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Abstract

Lattice implication algebra is an important non-
classical logical algebra, it has been studied by re-
searchers. Binary operation A, V and unitary op-
eration ' in lattice implication algebra could be de-
fined by implication operation —, namely, these op-
erations in lattice implication algebra are not inde-
pendently. In this paper, firstly, we use implication
operation — to define binary operation A, V and
unitary operation ’, then, partial set and lattice
could be constructed, finally, another definition of
lattice implication algebra is discussed.
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1. Introduction

To establish an alternative logic for knowledge rep-
resentation and reasoning, Xu [1] proposed a logi-
cal algebra—Ilattice implication algebra in 1993 by
combining algebraic lattice and implication alge-
bra. In lattice implication algebra, the lattice is
defined to describe uncertainties, especially for the
incomparability, and the implication operator is de-
signed to describe the way of human’s reasoning.
Xu et al., have established the lattice-valued propo-
sitional logic LP(X) [2], [3] and lattice-valued first-
order logic LF(X) [4], the gradual lattice-valued
propositional logic Lvpl and the gradual lattice-
valued first-order logic Lvfl [5)-[7] by taking lat-
tice implication algebra as truth-value field. Lat-
tice implication algebra, lattice-valued logic based
on lattice implication algebra are collected in [8].
Formally, lattice implication algebra could be de-
fined as following

Definition 1 Let (L,V,A,O,I) be a bounded lat-
tice with order-reversing involution ', I and O be
the greatest and the least elements of L, respec-
tively, —: L x L — L be a mapping and satisfy

the following conditions: for any x,y,z € L:

L+ z—-y—2)=y—(z—2)

L : x—ax=1

Iy : z—y=y —2

Iy, : z—y=y—x implies z=y

Lo (z—y —y=@y—z) -z
Is : (zVy) —z=(x—2)A(y—2)
I ¢ (xAhy)—z=(x—2)V(y—2)

Then (L,V, N\, ,—,0,I) is called a lattice implica-
tion algebra.

In this paper, based on binary operation —, the
greatest element and the least element, an equiva-
lent definition of lattice implication algebra is dis-
cussed.

2. Generating lattice based on
implication operator on L

Let L be a non-empty set, and I € L be a fixed
element, — be a binary operation in L. Vz,y € L,
let

rxy=(r—y) —y (1)

* is a binary operation in L derived from (1) ac-
cording to — in L.

Lemma 1 Let L be a non-empty set, I € L be a
fized element, and — be a binary operation in L.
Vz,y,z € L, if — satisfies the following conditions

(L) I—zxz==x

(Ly) z—ax=1

(Ls) (z—y)—y=(y—r)—w
(La) ((y—2)—2)—a)—=

=(y—2)—=2) = 2) =2

then (L, *) is a half-lattice and x *y = sup{x,y} =
rVy.



Proof 1) Vx € L, according to (L1) and (Lz), idem-
potent law come into existence, namely zxx = (z —
) —mx=1—2x=u

2) Va,y € L, according to (L3), exchange law
come into existence, namely zxy = (x — y) — y =
(y—z)—ax=yxz.

3) Vx,y,z € L, according to (Lz) and (L),
coalescence law come into existence, namely

zx(y*z) =

~ N~~~

According to(1), (2) and (3), (L, x) is a half-lattice.
On the other hand, < can be defined as follows:
Vz,y € L,

(F1) z=Zy iff zxy=(@—y) —y=y

< is a partial relation which can be proved by the
following, Vx,y,z € L,

4) According to z * x = z, x < x can be ob-
tained, so reflexivity come into existence;

5) If x < y and y < z, according to (F}) and
x satisfying exchange law, then dissymmetry come
into existence, namely y = x xy =y *xx = x.

6) If ¢ < y and y < z, according to formula
(?7) and * satisfying coalescence law, then transfer
law come into existence, namely z*z = z* (y*z) =
(r*xy)xz=yxz=2z.

s0, < z. According to (4), (5) and (6), (L, <)
is a partial set. AlsoVz,y € L, zx(zxy) = (x*x)*
y =xxy, namely v < zxy, yx(xxy) = (y*xx)xy =
(xxy)xy=ax*(yxy) =1z +*y, namely y < x *y.

Supposed that 3z € L satisfy x < z and y < z,
then (z*xy)*xz =z x (y*z) =z x z = z, namely
rxy < z, 80, T *y is the upper boundary of x and
y, namely x * y = sup{z,y} =z Vy.

As the above description, it can be proved that
(L,*) is a half-lattice, and Va,y € L, z xy =
sup{z,yt =z Vy.

Theorem 1 Let L be a non-empty set, I € L be
a fized element, — be a binary operation in L.
Va,y,z € L, — satisfy (L1) — (L4), then

(1) Vee L,z <1I;
2) Ife »y=y—x=1, thenz =y.

Proof 1) Vz € L, according to (L1) and (L), it
can be obtained xVI=(z —-I) - I =1 —z) —

x =z — x = I. According to formula (2), z < I
can be obtained.

2)Ifz — y=y — x = I, according to (L1),
it can be obtained y = I -y = (z - y) —» y =
y—r—ox=1—-x==x

Theorem 2 Let L be a non-empty set, I € L be
a fixed element, — be a binary operation in L.

Va,y,z € L, — satisfy (L1) — (L4) and
Ls)z — (y = 2) =y — (z — 2),
thenx <y ifft —y=1.

Proof 1) If x < y, then  Vy = y. According to
(L2) and (Ls), it can be obtained

r—y = z—(Vy) =z—((z—y) —y)
= (r—y —(r—y =1

2) If © — y = I, then according to (L1), it can be
obtained zVy = (x - y) - y=1 -y =y, so
z <y.

According to the conclusion of Theorem 1 and
Theorem 2, it can be obtained the following.

Corollary 1 Let L be a non-empty set, I € L
be a fixed element, — be a binary operation in L.
Va,y,z € L, — satisfy (L1) — (Ls), then Vo € L,
z—I=1.

Theorem 3 Let L be a non-empty set, I € L be
a fized element, — be a binary operation in L and
satisfy (L1) — (Ls), then we have the following con-
clusions,

(1) Ife,ye Landx <y, thenVz € L, y — 2 <
x—z, namely (y — 2) — (x — 2) =1.

(2) Ve,ye L, ifx <y, thenVz €L, z—>zx<z—
y, namely (z — z) — (z - y) < I.

3) Ifr,ye Landx <y, thenVz € L, x <z >y,
namely x — (z — y) = I.

Proof 1) According to < y, it can be obtained
x —y=1. For Vz € L, according to formula (?7?),

(L3) and (Ls), it can be obtained

r—(zVy) = 2> ((y—2) —2

hence, y — z <z — z.



2) For x <y, then Vz € L,

ioy = 2o (@Vy)

2= (ly =) — o)

3) For « < y, according to Theorem 3 (2), it can
be obtained z — y > 2z — x. According to Theorem
3 (1), it can be obtained z — x > I — = = x, so
z<z—y.

Theorem 4 Let L be a non-empty set, I € L be
a fized element, — be a binary operator in L and
satisfy (L1) — (Ls). If there exists an element O
in L, and satisfy Vx € L, O < z, then it can be
obtained,

V) VeelL, (zx—0)—0=ux;
(2) Ve,ye L,z —>y=(y— O)— (x — 0).

Proof 1) According to O < z, it can be obtained
x=I—-2z=(0—2z)—x=(x—0)—O0.

2) According to (Ls), it can be obtained (y —
O) = (—-0)=2z—->((y—0) —-0) =z~
(yvO)=z—uy.

According to the element O and — in L, we
can define the following mapping from L to L:

(Fo) '":L—oLax—a =2—0

Theorem 5 The mapping ' decided by (F») from
L to L s reversal involution mapping.

Proof Vz,y € L, if x < y, according to the conclu-
sion (1) of 3, it can be obtained ¢y =y — O <z —
O = z’. Hence, ’ is reversal.
On the other hand, if x — O # y — O, then
x #y. Else if z = y, then (z — O0) — (y —
O)=y—z=I=2—y=(y—0)—(z—0).
But it is not consistent with + — O = y — O.
So ’ is a one to one mapping. According to the
conclusion (1) of Theorem 4, it can be obtained
(') =(x — O0) - O =uz. So,’ is a involution in
L. According to the above description, ’ is reversal
involution mapping in L.

In the following discussion in L, x — O are
all represented by z’. Especially, according to (L)
and (Lg), it can be obtained I' = I — O = O,
O’ =0 — O =1. And (2) in Theorem 5 can be
rewritten by

(F3) Ve,yeLaz—-y=y —a.

If L satisfy the conditions in Theorem 4, then im-
port the following mark in L x Ay = (2’ Vy')". The
following conclusion can be proved.

Theorem 6 Let L be a non-empty set, I € L be
a fized element, — be a binary operator in L and
satisfy (L) — (Ls). If there exists an element O
in L, and satisfy Vx € L, O < z, then it can be
obtained

z Ay =(2'Vy') =inflz,y}.

Proof According to (F3) and Theorem 2, it can be
obtained

(@ Vy) sz=2 - @' Vvy)=1,

(@ VY)Y wy=y — (@' Vvy)=1
Hence, (' Vy') < x and (2’ Vy') <y. Supposed
that there exists [ € L satisfying | < z and | < y,
then I/ > 2’ and I’ > ¢/, I'! > 2’ Vy. Sol <
(' Vy') =z Ay, namely

zAhy=(2'Vy) =inf{x,y}.
Under the condition of Theorem 6, it is easy to
prove (zVy) =2 ANy

Corollary 2 Let L be a non-empty set, I € L be
a fized element, — be a binary operator in L and
satisfy (L1) — (Ls). If there exists an element O
in L, and satisfy Vx € L, O < z, then it can be
obtained

(1) zhz =21

(2) zAy=yANu;

B) (xAhy)Az=xA(yAz).

Proof Here, we just prove (3).

(zAy)Az (@Ay) va) =(((«"vy)) vz

= (@vy)ve) =@V v))
(x/ \/ ((y/ \/ Z/)/)/)/ = /\ (y/ \/ Z/)/

= xA(YA2).

Theorem 7 Let L be a non-empty set, I € L be
a fized element, — be a binary operator in L and
satisfy (L1) — (Ls). If there exists an element O in
L, and satisfy Ve € L, O < z, then (L,V,A) is a
boundary lattice.

Proof According to the conclusion (1) of Theorem
1, it can be obtained that I is the upper-boundary
of L, and O is its down-boundary. According to
Lemma 1 and Corollary 2, it can be obtained that
binary operation V and A satisfy tAx =z, c Ay =
yAzxzand (x Ay) Az =2z A (yAz). In addition,
according to x < x V y, it can be obtained z A (x V
y) = « and according to > x Ay, then it can be



obtained x V (z A y) = x. So it satisfies absorption
law, namely

ANzVy)=zV(xAy)==x.

According to the definition of boundary lattice, it
can be obtained that (L, V, A) is a boundary lattice.

3. An equivalent definition of
lattice implication algebra

In this Section, generating lattice implication alge-
bra will be discussed on (L, V, A) based —.

Corollary 3 Let L be a non-empty set, I € L be
a fized element, — be a binary operator in L and
satisfy (L) — (Ls). If there exists an element O in
L, and satisfy¥Vx € L, O < x, then forx,y € L and
x <y, it can be obtainedVz € L, z - x < z — y.

Proof According to z < y, it can be obtained
' > y'. Vz € L, according to the conclusion (1)
of Theorem 3, it can be obtained

r—r=1 =<y = =z—y.

Note 1 Under the condition, the Corollary can be
proved by Theorem 3.

Theorem 8 Let L be a non-empty set, I € L be
a fized element, — be a binary operator in L and
satisfy (L1) — (Ls). If there exists an element O in
L, and satisfy Vx € L, O < z, then Vzx,y,z € L,

(@Vy)—z=(@—=2)Ay—2).

Proof 1) According to equation 1, (Ls) and Theo-
rem 2, it can be obtained

(zvy) —2) — (2= 2)
= z=((@Vy —2) —2)
x—(xVyVz)=1

(xVy) —2) = (y—2)
=y ((@vy) —2) —2)
y—(xVyVvz) =1

Hence, (zVy) =z < (z— 2) A (y — 2).

2) (z = 2)A(y—2) = ((xVy) = 2)

Vy—2)) = (xVvy) —2)

= (@vy) =2 = (z—=2)Vy—2))
= (@vy) =2 = (¢ —2) = (y—2))

= (@—2)

(x

— (y—2)")
= ((zvy) —2) = ((y = 2) = (z — 2))

— (y—2))
= (zvy) —2) = (= ((y = 2) —2))

— (y—2))
= ((zvy) —2) = ((x = (yV2) = (y = 2))
= (—=@WV2)—=(=Vy) —2) —(@y—2))
= (= (yV2)—(y—2 —((zVy) —2)
= (= (yV2)—(xVy — ((y = 2) — 2)
= ( ) = (zVy) = (yV2)

( —

(

Hence, (x — 2) A (y — 2z) < (z Vy) — 2. Accord-
ing to the above description (1) and (2), it can be
obtained the conclusion.

Corollary 4 Let L be a non-empty set, I € L be
a fized element, — be a binary operator in L and
satisfy (L1) — (Ls). If there exists an element O in
L, and satisfy Vx € L, O < z, then Vx,y,z € L,

(x — 2).

rT—(ynz)=(r—y)A

Proof According to (F3) and Theorem 8, it can
be obtained

(yl \/ Z/) — xl
= (/=)A=

= (=yhr(z—2)

r—(yAz) = (YAz) —a' =

Theorem 9 Let L be a non-empty set, I € L be
a fixed element, — be a binary operator in L and
satisfy (L) — (Ls). If there exists an element O in
L, and satisfy Vx € L, O < z, then Vx,y,z € L,

(1) ry) mz2=@ -y - @—-2)=Fy—
x) = (y — 2);

(2)z = @Vvz)=W—2—(@—2=0E~—
y) = (@ —y).

Proof 1) According to (F3) and Theorem 6, it can

be obtained

(@Ay) = 2=@@"Vy) — =2

=7 = ((y =) =)



=@ —2) = (—2)

= ((p — y) —
(xAy) = z=(y—z)—
the same reason.

2) According to Lemma 1 and (Ls), it can be
obtained

(z — 2).

(y — z) can be proved in

x—(yVz)=z—((y—2 —2)

=y—2)——2)=(E—y —(@—y).

Theorem 10 Let L be a non-empty set, I € L be
a fized element, — be a binary operator in L and
satisfy (L1) — (Ls). If there exists an element O in
L, and satisfy Vx € L, O <z, then Vx,y,z € L,

(1) (z—2)V

(2) =y V(r—2z)<z—=(yV2)

(y—2)<(zAy) —z;

Proof 1) According to Theorem 9, it can be ob-

tained (z — 2) — ((z Ay) — 2) = (z —
z) = ((z - y) — (z — 2)) = I. Hence,
(x — 2z) < (xANy) — z. As the same reason,

(y — 2z) < (x Ay) — z can be proved, namely
(2= 2)V(y—2) < (@ Ay) — 2
2) According to Theorem 9,

—(z—(yV2)
—(y—2)—
(

- (z—y)—

Hence, (x — y) < (z — (y V 2)). As the same
reason, it can be proved (z — z) < (z — (y V 2)),
namely ¢ — (yVz) > (x = y) V (z — 2).

Theorem 11 Let L be a non-empty set, I € L be
a fized element, — be a binary operator in L and
satisfy (L) — (Ls). If there exists an element O in
L, and satisfy Vx € L, O < x, then Vx,y,z € L,
(2= 2)V (y— 2) = (EAy) — 2 iff (v — y) V ( —
)=z — (yV2).

Proof 1) If (z — 2)V(y — 2) = (x Ay) — z, then

r—(yVz) = (yVvz) —2'=@WnA)—a
/

)
(
W =)V (=)
(

=y V(r—2).
NI (z—y)V(r—z)=z— (yV=z), then

(xAhy)—2z = 2 —(zhy) =2 — (@' VYy)
(z' =2 ) v (=)

— (@—2)V(y— 2.

According to the above discussion, in A, V and
" algebra system defined by —, the axioms in lattice
implication algebra, except the property (x Ay) —
z=(x — 2)V (y — z), satisty the algebra system.
For convenience, " L be a non-empty set, I € L be
a fixed element, — be a binary operator in L' is
marked by (L,—,I). In (L,—,I), if there exists
O and satisfy Vo € L, O < z. For O < z iff
O — z = I, especially notes

Naturally, (L, —, I, O) represents that I and O are
two fixed element, — is a binary operation in L.

Corollary 5 Supposed that (L,—,I,0) and
Va,y,z € L, — satisfy (L1) — (Lg), then
(L,—,I1,0) is a quasi lattice implication al-
gebra.

Proof (L), (Ls) and (L3) are respectively (I3),
I, and (I5) in quasi lattice implication algebra [8].
According to Theorem 1 and (2) of Theorem 4, (I3)
and (l4) in quasi lattice implication algebra can be
obtained.

Theorem 12 Supposed that (L,—,1,0) and
Ve,y,z € L, — satisfy (L1) — Lg, then
(L,V,A, I,0) is a distributive lattice, namely
Vx,y,z € L, we have

(1) (@Ay)Vz=(xV2)A(yVz);
(2) (zvVy)Ahz=(xA2)V(yAz).

Proof 1) According to Lemma 1 and Corollary 4,
we have

(xAy)V
(ZH(xAy))H(wAy)
(

(

(z Ay)
) A (((z — )

(z—2)N(z—y))—
(z—=2)A(z =) —
ANz = y)) = y)
(=) =2)A((z —=y) —y)
= (xV2)A(yV2).

v

It is obvious that (x Ay)Vz < (xVz)A(yVz). So,
(xAyY)Vz=(xV2)A(yV=2).

2) According to Theorem 6 and the conclusion
(1) of Theorem 12, it can be obtained

@vyrnz = ((&"Ay)vze)
= (@' VA v
= (xA2)V(yAz).



Theorem 13 Supposed that (L,—,1,0) and
Va,y,z € L, — satisfies (L1) — (Lg), then

x— (yVvz)=(x—2)V(zx— 2).

Proof According to Theorem 10, we just need to
prove x — (yV z) < (zr — y) V (z — z). For

(
(
(x = 2))
= (—=@V2) = ((zAy) = 2) = (z—2)
= @—=vz) = (= (((try) = 2) = 2)
= (@=(V2)—=(@—=((zry)V2)
= (=@WV2) = (= (V) A(r—
(y Vv 2)))
(= (yVaz) = IA(z—(yV=2))
= (@—=WVv2)—=(r—=(yVvz)=1,

sox — (yVz)=(x—)V(x— 2).

Corollary 6 Supposed that (L,—,I,0) and
Va,y,z € L, — satisfy (Li1) — (Lg), then
(L,—,I,0) is a lattice implication algebra.

Proof According to Corollary 5, it can be obtained
that (L,—,I,0) is quasi lattice implication alge-
bra. According to Theorem 8 and Theorem 13, it
satisfy (Ig) and (I7). And according to the defini-
tion of lattice implication algebra, (L, —,I,0) is a
lattice implication algebra.

4. Conclusions

In this paper, based on implication operation —,
partial order on non-empty L could be induced, and
generating boundary lattice on non-empty L with
the greatest element and the least element is dis-
cussed. Moreover, lattice implication algebra could
be obtained if — satisfies (L1) — (Lg) of this paper.
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