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Abstract

Lattice implication algebra is an important non-
classical logical algebra, it has been studied by re-
searchers. Binary operation ∧, ∨ and unitary op-
eration ′ in lattice implication algebra could be de-
fined by implication operation→, namely, these op-
erations in lattice implication algebra are not inde-
pendently. In this paper, firstly, we use implication
operation → to define binary operation ∧, ∨ and
unitary operation ′, then, partial set and lattice
could be constructed, finally, another definition of
lattice implication algebra is discussed.

Keywords: Lattice implication algebra, Binary
operation, Partial set

1. Introduction

To establish an alternative logic for knowledge rep-
resentation and reasoning, Xu [1] proposed a logi-
cal algebra—lattice implication algebra in 1993 by
combining algebraic lattice and implication alge-
bra. In lattice implication algebra, the lattice is
defined to describe uncertainties, especially for the
incomparability, and the implication operator is de-
signed to describe the way of human’s reasoning.
Xu et al., have established the lattice-valued propo-
sitional logic LP (X) [2], [3] and lattice-valued first-
order logic LF (X) [4], the gradual lattice-valued
propositional logic Lvpl and the gradual lattice-
valued first-order logic Lvfl [5]-[7] by taking lat-
tice implication algebra as truth-value field. Lat-
tice implication algebra, lattice-valued logic based
on lattice implication algebra are collected in [8].
Formally, lattice implication algebra could be de-
fined as following

Definition 1 Let (L,∨,∧, O, I) be a bounded lat-
tice with order-reversing involution ′, I and O be
the greatest and the least elements of L, respec-
tively, →: L × L −→ L be a mapping and satisfy

the following conditions: for any x, y, z ∈ L:

I1 : x → (y → z) = y → (x → z)
I2 : x → x = I

I3 : x → y = y′ → x′

I4 : x → y = y → x implies x = y

I5 : (x → y) → y = (y → x) → x

I6 : (x ∨ y) → z = (x → z) ∧ (y → z)
I7 : (x ∧ y) → z = (x → z) ∨ (y → z)

Then (L,∨,∧,′ ,→, O, I) is called a lattice implica-
tion algebra.

In this paper, based on binary operation →, the
greatest element and the least element, an equiva-
lent definition of lattice implication algebra is dis-
cussed.

2. Generating lattice based on
implication operator on L

Let L be a non-empty set, and I ∈ L be a fixed
element, → be a binary operation in L. ∀x, y ∈ L,
let

x ∗ y = (x → y) → y (1)

∗ is a binary operation in L derived from (1) ac-
cording to → in L.

Lemma 1 Let L be a non-empty set, I ∈ L be a
fixed element, and → be a binary operation in L.
∀x, y, z ∈ L, if → satisfies the following conditions

(L1) I → x = x

(L2) x → x = I

(L3) (x → y) → y = (y → x) → x

(L4) (((y → z) → z) → x) → x

= (((y → x) → x) → z) → z

then (L, ∗) is a half-lattice and x ∗ y = sup{x, y} =
x ∨ y.



Proof 1) ∀x ∈ L, according to (L1) and (L2), idem-
potent law come into existence, namely x∗x = (x →
x) → x = I → x = x.

2) ∀x, y ∈ L, according to (L3), exchange law
come into existence, namely x∗y = (x → y) → y =
(y → x) → x = y ∗ x.

3) ∀x, y, z ∈ L, according to (L3) and (L4),
coalescence law come into existence, namely

x ∗ (y ∗ z) = (y ∗ z) ∗ x

= (((y → z) → z) → x) → x

= (((y → x) → x) → z) → z

= ((y ∗ x) → z) → z

= ((x ∗ y) → z) → z

= (x ∗ y) ∗ z. (2)

According to(1), (2) and (3), (L, ∗) is a half-lattice.
On the other hand, ≤ can be defined as follows:
∀x, y ∈ L,

(F1) x ≤ y iff x ∗ y = (x → y) → y = y

≤ is a partial relation which can be proved by the
following, ∀x, y, z ∈ L,

4) According to x ∗ x = x, x ≤ x can be ob-
tained, so reflexivity come into existence;

5) If x ≤ y and y ≤ x, according to (F1) and
∗ satisfying exchange law, then dissymmetry come
into existence, namely y = x ∗ y = y ∗ x = x.

6) If x ≤ y and y ≤ z, according to formula
(??) and ∗ satisfying coalescence law, then transfer
law come into existence, namely x∗z = x∗(y∗z) =
(x ∗ y) ∗ z = y ∗ z = z.

so, x ≤ z. According to (4), (5) and (6), (L,≤)
is a partial set. Also ∀x, y ∈ L, x∗ (x∗y) = (x∗x)∗
y = x∗y, namely x ≤ x∗y, y ∗ (x∗y) = (y ∗x)∗y =
(x ∗ y) ∗ y = x ∗ (y ∗ y) = x ∗ y, namely y ≤ x ∗ y.

Supposed that ∃z ∈ L satisfy x ≤ z and y ≤ z,
then (x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ z = z, namely
x ∗ y ≤ z, so, x ∗ y is the upper boundary of x and
y, namely x ∗ y = sup{x, y} = x ∨ y.

As the above description, it can be proved that
(L, ∗) is a half-lattice, and ∀x, y ∈ L, x ∗ y =
sup{x, y} = x ∨ y.

Theorem 1 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operation in L.
∀x, y, z ∈ L, → satisfy (L1)− (L4), then

(1) ∀x ∈ L, x ≤ I;

(2) If x → y = y → x = I, then x = y.

Proof 1) ∀x ∈ L, according to (L1) and (L2), it
can be obtained x∨ I = (x → I) → I = (I → x) →

x = x → x = I. According to formula (2), x ≤ I
can be obtained.

2) If x → y = y → x = I, according to (L1),
it can be obtained y = I → y = (x → y) → y =
y → x → x = I → x = x.

Theorem 2 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operation in L.
∀x, y, z ∈ L, → satisfy (L1)− (L4) and

(L5)x → (y → z) = y → (x → z),

then x ≤ y iff x → y = I.

Proof 1) If x ≤ y, then x ∨ y = y. According to
(L2) and (L5), it can be obtained

x → y = x → (x ∨ y) = x → ((x → y) → y)
= (x → y) → (x → y) = I;

2) If x → y = I, then according to (L1), it can be
obtained x ∨ y = (x → y) → y = I → y = y, so
x ≤ y.

According to the conclusion of Theorem 1 and
Theorem 2, it can be obtained the following.

Corollary 1 Let L be a non-empty set, I ∈ L
be a fixed element, → be a binary operation in L.
∀x, y, z ∈ L, → satisfy (L1) − (L5), then ∀x ∈ L,
x → I = I.

Theorem 3 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operation in L and
satisfy (L1)− (L5), then we have the following con-
clusions,

(1) If x, y ∈ L and x ≤ y, then ∀z ∈ L, y → z ≤
x → z, namely (y → z) → (x → z) = I.

(2) ∀x, y ∈ L, if x ≤ y, then ∀z ∈ L, z → x ≤ z →
y, namely (z → x) → (z → y) ≤ I.

(3) If x, y ∈ L and x ≤ y, then ∀z ∈ L, x ≤ z → y,
namely x → (z → y) = I.

Proof 1) According to x ≤ y, it can be obtained
x → y = I. For ∀z ∈ L, according to formula (??),
(L3) and (L5), it can be obtained

x → (z ∨ y) = x → ((y → z) → z)
= (y → z) → (x → z)
= x → ((z → y) → y)
= (z → y) → (x → y)
= (z → y) → I = I,

hence, y → z ≤ x → z.



2) For x ≤ y, then ∀z ∈ L,

z → y = z → (x ∨ y)
= z → ((y → x) → x)
= (y → x) → (z → x) ≥ z → x.

3) For x ≤ y, according to Theorem 3 (2), it can
be obtained z → y ≥ z → x. According to Theorem
3 (1), it can be obtained z → x ≥ I → x = x, so
x ≤ z → y.

Theorem 4 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operator in L and
satisfy (L1) − (L5). If there exists an element O
in L, and satisfy ∀x ∈ L, O ≤ x, then it can be
obtained,

(1) ∀x ∈ L, (x → O) → O = x;

(2) ∀x, y ∈ L, x → y = (y → O) → (x → O).

Proof 1) According to O ≤ x, it can be obtained
x = I → x = (O → x) → x = (x → O) → O.

2) According to (L5), it can be obtained (y →
O) → (x → O) = x → ((y → O) → O) = x →
(y ∨O) = x → y.

According to the element O and → in L, we
can define the following mapping from L to L:

(F2) ′ : L → L, x 7→ x′ = x → O

Theorem 5 The mapping ′ decided by (F2) from
L to L is reversal involution mapping.

Proof ∀x, y ∈ L, if x ≤ y, according to the conclu-
sion (1) of 3, it can be obtained y′ = y → O ≤ x →
O = x′. Hence, ′ is reversal.
On the other hand, if x → O 6= y → O, then
x 6= y. Else if x = y, then (x → O) → (y →
O) = y → x = I = x → y = (y → O) → (x → O).
But it is not consistent with x → O = y → O.
So ′ is a one to one mapping. According to the
conclusion (1) of Theorem 4, it can be obtained
(x′)′ = (x → O) → O = x. So, ′ is a involution in
L. According to the above description, ′ is reversal
involution mapping in L.

In the following discussion in L, x → O are
all represented by x′. Especially, according to (L1)
and (L2), it can be obtained I ′ = I → O = O,
O′ = O → O = I. And (2) in Theorem 5 can be
rewritten by

(F3) ∀x, y ∈ L, x → y = y′ → x′.

If L satisfy the conditions in Theorem 4, then im-
port the following mark in L x∧y = (x′∨y′)′. The
following conclusion can be proved.

Theorem 6 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operator in L and
satisfy (L1) − (L5). If there exists an element O
in L, and satisfy ∀x ∈ L, O ≤ x, then it can be
obtained

x ∧ y = (x′ ∨ y′)′ = inf{x, y}.

Proof According to (F3) and Theorem 2, it can be
obtained

(x′ ∨ y′)′ → x = x′ → (x′ ∨ y′) = I,

(x′ ∨ y′)′ → y = y′ → (x′ ∨ y′) = I.

Hence, (x′ ∨ y′)′ ≤ x and (x′ ∨ y′)′ ≤ y. Supposed
that there exists l ∈ L satisfying l ≤ x and l ≤ y,
then l′ ≥ x′ and l′ ≥ y′, l′ ≥ x′ ∨ y′. So l ≤
(x′ ∨ y′)′ = x ∧ y, namely

x ∧ y = (x′ ∨ y′)′ = inf{x, y}.

Under the condition of Theorem 6, it is easy to
prove (x ∨ y)′ = x′ ∧ y′.

Corollary 2 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operator in L and
satisfy (L1) − (L5). If there exists an element O
in L, and satisfy ∀x ∈ L, O ≤ x, then it can be
obtained

(1) x ∧ x = x;

(2) x ∧ y = y ∧ x;

(3) (x ∧ y) ∧ z = x ∧ (y ∧ z).

Proof Here, we just prove (3).

(x ∧ y) ∧ z = ((x ∧ y)′ ∨ z′)′ = (((x′ ∨ y′)′)′ ∨ z′)′

= ((x′ ∨ y′) ∨ z′)′ = (x′ ∨ (y′ ∨ z′))′

= (x′ ∨ ((y′ ∨ z′)′)′)′ = x ∧ (y′ ∨ z′)′

= x ∧ (y ∧ z).

Theorem 7 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operator in L and
satisfy (L1)− (L5). If there exists an element O in
L, and satisfy ∀x ∈ L, O ≤ x, then (L,∨,∧) is a
boundary lattice.

Proof According to the conclusion (1) of Theorem
1, it can be obtained that I is the upper-boundary
of L, and O is its down-boundary. According to
Lemma 1 and Corollary 2, it can be obtained that
binary operation ∨ and ∧ satisfy x∧x = x, x∧y =
y ∧ x and (x ∧ y) ∧ z = x ∧ (y ∧ z). In addition,
according to x ≤ x ∨ y, it can be obtained x ∧ (x ∨
y) = x and according to x ≥ x ∧ y, then it can be



obtained x ∨ (x ∧ y) = x. So it satisfies absorption
law, namely

x ∧ (x ∨ y) = x ∨ (x ∧ y) = x.

According to the definition of boundary lattice, it
can be obtained that (L,∨,∧) is a boundary lattice.

3. An equivalent definition of
lattice implication algebra

In this Section, generating lattice implication alge-
bra will be discussed on (L,∨,∧) based →.

Corollary 3 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operator in L and
satisfy (L1)− (L5). If there exists an element O in
L, and satisfy ∀x ∈ L, O ≤ x, then for x, y ∈ L and
x ≤ y, it can be obtained ∀z ∈ L, z → x ≤ z → y.

Proof According to x ≤ y, it can be obtained
x′ ≥ y′. ∀z ∈ L, according to the conclusion (1)
of Theorem 3, it can be obtained

z → x = x′ → z′ ≤ y′ → z′ = z → y.

Note 1 Under the condition, the Corollary can be
proved by Theorem 3.

Theorem 8 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operator in L and
satisfy (L1)− (L5). If there exists an element O in
L, and satisfy ∀x ∈ L, O ≤ x, then ∀x, y, z ∈ L,

(x ∨ y) → z = (x → z) ∧ (y → z).

Proof 1) According to equation 1, (L5) and Theo-
rem 2, it can be obtained

((x ∨ y) → z) → (x → z)
= x → (((x ∨ y) → z) → z)
= x → (x ∨ y ∨ z) = I

((x ∨ y) → z) → (y → z)
= y → (((x ∨ y) → z) → z)
= y → (x ∨ y ∨ z) = I.

Hence, (x ∨ y) → z ≤ (x → z) ∧ (y → z).

2) ((x → z) ∧ (y → z)) → ((x ∨ y) → z)

= ((x → z)′ ∨ (y → z)′)′ → ((x ∨ y) → z)
= ((x ∨ y) → z)′ → ((x → z)′ ∨ (y → z)′)
= ((x ∨ y) → z)′ → (((x → z)′ → (y → z)′)

→ (y → z)′)
= ((x ∨ y) → z)′ → (((y → z) → (x → z))

→ (y → z)′)
= ((x ∨ y) → z) → ((x → ((y → z) → z))

→ (y → z)′)
= ((x ∨ y) → z)′ → ((x → (y ∨ z)) → (y → z)′)
= (x → (y ∨ z)) → (((x ∨ y) → z)′ → (y → z)′)
= (x → (y ∨ z)) → ((y → z) → ((x ∨ y) → z))
= (x → (y ∨ z)) → ((x ∨ y) → ((y → z) → z))
= (x → (y ∨ z)) → ((x ∨ y) → (y ∨ z))
= (x ∨ y) → ((x → (y ∨ z))) → (y ∨ z)
= (x ∨ y) → (x ∨ y ∨ z) = I.

Hence, (x → z) ∧ (y → z) ≤ (x ∨ y) → z. Accord-
ing to the above description (1) and (2), it can be
obtained the conclusion.

Corollary 4 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operator in L and
satisfy (L1)− (L5). If there exists an element O in
L, and satisfy ∀x ∈ L, O ≤ x, then ∀x, y, z ∈ L,

x → (y ∧ z) = (x → y) ∧ (x → z).

Proof According to (F3) and Theorem 8, it can
be obtained

x → (y ∧ z) = (y ∧ z)′ → x′ = (y′ ∨ z′) → x′

= (y′ → x′) ∧ (z′ → x′)
= (x → y) ∧ (x → z)

Theorem 9 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operator in L and
satisfy (L1)− (L5). If there exists an element O in
L, and satisfy ∀x ∈ L, O ≤ x, then ∀x, y, z ∈ L,

(1) (x ∧ y) → z = (x → y) → (x → z) = (y →
x) → (y → z);

(2) x → (y ∨ z) = (y → z) → (x → z) = (z →
y) → (x → y).

Proof 1) According to (F3) and Theorem 6, it can
be obtained

(x ∧ y) → z = (x′ ∨ y′)′ → z

= z′ → ((y′ → x′) → x′)



= (y′ → x′) → (z′ → x′)

= (x → y) → (x → z).

(x∧ y) → z = (y → x) → (y → z) can be proved in
the same reason.

2) According to Lemma 1 and (L5), it can be
obtained

x → (y ∨ z) = x → ((y → z) → z)

= (y → z) → (x → z) = (z → y) → (x → y).

Theorem 10 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operator in L and
satisfy (L1)− (L5). If there exists an element O in
L, and satisfy ∀x ∈ L, O ≤ x, then ∀x, y, z ∈ L,

(1) (x → z) ∨ (y → z) ≤ (x ∧ y) → z;

(2) (x → y) ∨ (x → z) ≤ x → (y ∨ z).

Proof 1) According to Theorem 9, it can be ob-
tained (x → z) → ((x ∧ y) → z) = (x →
z) → ((x → y) → (x → z)) = I. Hence,
(x → z) ≤ (x ∧ y) → z. As the same reason,
(y → z) ≤ (x ∧ y) → z can be proved, namely
(x → z) ∨ (y → z) ≤ (x ∧ y) → z.

2) According to Theorem 9,

(x → y) → (x → (y ∨ z))
= (x → y) → ((y → z) → (x → y))
= (y → z) → ((x → y) → (x → y))
= (y → z) → I = I.

Hence, (x → y) ≤ (x → (y ∨ z)). As the same
reason, it can be proved (x → z) ≤ (x → (y ∨ z)),
namely x → (y ∨ z) ≥ (x → y) ∨ (x → z).

Theorem 11 Let L be a non-empty set, I ∈ L be
a fixed element, → be a binary operator in L and
satisfy (L1)− (L5). If there exists an element O in
L, and satisfy ∀x ∈ L, O ≤ x, then ∀x, y, z ∈ L,
(x → z)∨ (y → z) = (x∧y) → z iff (x → y)∨ (x →
z) = x → (y ∨ z).

Proof 1) If (x → z)∨ (y → z) = (x∧ y) → z, then

x → (y ∨ z) = (y ∨ z)′ → x′ = (y′ ∧ z′) → x′

= (y′ → x′) ∨ (z′ → x′)
= (x → y) ∨ (x → z)′.

2) If (x → y) ∨ (x → z) = x → (y ∨ z), then

(x ∧ y) → z = z′ → (x ∧ y)′ = z′ → (x′ ∨ y′)
= (z′ → x′) ∨ (z′ → y′)
= (x → z) ∨ (y → z).

According to the above discussion, in ∧, ∨ and
′ algebra system defined by→, the axioms in lattice
implication algebra, except the property (x ∧ y) →
z = (x → z) ∨ (y → z), satisfy the algebra system.
For convenience, " L be a non-empty set, I ∈ L be
a fixed element, → be a binary operator in L" is
marked by (L,→, I). In (L,→, I), if there exists
O and satisfy ∀x ∈ L, O ≤ x. For O ≤ x iff
O → x = I, especially notes

(L6) O → x = I.

Naturally, (L,→, I, O) represents that I and O are
two fixed element, → is a binary operation in L.

Corollary 5 Supposed that (L,→, I, O) and
∀x, y, z ∈ L, → satisfy (L1) − (L6), then
(L,→, I, O) is a quasi lattice implication al-
gebra.

Proof (L2), (L5) and (L3) are respectively (I2),
I1 and (I5) in quasi lattice implication algebra [8].
According to Theorem 1 and (2) of Theorem 4, (l3)
and (l4) in quasi lattice implication algebra can be
obtained.

Theorem 12 Supposed that (L,→, I, O) and
∀x, y, z ∈ L, → satisfy (L1) − L6, then
(L,∨,∧, I, O) is a distributive lattice, namely
∀x, y, z ∈ L, we have

(1) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z);

(2) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z).

Proof 1) According to Lemma 1 and Corollary 4,
we have

(x ∧ y) ∨ z

= (z → (x ∧ y)) → (x ∧ y)
= ((z → x) ∧ (z → y)) → (x ∧ y)
= (((z → x) ∧ (z → y)) → x) ∧ (((z → x)

∧(z → y)) → y)
≥ ((z → x) → x) ∧ ((z → y) → y)
= (x ∨ z) ∧ (y ∨ z).

It is obvious that (x∧ y)∨ z ≤ (x∨ z)∧ (y∨ z). So,
(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

2) According to Theorem 6 and the conclusion
(1) of Theorem 12, it can be obtained

(x ∨ y) ∧ z = ((x′ ∧ y′) ∨ z′)′

= ((x′ ∨ z′) ∧ (y′ ∨ z′))′

= (x ∧ z) ∨ (y ∧ z).



Theorem 13 Supposed that (L,→, I, O) and
∀x, y, z ∈ L, → satisfies (L1)− (L6), then

x → (y ∨ z) = (x → z) ∨ (x → z).

Proof According to Theorem 10, we just need to
prove x → (y ∨ z) ≤ (x → y) ∨ (x → z). For

(x → (y ∨ z)) → ((x → y) ∨ (x → z))
= (x → (y ∨ z)) → (((x →) → (x → z)) →

(x → z))
= (x → (y ∨ z)) → (((x ∧ y) → z) → (x → z))
= (x → (y ∨ z)) → (x → (((x ∧ y) → z) → z))
= (x → (y ∨ z)) → (x → ((x ∧ y) ∨ z))
= (x → (y ∨ z)) → ((x → (x ∨ z)) ∧ (x →

(y ∨ z)))
= (x → (y ∨ z)) → (I ∧ (x → (y ∨ z)))
= (x → (y ∨ z)) → (x → (y ∨ z)) = I,

so x → (y ∨ z) = (x →) ∨ (x → z).

Corollary 6 Supposed that (L,→, I, O) and
∀x, y, z ∈ L, → satisfy (L1) − (L6), then
(L,→, I, O) is a lattice implication algebra.

Proof According to Corollary 5, it can be obtained
that (L,→, I, O) is quasi lattice implication alge-
bra. According to Theorem 8 and Theorem 13, it
satisfy (I6) and (I7). And according to the defini-
tion of lattice implication algebra, (L,→, I, O) is a
lattice implication algebra.

4. Conclusions

In this paper, based on implication operation →,
partial order on non-empty L could be induced, and
generating boundary lattice on non-empty L with
the greatest element and the least element is dis-
cussed. Moreover, lattice implication algebra could
be obtained if→ satisfies (L1)− (L6) of this paper.
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