
An Efficient Structure for LKH Key Tree on Secure Multicast Communications

Naoshi Sakamoto

Department of Information and Communication Engineering, Tokyo Denki University,
5 Senju-Asahi-cho,

Adachi-ku, Tokyo, 120-8551, Japan
E-mail: sakamoto@c.dendai.ac.jp

Abstract

In order to communicate in cipher over IP multicast, each of joining and leaving participants causes
renewing keys. Moreover, the number of renewed keys depends on the key management system. LKH,
one of the key management systems, uses a tree structure to manage keys to share with participants.
Every node of the tree is given a key, and each leaf of the tree is corresponding to a participant. If all
members are handled equally, by using a balanced binary tree, the average number of renewed keys per
join and leave is estimated at dlog2 ne , where n denotes the number of participants. In this study, we
introduce a scenario that the key management system can distinguish between inconstant members and
stable members, instead of handling members equally. Under this scenario, our system improves the
number of renewing keys efficiently by considering another tree structure against the balanced binary tree
structure.
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1. Introduction

Some video conferences using multicast communi-
cation require avoiding a wire tapping. That is, they
must communicate in safe. IPsec is a framework of
secure communications on IP. In order to manage
keys for secure communications on IP, IKE for uni-
cast and GSAKMP for multicast are used.

For GSAKMP, LKH is proposed as a method
to manage keys1. In LKH, the key management is
based on a key tree, where each of all its nodes cor-
responds to a key, and each of all its leaves is cor-
responded to a participant. It is reported that the
balanced binary tree is efficient for a key tree when
every member would be handled equally2.

Meanwhile, it is reported that for some services
on the Internet, the fluctuation of the frequency in

use strongly depends on days of the week3. Accord-
ing to such investigations, we are expecting that the
good user model will be found in future so that this
will be able to estimate the load of the service well.
In this study, we propose an efficient method to man-
age key for multicast communication in cipher by
assuming that the administrator can obtain the infor-
mation of users’ behavior. While the users are han-
dled equally in the former studies, we take special
care with the users that frequently cause renewing
keys. Then, we show the condition that our method
is more efficient than former ones.

In this paper, in section 2, we explain the se-
cure multicast communication and the related stud-
ies. Then, we show and analyze our method in sec-
tion 3. Finally, in section 4, we conclude our study.
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2. Secure communication and Key
management

2.1. Basic concept

We assume that the base of logarithms is two.
The system of multicast communication in ci-

pher requires not only the same join and leave man-
agement as normal multicast communication, but
also the key management. In this paper, we assume
that this can manage the users such that:

• the users are registered in advance,
• once a user declares her join, she is enabled to re-

ceive data (we call a joining user a participant),
• then, after she declares her leave, she can receive

nothing anymore.

Then, this yields that this system must use the keys
where

• those who have already left can not decrypt, and
• whoever joins can decrypt.

Moreover, the key to decrypt data should be shared
by the all participants. Thus, the keys must be re-
newed in safe for every joins and leaves. In order to
manage joins and leaves and rekey, we assume a key
server is installed in the system.

Moreover, we assume that the key server creates
log files so that we can obtain the statistical informa-
tion with respect to users’ behavior.

2.2. Framework of secure multicast
communication over the Internet

Security Architecture for Internet Protocol (IPsec
RFC4301) basically employs a shared key cryp-
tosystem. For safety’s sake, the key management
protocol renews keys whenever a period of time
elapses, and the group of participants is renewed.

Group Secure Association Key Management
Protocol (GSAKMP RFC4535) is a key manage-
ment protocol for secure multicast communication.
This organizes and manages a group to be protected
by secure communication. This assumes the key
server to manage participants and keys. GSAKMP

uses the following two types of key. A traffic en-
cryption key (TEK) denotes the encryption key to
protect data communication channels. On the other
hand, a key encryption key (KEK) denotes the en-
cryption key to encrypt TEKs in order to distribute
TEKs in secure. GSAKMP can apply LKH to rekey
efficiently.

2.3. LKH

LKH(Logical Key Hierarchy 1) is a method to dis-
tribute keys efficiently via multicast for GSAKMP.
In LKH, the key server manages keys by using a tree
structure(see Figure 1.)

Fig. 1. Key tree of LKH

We call such tree in Figure 1 a key tree. Firstly,
the key server generates a tree so that each leaf is
corresponding to a participant each. Secondly, it
generates KEKs and corresponds each KEK to a
node of the tree each. These KEKs are different
from each other. Finally, for each participant p, the
key server distributes a key set that consists of any
KEKs over the path from the root to the leaf corre-
sponding to p in the key tree.

For instance, in Figure 1, u1, the most left partic-
ipant, has KEK k1, k9, k13, and k15. Note that though
the key tree is a binary tree in Figure 1, any ordinal
trees are also available for a key tree. Nevertheless,
we assume that any key tree are all binary trees in
this paper.

Now, we show how the key server rekeys for the
key tree in Figure 1 as follows. Firstly, we explain
the action of the periodic rekeying that is indepen-
dent of a join and a leave. The periodic rekeying
does not need to exclude the particular members.
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Thus, the key server encrypts a new TEK with the
root key k15, and distributes it to all participants via
multicast. Since the all participants share k15, they
obtain the new TEK. This requires only one new
TEK.

Secondly, we explain the rekey process for a join
and a leave. When a participant leaves, the key
server must renew not only the TEKs, but also the
KEKs for all of the left participants. Suppose that
participant u1 leaves. Then, k1 must be discard, and
k9, k13 and k15 must be renewed since u1 has owned
them. Let new KEKs with respect to the remaining
k9, k13 and k15 be k′9, k′13 and k′15 respectively. The
key server distributes these new keys, k′9, k′13 and
k′15, to the participants by encrypting with KEKs.
Note that the key server uses multicast communica-
tion so that it reduces the number of communica-
tions as follows:

(i) For u5, u6, u7 and u8, it is necessary to re-
new only k15. Since they share k14, the key
server encrypts the new key k′15 with k14, and
distributes it via multicast.

(ii) For u3 and u4, it is necessary to renew KEK
k15 and k13. Since they share k10, the key
server encrypts the key set that consists of the
new key k′15 and k′13 with k10, and distributes
it via multicast.

(iii) Finally, since u2 has KEK k2, the key set that
consists of the new key k′15, k′13 and k′9 en-
crypted with k2, are delivered to u2 via uni-
cast.

On the other hand, when a participant joins, all keys
on the path from the root to the node corresponding
to the participant are renewed and distributed by the
same way for a leave.

Therefore, for every rekey, the sum of the num-
ber of either created or discarded KEKs and renew-
ing KEKs is equal to the depth of the position of the
node for the participant. When the key tree is bal-
anced, the number of renewed keys per a rekey is at
most dlogne2. Moreover, we can estimate the num-
ber of distributed keys as follows. Let the depth of
the root be one. For a participant such that in her

own KEKs, KEKs in depth up to d are being re-
newed, d KEKs are sent to her by encrypted with
the unrenewing KEK in depth d + 1 that she owns.
Thus, since KEKs on the path from the root to a node
in depth up to dlogne− 1 are entirely renewed, the
number of distributed keys is given by (1).

1+2+ ...+ dlogne−1

=
dlogne−1

∑
i=1

i =
dlogne2−dlogne

2
. (1)

2.4. Related works

On pay TV, it is ordinary that a contract happens
to be concluded and canceled not anytime, but for
each program. Therefore, we can assume that we
administer the process for a join and a leave only
at some intervals. Wong, Gouda and Lam provided
Batch LKH, a method of key administration for this
assumption4. That is, in Batch LKH, the process
for a join and a leave within a period is handled all
at once. Since the root KEK key is renewed ev-
ery rekey, rekeying for more than two of joins and
leaves all at once in a period reduces the number of
renewed keys from rekeying every a join and a leave.
While our method also reduces the number of times
of renewing keys, our method and Batch LKH can
be used together. Moreover, it is expected that using
them together results more efficient.

Now, according to the former subsection, in
LKH, the number of keys to renew per rekey de-
pends on the depth of a key tree. Thus, a balanced
tree is considered to be most efficient for the form
of the key tree since the depth of the balanced tree is
shallowest. However, joining and leaving may make
the key tree unbalance gradually. Pegueroles and
Rico-Novella provided the Balanced Batch LKH5.
This enables a key tree to keep balanced by recon-
structing the form of the key tree every rekeying of
Batch LKH. Since this method improves LKH in-
dependently of our method, it is expected that this
method can be applied to our method effectively.

On the other hand, the broadcast encryption6 is
connected with multicast communication in cipher.
In this method, a sender transmits a bunch of keys
to each participant in advance so that sender enables

Published by Atlantis Press 
Copyright: the authors 

23



N. Sakamoto

some group of participants to communicate. LKH is
also one of the broadcast encryption systems. Ab-
dalla, Shavitt and Wool investigates about the num-
ber of key transmissions for the broadcast encryp-
tion 7. They estimated lower bound of the number
of key transmissions theoretically, and proposed an
algorithm for several type of relationships between
participants. Particularly, in Section 6.B, they eval-
uated it for tree structure. This is similar to ours.
However, while they show the upper-bound by using
simulation, we show the upper-bound theoretically.

3. Proposal method

In this section, we propose our method. Despite
other related works, our method assumes that the
key server can obtain some special information of
users in advance.

3.1. Basic Concepts

When the key tree is managed in the form of a bal-
anced binary tree, the number of renewed keys per
each of a join and a leave is dlogMe, where M stands
for the average number of participants. This is con-
sidered to be the most efficient, when each user joins
and leaves independently with the same probability.

Now, consider an unbalanced key tree like Figure
2.

Fig. 2. Unbalanced key tree

In the tree in this figure, when the participant a
leaves, the number of renewed keys is equal to its
depth ha. This is greater than the number when the
key tree is managed in the form of a balanced tree.

On the other hand, when the participant b leaves, the
number of renewed keys is equal to its depth hb. This
is less than the number when the key tree is managed
in the form of a balanced tree. If the key server could
know that a certain participant leaves earlier than the
other participants, it could reduce the number of re-
newed keys by placing her node to the shallower part
of the key tree.

From this idea, we propose more efficient struc-
ture of the key tree then a balanced tree, when the
key server can know the average number of partici-
pants and the join and leave rate.

3.2. How to construct a key tree

Our method requires to grasp the trend of users.
Since the trend might be affected by the individual
characters of the users and the contents of the ser-
vice, it may not necessarily possible to predict the
users’ behavior by modeling the trend.

However, Pareto principle usually holds. This is
a rule of thumb; e.g., “20% of participants occupy
80% of resources”.

We assume that we can classify users into more
than two groups where one group contains users that
join and leave frequently and another group contains
users that join and leave rarely. If Pareto principle
holds with respect to the users, this assumption can
be realized by analyzing the logs of the communica-
tions of the users.

On the other hand, in administrating the mul-
ticast groups, users are often divided into plural
groups in advance for the network topology. Since
for each group a key tree is prepared independently,
our method can apply to each key tree separately.

Now, let G1, G2,... be user subgroups that are
obtained. For each subgroup G1, G2, ..., let M1, M2,
... be the average number of participants in the sub-
group respectively. Moreover, let λ1, λ2, ... be the
join and leave rate of the subgroup respectively.

Note that both Mi and λi have additivity. That is,
for groups G0 = G1∪G2, G1∩G2 = /0, we have the
property as (2).

M0 = M1 +M2, and
λ0 = λ1 +λ2. (2)
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After this, we denote G=(M,λ ) when we pay atten-
tion to only M and λ in the discussion about group
G.

3.3. Division into two groups

At first, we discuss that we divide user group into
two. For group G = (M,λ ), we discuss the con-
dition how G is divided into G1 = (M1,λ1) and
G2 = (M2 = M−M1,λ2 = λ − λ1) in order to re-
duce the number of rekeys.

Fig. 3. Separability

Definition 1. G = (M,λ ) is separable into G1
= (M1,λ1) and G2 = (M2 = M−M1,λ2 = λ −λ1)
iff λ1(1+dlogM1e)+(λ−λ1)(1+dlogM−M1e)6
λdlogMe.
Theorem 1. For G = (M,λ ), let M = 2m−1 + r
and 0 6 r < 2m−1, where m is a positive integer
and r is a positive real number. G is separable into
G1 = (M1,λ1) and G2 = (M−M1,λ −λ1) if condi-
tion of G1 given by (3) holds:

G1 ∈ S1∪S2∪S3,where
S1 = {(M1,λ1) | 0 < M1 6 min{r,2m−2},

∧ λ
1

m−dlogM1e
6 λ1 6 1},

S2 = {(M1,λ1) | r 6 M1 6 2m−1 ∧ 0 6 λ1 6 1},
and

S3 = {(M1,λ1) |
max{2m−1,2m−2 + r}< M1 6 M

∧ 0 6 λ1 6 λ (1− 1
m−dlogM−M1e

)}.(3)

We show the area of these sets with Figure 4 and 5.
In the case of 0 6 r < 2m−2, S1, S2 and S3 are sep-
arate from each other as in Figure 4. On the other

hand, in the case of 2m−2 6 r < 2m−1, S2 is con-
nected to both S1 and S3 as in Figure 5.

Fig. 4. In the case of 0 6 r < 2m−2

Fig. 5. In the case of 2m−2 6 r < 2m−1

Proof. We show the condition of M1 and λ1 bu
considering separately the cases with respect to M1.
Assume that M1 < M and λ1 < λ .

G is separable into G1 and G2, iff inequality (4)
holds.

λ1(1+ dlogM1e) + (λ −λ1)(1+ dlogM−M1e)
6 λdlogMe. (4)

(i) When 0 < M1 < r, By dlogMe =
dlogM−M1e=m, inequality (4) can be trans-
formed to (5).

λ1(1+ dlogM1e)+(λ −λ1)(1+m)

6 λm. (5)
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Thus, we obtain the condition of (6).

λ1 > λ
1

m−dlogM1e
. (6)

Note that from λ1 < λ , dlogMe−dlogM1e>
1 must hold. Therefore, condition M1 6 2m−2

must also hold.

(ii) When r 6 M1 6 M/2, by applying
dlogM−M1e = m− 1, inequality (4) can be
transformed to (7).

λ1(1+ dlogM1e)
+(λ −λ1)(1+m−1) 6 λm
λ1(1+ dlogM1e−m) 6 0. (7)

From λ1 > 0, we have m−dlogM1e− 1 > 0.
We also have M1 6 2m−1. However, since
M1 < M/2 = 2m−2 + r/2 < 2m−1, inequality
(4) always holds for any λ1.

(iii) When M/2 < M1 6 2m−1, then dlogM1e =
m−1, by applying M/2 > M−M1 > r. Then,
inequality (4) can be transformed to (8).

λ1(1+m−1)
+(λ −λ1)(1+ dlogM−M1e) 6 λm

(λ −λ1)(m−dlogM−M1e−1) > 0.(8)

From λ > λ1, we have m− dlogM−M1e −
1 > 0. Then this can be transformed to
M−M1 6 2m−1. However, since M−M1 <
M/2 = 2m−2 + r/2 6 2m−1, inequality (4) al-
ways holds for any λ1.

(iv) When 2m−1 < M1 < M2, by applying
dlogM1e = m, inequality (4) can be trans-
formed to (9).

λ1(1+m)

+(λ −λ1)(1+ dlogM−M1e) 6 λm

λ1 6 λ

(
1− 1

m−dlogM−M1e

)
. (9)

However, m− dlogM−M1e > 1 must hold.
Since this can be transformed to 2m−2 > M−
M1, we have the condition that M1 > 2m−2+r.

While this theorem gives the condition of param-
eters to divide a group, this can also apply to decide
for given two groups, which management is better,
ether managing them separately or managing them
with mixing into one. Moreover, we can seek a suit-
able set of parameters for this theorem. Then, we
can try to divide the user group into two to adapt the
set of parameters. This problem can be formalized
that:

• Instance: for given a group that consists of ele-
ments with two kind of parameters and two con-
straints,

• Question: divide a group into two in order that for
each kind, the sum of parameters in one subgroup
satisfies the constraint respectively

However, this problem is called the Bounded Knap-
sack Problem, which is NP-hard. Though some al-
gorithms for this have been proposed8, they are not
polynomial time computable.

Example 1. Now, when the users are obeyed
Pareto principal, we compute how much our method
can reduce the number of rekeys. That is, when
G = (M,λ ) is separable into G1 = (0.2M,0.8λ )
and G2 = (0.8M,0.2λ ), we evaluate how much our
method reduces the average number of rekeys by
function (10).

f (M) = λdlogMe
−(0.8λ (1+ dlog0.2Me)
+0.2λ (1+ dlog0.8Me)). (10)

We assume M > 4.

(i) When 2m < M 6 5 · 2m−2, by applying
dlogMe = m + 1, dlog0.2Me = m− 2, and
dlog0.8Me= m, we have (11).

f (M) = λ (m+1)− (0.8λ (1+(m−2))
+0.2λ (1+m))

= 1.6λ . (11)

(ii) When 5 · 2m−2 < M 6 2m+1, by applying
dlogMe = m + 1, dlog0.2Me = m− 1, and
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dlog0.8Me= m+1, we have (12).

f (M) = λ (m+1)− (0.8λ (1+(m−1))
+0.2λ (1+(m+1))

= 0.6λ . (12)

Thus, by the value of M, our method reduces the
number of rekeys by 0.6λ or 1.6λ .

3.4. Management of the key tree with plural
subgroups

Next, we propose the method to construct the key
tree with connecting balanced binary trees corre-
sponding to the plural groups G1, G2, ..., Gk each
other.

As we saw in the former section, it is compli-
cated to decide which method reduces the num-
ber of rekeys more, ether managing two subgroups
separately, or managing them together by mixing
them. Moreover, it should be naturally more compli-
cated to decide which method reduces the number of
rekeys more, ether managing plural subgroups sep-
arately, or managing them by selecting some set of
subgroups and mixing subgroups in the set, since we
must consider all combinations of selection from the
subgroups.

However, if we must manage the plural sub-
groups by each separate balanced binary tree, we can
have the optimal method by constructing the key tree
according to Huffman coding9 as follows.

Theorem 2. When G1, G2, ..., and Gk must be man-
aged by each separate balanced binary tree, it is op-
timal to apply the algorithm of Huffman coding for
λ1, ..., λk to construct the key tree.

Proof. We assume that each group Gi is managed
the corresponding balanced binary tree of depth
dlogMie, for i = 1, ..., k. Let pi denote the depth
from the root node of the key tree to the root node of
the balanced binary tree corresponding to Gi. Then,
the average number of rekeys can be estimated by
(13).

k

∑
i=1

λi(pi + dlogMie) =
k

∑
i=1

λAPi +
k

∑
i=1

λidlogMie.

(13)

In this formula, the method to construct the key tree
only affects the value of the term ∑

k
i=1 λi pi. Since

the algorithm of Huffman coding can construct a bi-
nary tree to minimize this, we can apply this algo-
rithm for λ1, ..., λk.

Now, we discuss the validity for managing more
than one group separately or managing them with
mixing some subgroups. Then, we define “valid-
separation” as the transformed notation of “separa-
ble”.

Definition 2. G2 is a valid-separation for G1 iff
G1∪G2 is separable into G1 and G2.

G1 and G2 are valid-separation iff G1∪G2 is sep-
arable into G1 and G2.

Fig. 6. Valid-separation

Theorem 3. G2 = (M2,λ2) is a valid-separation
for G1 = (M1,λ1), if one of the following conditions
holds where M1 = 2m1 − r1 for a positive integer
m1 > 1, a positive real number r1 > 0, and a pos-
itive integer l > 1 (Figure 6):

(i) When 0 < M2 6 r1, then

λ2 >
λ1

m−1−dlogM2e
;

(ii) When r1 < M2 6 2m1 + r1 = 2m1+1−M1, then
r2 < M2 6 2m1;

(iii) When 2m1+l−M1 < M2 6 2m1+l , then any G2
is valid;

(iv) When 2m1+l < M2 6 2m1+l −M1, then λ2 6
lλ1.
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Since the proof of this theorem is similar to the
proof of Theorem 1, we omit the proof.

By using this theorem, we can evaluate whether
one combination of groups is a valid-separation for
another combination of groups. However, it is
still complicated to decide whether more than two
groups are valid-separation. That is, it is compli-
cated to decide whether we can not reduce the aver-
age rate of rekeys anymore whatever we mix some
combination of groups. In the next section, we dis-
cuss valid-separateness for three groups.

3.5. Valid-separateness for three groups

We yield the condition as valid-separateness for
three groups so that the structure of the key tree in
figure 7 is optimal.

Fig. 7. three groups

Dividing G = (M,λ ) into three groups G1,
G2, G3 is suitable, if λ1(1 + dlogM1e) + λ2(2 +
dlogM2e)+λ3(2+dlogM3e) is smaller than each of
the following formulas:

(λ1 +λ2 +λ3)dlogM1 +M2 +M3e, (14)
λ1(1+ dlogM1e)

+(λ2 +λ3)(1+ dlogM2 +M3e), (15)
λ2(1+ dlogM2e)

+(λ1 +λ3)(1+ dlogM1 +M3e), and (16)
λ3(1+ dlogM3e)

+(λ1 +λ2)(1+ dlogM1 +M2e). (17)

(i) On the average number of rekeys 6 formula
(15) 6 formula (14), it is not trivial that for-
mula (15) 6 formula (14). Thus, this inequal-
ity is a sufficient condition.

In order to satisfy this inequality, we may
show that G1 is a valid-separation for G2∪G3,
G2 is a valid-separation for G3, and G1 is a
valid-separation for both G2 and G3. Then,
once G1 is selected, we select G2 and G3
to satisfy both the condition whether G2 and
G3 are valid-separation, and the condition
whether both G2 and G3 are valid-separations
for G1. We can verify the valid-separateness
by verifying whether the selected G2 and G3
are contained in the area yielded by superim-
posing the area like Figure 6 on the area like
ether Figure 4 or Figure 5.

(ii) For the average number of rekeys 6 ether for-
mula (16) or formula (17);
The inequality that the average number of
rekeys 6 formula (17) is transformed to (18).

λ1(1+ dlogM1e)
+λ2(2+ dlogM2e)+λ3(2+ dlogM3e)

6 λ3(1+ dlogM3e)
+(λ1 +λ2)(1+ dlogM1 +M2e). (18)

We consider the condition for this inequality
in the following lemma. And we also consider
it for formula (16) similarly.

Lemma 4. The average number of rekeys 6 for-
mula (17), if for M1 = 2m1−r1 where positive integer
m1 > 1 and positive real number r1 > 0, and posi-
tive integer l > 1, one of the following conditions
satisfies(Figure 8).

(i) When 0 < M2 6 r1, then

λ2 >
λ3

m−1−dlogM2e
;

(ii) When r1 < M2 6 2m1 + r1 = 2m1+1−M1, then

(a) if dlogM2e< m, then

λ2 >
λ3−λ1

m1−dlogM2e
;

(b) if dlogM2e= m, then λ3 6 λ1

(c) if dlogM2e= m+1, then λ2 6 λ1−λ3;
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(iii) When 2m1+l −M1 < M2 6 2m1+l , then λ3 6
λ1(l +1);

(iv) When 2m1+l < M2 6 2m1+l −M1, then λ2 6
λ1(l +1)−λ3.

Fig. 8. In the case of λ2 +λ3 6 λ1

Since the proof of this lemma is similar to the proof
of Theorem 1, we omit the proof.

If we have an algorithm A such that it in-
duces a subgroup which satisfies the given con-
straint, we can induce three subgroups that are valid-
separations by executing the following procedure:

(i) Let G = (M,λ ) be the given group.

(ii) By giving the constraint that consists of 1/2M
as the maximum number of participants, 1/2λ

as the minimum average rate of rekeys, and
the condition of Theorem 1 to the algorithm A,
we try to obtain G1 = (M1,λ1) from the algo-
rithm A. If we can not obtain it, we terminate
this procedure.

(iii) Let G = G\G1, λ = λ −λ1, M = M−M1. By
giving the constraint that consists of the con-
dition of Theorem 1 and the condition of The-
orem 3 for G1 to the algorithm A, we try to
obtain G2, G3 from the algorithm A such that
both G2 and G3 satisfy the constraint. If we
obtain them, we have G1, G2, and G3 as valid-
separation. Otherwise, we can not obtain
them, we have G1 and G as valid-separation.

Note that the reason why let λ1 > 1/2λ in the first
step, is that since λ1 > λ2 +λ3 always holds what-
ever G2 and G3 are selected, G1 must be placed at
the most upper level of the key tree.

3.6. Convenient method for selection of three
subgroups

In the former section, we propose the method to in-
duce three subgroups. However, the used constraint
in the method is very complicated. Then, in this sec-
tion, we propose another method whose constraint is
simpler.

First, in Theorem 1, the condition that M1 6
1/4M and λ1 > 1/2λ always holds.

By applying this condition for G1, G2 and G3,
we have 3M1 6 M2, 3M1 6 M3, 3M2 6 M3 and λ1 >
λ2 > λ3. This induces 12M1 6 M2 +M3. Finally,
we let the condition in the first step be M1 6 1/13M,
λ1 > 1/2λ . If we can not have G1 satisfies the above
condition, we try to consider to find valid-separation
of two groups.

If we have G1 where M1 6 1/13M, we let
the condition in the second step be 3M1 6 M2 6
1/4(M−M1) and λ2 > 1/2(λ − λ1). If we get G2
satisfying the above condition, G3 also satisfies it.
Moreover, G1, G2 and G3 obtained for these con-
straints, also satisfy the condition of Theorem 3 and
the condition of Lemma 4. Therefore, G1, G2 and
G3 are valid-separation.

4. Conclusion

For LKH, which is the key management method for
IP Multicast communication in cipher, the former
study proposed the method that managing the key
tree by using a balanced binary tree. In this paper,
we proposed a method that managing the key tree
by separate user group from the behavior of users.
Then, we show the condition that we reduce the av-
erage number of rekeys. Moreover, we can improve
our method by applying the method of Batch LKH.

We are improving our method in efficiency in fu-
ture.
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