep things as simple as
possible, let us assume that demand is linear, and
is of the form:D(p) = a(p − k), where a < 0 and
k > 0 are constants. It is easy to note that when
p = k, the expected profits of both supplier and
retailer vanish, since the expected demand from
the external market is zero. We also assume that
unsatisfied demand is lost without any penalty
costs for lost sales, and that units remaining at the
end of the season are salvaged for v per unit,v < c,
no matter which firm, supplier or retailer, salvages
the unit. Thus, we assume for feasibility that
0 ≤ v < c ≤ w ≤ p < k in the sequel, except
as otherwise noted. We have chosen a linear
demand model for its simplicity and because it is
commonly used in the literature. Several authors,
including Chu and Messinger (1993), Riordan
(1985), and Bagwell and Ramey (1990), have
modelled uncertain demand as a linear function
of price in which the intercept is a random variable.

3.1. Integrated Supply Chain

To address the impact of push model and pull
model to the performance of decentralized supply
chain, we first present and analyze a version of this
supply chain system under a centralized decision
maker, i.e., the integrated supply chain, as a bench-
mark. The integrated supply chain maximizes the
sum of the retailer’s profit and the supplier’s profit.
The supply chain’s decisions are both the produc-
tion quantity q and the sales price p(p < k). The
supply chain’s expected profit is

Π(q, p) = ED[p min{q, D}+ v(q −D)+ − cq]
= (p− c)q − (p− v)

∫ q

0
FD(x)dx

= (p− c)q − (p− v)[qFε( q
D(p) )

− ∫ q
D(p)

0 D(p)xfε(x)dx]
= (p− c)q − (p−v)q2

4a(p−k)

(3)
Notice from (3) that π(q, p) is concave in q for a
given p. Thus, it is possible to reduce the prob-
lem max

q,p
π(q, p) to an optimization problem over

the single variable p by first solving for the optimal
value of q as a function of p and then substituting
the result back into π(q, p). To my knowledge, this
method was primarily introduced by Whitin (1955).
Hence, we obtain the optimal values of retail price
and production quantity as follows:

p0 = k+3v+
√

(k−v)(k−9v+8c)

4
(4)



and

q0 = 2a(p0−k)(p0−c)
p0−v

= a
2 [9v − 5k − 4c + 3

√
(k − v)(k − 9v + 8c)]

(5)
For notational convenience, let Π0 = Π(q0, p0). We
substitute p0 and q0 into the expected integrated
supply chain profit function (3), and simplify it to

Π0 = a
32(v−c) (

√
(k − v)(k − 9v + 8c)− k + 3v − 2c)

(k + 3v − 4c +
√

(k − v)(k − 9v + 8c))2

(6)

3.2. Push Model

Now, we turn to a push model, wherein a supplier
sells the products which he has purchased or pro-
duced in advance to a retailer, who then resell them
to end-customer market. The sequence of events is
as follows. First, the supplier acts as the Stackel-
berg leader by announcing the wholesale price w
per unit, at which products will be sold to retailer
before the selling season. In response to the pro-
posed w, the retailer, who faces a newsvendor deci-
sion with price-dependent demand, commits to an
order quantity q prior to the selling season(at this
time, the inventory is in fact pushed down to the re-
tailer and the retailer bears all of the risk while the
supplier has no inventory risk), and a retail price
p(p ≥ w), at which to sell those products during
the season. Next, the supplier orders from its outer
suppliers or produces the q quantity of products
and deliver them to the retailer before the season.
Thereafter, demand is realized and any unsatisfied
demands are lost without any penalty cost. At the
end of the season, all the remaining products are
salvaged(by the retailer) at a marginal price v and
all costs and revenues are incurred.

By replacing the sign c with w in (3), we can
easily derive the retailer’s profit

π̂r = (p− ŵ)q − (p− v)q2

4a(p− k)
(7)

When ŵ is given, we obtain the unique optimal
order quantity by the similar way above

q̂ =
a

−4
(
√

k − 9v + 8ŵ − 3
√

k − v)2 (8)

and the optimal retail price

p̂ =
k + 3v +

√
(k − v)(k − 9v + 8ŵ)

4
(9)

Taking the retailer’s reaction functions into ac-
count, the supplier’s profit is

π̂s(ŵ) = π̂s(q̂, ŵ)
= (ŵ − c)q̂
= a

2 (ŵ − c)(9v − 5k − 4ŵ

+3
√

(k − v)(k − 9v + 8ŵ))
= a

−4 (ŵ − c)(
√

k − 9v + 8ŵ − 3
√

k − v)2

(10)
Notice that the optimal solution of optimization
problem max

ŵ≥c
π̂s(ŵ) is the same as the optimization

problem max
ŵ≥c

log(π̂s(ŵ)) through the monotonicity

property of function log(x) for x > 0, we can com-
pute the optimal wholesale price

ŵ =
5k + 32c + 27v + 3

√
(k − v)(17k − 81v + 64c)
64

(11)
for it satisfies that ŵ ≥ c. By substituting (11) into
(8) and (9), we obtain the optimal values of p and
q in the corresponding push model

p̂ =
7k + 9v +

√
(k − v)(17k − 81v + 64c)

16
(12)

and

q̂ =
−a

32
[49k+32c−81v−9

√
(k − v)(17k − 81v + 64c)]

(13)

3.3. Pull Model

In contrast to push model, the decision sequence in
a pull model is as follows. First, the retailer, who
really acts like a Stackelberg leader, announces its
preferred marginal wholesale price w, at which the
retailer will purchase the products from the sup-
plier during the selling season, after having made
its price decisions in mind. In response to this pro-
posed w, the supplier, who faces a newsvendor de-
cision, commits to an order quantity q prior to the
season(as a matter of fact, the supplier pulls the
inventory up to him and bears all of the risk at
this time). Next, the supplier’s upstream suppli-
ers deliver the product to the supplier at the start
of selling season. Thereafter, demand is realized
and any unsatisfied demands are lost without any
penalty cost. At the end of the season, all the re-
maining products are salvaged(by the supplier) at
a marginal price v and all costs and revenues are
incurred.



The supplier’s expected profit is

πs(q, w) = ED[w min{q, D}+ v(q −D)+ − cq]
= (w − c)q − (w − v)

∫ q

0
FD(x)dx

= (w − c)q − (w − v) q2

4a(p−k)

(14)

Because πs(q, w) is strictly concave in q, the sup-
plier’s optimal quantity is implicitly defined by

FD(q) =
w − c

w − v
(15)

There is a one-to-one relationship between the pro-
duction quantity q and the wholesale price w, that
is, q = 2D(p) w−c

w−v = 2a(p − k) w−c
w−v , or w =

2ac(p−k)−qv
2a(p−k)−q . In addition, it follows that the pro-

duction quantity q is increasing with respect to
wholesale price w through the fact that dq

dw =
2a(p − k) c−v

(w−v)2 > 0. Certainly, the optimal value
of q satisfies that 0 ≤ q ≤ 2D(p).
The expected profit of retailer is

πr(q, p) = ED[(p− w)min{q, D}]
= (p− w)[q − ∫ q

0
FD(x)dx]

= 2a(p− w)(p− k)[1− w−c
2(w−v) ]

w−c
w−v

(16)
The optimal retail price is

p∗ =
w + k

2
(17)

Substituting p∗ into q = 2a(p − k) w−c
w−v , we obtain

the optimal order quantity

q∗ = a (w−k)(w−c)
w−v

(18)

Thus, using (18) we can rewrite the supplier’s ex-
pected profit in terms of w:

πs(w) =
−a

2
(k − w)(w − c)2

w − v
(19)

Through dπs(w)
dw = 0, we obtain the optimal whole-

sale price

w∗ =
3v + k

4
+

1
2

√
(v − k)2

4
− 2(c− v)(v − k)

(20)
for it satisfies that w∗ ≥ c. By substituting (20)
into (17) and (18), we obtain the optimal values of
p and q in the corresponding pull model

p∗ =
5k + 3v +

√
(k − v)(k − 9v + 8c)

8
(21)

and

q∗ =
−a

4
[5k + 4c− 9v − 3

√
(k − v)(k − 9v + 8c)]

(22)
The retailer’s expected profit is:

πr(w) = −a

2
(w − k)2(1− 1

2
w − c

w − v
)
w − c

w − v
(23)

3.4. Performance Comparison
between Push Model and
Pull Model

PROPOSITION 1: In the above integrated sup-
ply chain as well as decentralized supply chain with
push or pull contract:

(i) p∗ ≥ p̂ ≥ p0;
(ii) q0 > q∗ ≥ q̂;
(iii) ŵ ≤ w∗.

It follows from Proposition 1 that, as expected, the
integrated supply chain would be preferred by the
end customers to a decentralized supply chain both
with pull and push strategies, in the sense that it
offers a lower retail price and makes a larger amount
of products available to customers. This coincides
with the well-studied Double Marginalization phe-
nomenon. And it is easy to understand that there
always exists conflict of profit-pursuit between the
supplier and the retailer no matter what contract
has been signed. But, there is something very inter-
esting and it is what we intended to do the compari-
son between the pull and push model. From Propo-
sition 1, it also follows that both the retail price and
the quantity available for the end customers with
pull model are higher than that with push model
while the wholesale price with pull is higher than
that with push. We note that the results derived
in Proposition 1 are consistent with those derived
by Cachon(2004) for his demand model.
Further, having the Proposition 1, we derive the
following conclusion.
PROPOSITION 2:

(i) The supplier’s maximum profit with pull
is greater than with push, i.e., πs ≥ π̂s;

(ii) The retailer’s maximum profit with push
is greater than with pull, i.e., π̂r ≥ πr;

(iii) The system’s maximum profit with pull
is greater than with push, i.e., π ≥ π̂, or, πr +πs ≥
π̂r + π̂s;

(iv) The total expected profit of centralized
system is greater than the total expected profit in
pull mode, i.e., Π0 ≥ π.
Proposition 2 indicates that supplier prefer the pull



mode over the push mode while the retailer prefers
the push mode over the pull mode. Thus, assum-
ing an optimal contract is chosen, a firm, the re-
tailer or the supplier, always earns a higher profit
if the firm bears the supply chain’s inventory risk.
In other words, counter to intuition, a firm should
not negotiate with the objective of getting the other
form to bear more inventory risk. We also note that
the results derived in Proposition 2 are consistent
with those derived by Cachon(2004) for his demand
model. More importantly, the supply chain relative
to the pull mode is attractive for system managers
to the push mode.

4. Conclusions and future re-
search

In this paper we study a supply chain in which a
supplier sells a single product to an independent
retailer facing a price-sensitive demand while the
sales price is endogenously determined by the
retailer, and compare the performance of supply
chain between push and pull model. We demon-
strate that the wholesale price, order quantity
and the retail price in pull model are greater
than in push model at optimality, respectively.
We further demonstrate that the supplier obtains
greater profit in pull model than in push model,
but it is opposite to the retailer. In other words,
the results show that the allocation of inventory
risk matters for supply chain efficiency even if
firms are risk neutral. For example, the whole
supply chain’s profit in a pull model, in which the
supplier bears the inventory risk and the retailer
has chosen her optimal purchasing price, is greater
than that in a push model, in which the retailer
bears the inventory risk and the supplier has
chosen her optimal wholesale price. This result is
very interesting not only for academic researchers
but also for practical managers. For it provides us
several different choices.
Our analysis in this paper focuses on the situation
when the end-customer demand follows a multi-
plicative form. It is also interesting to study the
case where the end-customer demand is additive
form. Further, are these results also true when
there exist several competing retailers? We will
continue our investigation in all these directions.
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APPENDIX

PROOF OF PROPOSITION 1:
(i)p∗ ≥ p̂ ≥ p0. It follows that 3

√
k − v +

2
√

k − 9v + 8c ≥ √
17k − 81v + 64c through

the fact that (3
√

k − v + 2
√

k − 9v + 8c)2 −
(
√

17k − 81v + 64c)2 = 32
√

k−9v+8c(k−c)

3
√

k−v+
√

k−9v+8c
≥ 0.

Thus it is easy to verify that

p∗ − p̂ =
√

k−v
16 [3

√
k − v + 2

√
k − 9v + 8c

−√17k − 81v + 64c]
≥ 0

(24)
that is, p∗ ≥ p̂.
Similarly, we can easily verify that
3
√

k − v +
√

17k − 81v + 64c ≥ 4
√

k − 9v + 8c
through the fact that (3

√
k − v +√

17k − 81v + 64c)2 − (4
√

k − 9v + 8c)2 =
(9
√

k − v − √
17k − 81v + 64c)(3

√
k − v +√

17k − 81v + 64c) ≥ 0. Thus it follows that

p̂− p0 = 1
16 [3

√
k − v +

√
17k − 81v + 64c

−4
√

k − 9v + 8c]
≥ 0

(25)
that is, p̂ ≥ p0.
(ii)q0 > q∗ ≥ q̂. It follows that
3
√

k − v + 8
√

k − 9v + 8c ≤ 3
√

17k − 81v + 64c
through the fact that [3(

√
17k − 81v + 64c −√

k − v)]2 − (8
√

k − 9v + 8c)2 = (9
√

k − v −√
17k − 81v + 64c)2 ≥ 0. It is easy to verify that

q∗ − q̂ = 3a
32 [3

√
k − v + 8

√
k − 9v + 8c

−3
√

17k − 81v + 64c]
≥ 0

(26)

that is, q∗ ≥ q̂.
Note that 9v−5k−4c+3

√
(k − v)(k − 9v + 8c) < 0

since v < c < k. It is easy to verify that

q0 − q∗ = a
2 [9v − 5k − 4c + 3

√
(k − v)(k − 9v + 8c)]

−−a
4 [9v − 5k − 4c + 3

√
(k − v)(k − 9v + 8c)]

= a
4 [9v − 5k − 4c + 3

√
(k − v)(k − 9v + 8c)]

> 0
(27)

that is, q0 > q∗.
(iii)ŵ ≤ w∗. Let us denote M by M = c−v

k−v . It
is obvious that 0 ≤ M ≤ 1. We note that, for
arbitrary M ∈ [0, 1], the following inequality holds

−11+32M +3
√

17 + 64M−16
√

1 + 8M ≤ 0 (28)

Thus, from (11) and (20), it follows that

ŵ − w∗ = 1
64 [32c− 11k − 21v

+3
√

(k − v)(17k − 81v + 64c)
−16

√
(k − v)(k − 9v + 8c)]

= k−v
64 [−11 + 32M + 3

√
17 + 64M

−16
√

1 + 8M ]
≤ 0

(29)
that is, ŵ ≤ w∗. ¤
PROOF OF PROPOSITION 2: Let us de-
note N and Q by N = k − c and Q = c − v.
Note that N ≥ 0 and Q ≥ 0 since v < c < k.
We also define that A0 =

√
(k − v)(k − 9v + 8c),

or A0 =
√

(N + Q)(N + 9Q), as well as that
B0 =

√
(k − v)(17k − 81v + 64c), or B0 =√

(N + Q)(17N + 81Q).
(i)πs ≥ π̂s

We substitute p∗ and q∗ into the expected
profit function of supplier on pull mode, πs =
−a
2

(k−w)(w−c)2

w−v , and simplify it to

πs = −a
32 [2N2 − 36NQ− 54Q2 + 2(N + 9Q)A0]

(30)
Similarly, by substituting ŵ and q̂ into the expected
profit function of supplier on push mode, π̂s = (ŵ−
c)q̂, we can simplify it to

π̂s = −a
32

1
32 [−107N2 − 1782NQ− 2187Q2

+(51N + 243Q)B0]
(31)

Thus, it follows that

πs − π̂s = −a
32

1
32 [171N2 + 630NQ + 459Q2

−(51N + 243Q)B0 + 64(N + 9Q)A0]
= −a

32
1

32Q2 [171(N
Q )2 + 630N

Q + 459

−(51N
Q + 243)

√
(N

Q + 1)(17N
Q + 81)

+64(N
Q + 9)

√
(N

Q + 1)(N
Q + 9)]

≥ 0
(32)

where the last inequality is due to the fact that
64(x + 9)

3
2 − 27(x + 1)

3
2 − 23x+567

3 (17x + 81)
1
2 > 0

holds for arbitrary x ≥ 0. that is, πs ≥ π̂s.
(ii) πr ≤ π̂r

The expected profit of retailer on pull mode is

πr = −a
2

(k−w)(w−c)2

w−v

= −a
32 [N2 − 18NQ− 27Q2 + (N + 9Q)A0]

(33)



The expected profit of retailer on push mode is

π̂r = −a
32

1
64 [487N2 + 270NQ− 729Q2

−(79N − 81Q)B0]] (34)

Thus, it follows that

π̂r − πr = −a
32

1
64 [423N2 + 1422NQ + 999Q2

−(79N − 81Q)B0− 64(N + 9Q)A0]

= −a
32

1
64Q2

1q
N
Q +1

[(423N
Q + 999)

√
N
Q + 1

−(79N
Q − 81)

√
17N

Q + 81

−64(N
Q + 9)

√
N
Q + 9

(35)
It is easy to verify that, (423x+999)

√
x + 1−(79x−

81)
√

17x + 81 − 64(x + 9)
√

x + 9 ≥ 0 holds for ar-
bitrary x ≥ 0. Thus, π̂r − πr ≥ 0, that is, π̂r ≥ πr.
(iii)π ≥ π̂.
The total expected profit in pull mode is as follows

π = πr + πs

= −a
2 (k − w)2(1− 1

2
w−c
w−v ) w−c

w−v + −a
2

(k−w)(w−c)2

w−v

= −3a
32 [N2 − 18NQ− 27Q2 + (N + 9Q)A0]

(36)
The expected profit in push mode is as follows

π̂ = π̂r + π̂s

= (p̂− c)q̂ − (p̂−v)q̂2

4a(p̂−k) + (ŵ − c)q̂
= −3a

32 (N2 − 18NQ− 27Q2 + (N + 9Q)A0
+−3a

32 [ 2764 (N + Q)2 + 23N+567Q
192 B0− (N + 9Q)A0]

= π + −3a
32 [ 2764 (N + Q)2

+ 23N+567Q
192 B0− (N + 9Q)A0]

= π + −3a
32

√
N+Q
64 [27(

√
N + Q)3

−64(
√

N + 9Q)3 + 23N+567Q
3

√
17N + 81Q]

= π + −3a
32

√
N+Q
64 Q

3
2 [27(

√
N
Q + 1)3

−64(
√

N
Q + 9)3 +

23 N
Q +567

3

√
17N

Q + 81]
< π

(37)
where the last inequality is based on the fact that
27(x + 1)

3
2 − 64(x + 9)

3
2 + 23x+567

3 (17x + 81)
1
2 < 0

since x > 0.
(iv)Π0 ≥ π.
The total expected profit of centralized system is:

Π0 = a(1 + v−k
p0−v )(p0 − c)2

= −a
32

1
c−v [

√
(k − v)(k − 9v + 8c)− k + 3v − 2c]

[k + 3v − 4c +
√

(k − v)(k − 9v + 8c)]2

= −a
32Q (A0−N − 3Q)(N − 3Q + A0)2

= −4a
32Q [N2 − 18NQ− 27Q2 + (N + 9Q)A0]

= 4
3π

> π
(38)
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