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Abstract 

In this paper, we conducted empirical experiments to study the performance of hashing with a large set of data and compared 
the results of different collision approaches. The experiment results leaned more to closed addressing than to open addressing 
and deemed linear probing impractical due to its low performance.  Moreover, when items are randomly distributed with keys 
in a large space, different hash algorithms might produce similar performance.  Increasing randomness in keys does not help 
hash table performance either and it seems that the load factor solely determines possibility of collision.  These new 
discoveries might help programmers to design software products using hash tables. 

Keywords: hash table, open addressing, closed addressing, nosql, online advertising.  

 

1. Introduction 

Hash table [1] is a critical data structure which is used to 
store a large amount of data and provides fast amortized 
access. When two items with same hashing value, there is a 
collision. There are different implementations to solve 
collisions and reduce the possibility of collisions, such as 
open addressing and closed addressing.  Some hash variants, 
such as Cuckoo [2], worked to improve access time even 
more predictable. A few approaches [3] tried to reduce 
collisions by using a family of multiple hash functions 
instead of one.  Some work tried to find out better hash 
functions, such as SHA-1 [4]; while most of such effort is 
used in cryptography. Most previous researches mainly 

focused on the amortized access time, instead of 
understanding the worst cases or finding quantitative 
measurements.  It seems necessary to study the performance 
of hash functions so that we can make good choice for the 
hash tables. On the other hand, most of existing research 
work on hashing did not focus on a large amount of data.  
Nowadays, it is not rare to work with multiple billion data 
sets and large data sets are often partitioned into multiple 
hash tables; which are not necessarily distributed hash tables.   
 A lot of computer applications are expected to respond 
fast while processing a large amount of requests which may 
be continuous. Such applications are typical online ones, 
including online search and online advertising.  
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 In this paper, we would like to choose on-line 
applications to conduct some experiments with different 
hashing approaches to make comparison. Such experiments 
could help us to understand further the performance of open 
addressing and closed addressing with a large set of data. 
The experiment results might be useful for programmers in 
making design decisions. 
 The research questions of this work include: 

 Would it be the case that open addressing and 
closed addressing perform similarly when a large 
set of data are involved? 

 If open addressing and closed addressing have 
different performance, when will they diverge 
along with the increase of data? 

 Would a better hash algorithm increase amortized 
hash table access time? Or, in another word, what 
factors might affect the hash table performance? 

 For closed addressing, how does the size of the key 
space affect the performance of hashing? 

 This paper is organized as follows: Section 2 introduces 
related work.  The experiment motivation and setting are 
given in Section 3. Section 4 describes experiment results 
and provides analysis.  Section 5 concludes the paper and 
lists future work. 
 

2. Related Work 

Hash table [5] is an associative array that maps keys to hash 
values and uses the hash values as the indexes of the array to 
store the data.  The core is a hash function that computes an 
index of buckets in an array, from which the item can be 
found.  It has been believed that in many situations, hash 
tables turn out to be more efficient than search trees or any 
other lookup structures. 
 There have been many researches on hashing.  Robin 
Hood Hashing [6] tied to equalize the length of probe 
sequences by leaving the item with the longer probe 
sequence in current probing position and move forward the 
other one with shorter probe sequence in case of collision.  
Cuckoo Hashing [7][8][9] used two hash tables and two 
different hash functions respectively; each item, is either in 
the first hash table or in the other one.  If a new item has a 
collision in the first hash table, the collided item is moved to 
the second hash table using the second hash function.  Items 
are moved back and forth until the last collided item moves 
to an empty location or a limit is reached. If the limit is 
reached, new hash functions are chosen to rehash the tables.  
It was reported that for tables that are a bit less than half full 

and with carefully chosen universal hashing functions, 
performance would be good.  
 There are also some researches focusing on the quality of 
hash function.  A basic requirement is that the function 
should provide a uniform distribution of hash values, which 
may be evaluated empirically using statistical tests, e.g. a 
Pearson's chi-squared test for discrete uniform distributions 
[10][11].   Cryptographic hash functions, such Message 
Digest Algorithm (MD, well-known example MD5) [12] and 
Secure Hash Algorithm (SHA, representative SHA-1) [13], 
are believed to provide good hash functions for any table 
sizes.  
 Hash table has recently been widely used in many 
NoSQL products such as Memcached [14], Cassandra [15], 
Redis [16], and Riak [17].  One common characteristic of 
NoSQL products is that they can handle large data volume, 
such as multiple billion rows, given enough hardware 
capability.  The popularity of these NoSQL products has 
validated the effectiveness of hash table. 
 With the growth of the key size of the items, a hash table 
often needs to be rehashed with distribute keys into a bigger 
space and some effort was taken to reduce the impact on 
performance [18].  Due to limited system resources, large 
data might have to be saved into multiple hash tables on 
different computers.  One specific such variant is distributed 
hash table [19][20][21] which especially cares about the 
distributed and unreliable environments.    
 Although there are a lot of researches and applications on 
hash table, further work on some directions are still needed.  
For example, it is commonly believed that closing 
addressing provides better predictability than open 
addressing, but there are few works measuring their practical 
performances.  In addition, a lot of existing work did not test 
their algorithms or approaches with large hash tables with 
multiple million rows.  
 

3. Experiment Design 

It has been well known that there are two approaches 
handling hash collision: open addressing and closed 
addressing and the load factor is better to be controlled under 
0.7.  However, the preference has been rarely given to any 
addressing and how hash table performance degrades along 
with the increase of the load factor.  In reality, better hash 
functions are often sought to improve the worst case 
performance of hash tables.  Given the limited hash table 
size and enormous value space of hash functions, it seems 
that a better hash function might not be able to increase the 
worst case performance of hash tables.  Thereafter, we 
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designed a set of experiments to investigate the impact of 
various factors on hash table performance. 
 The purpose of the experiment is to compare the 
performance of open addressing and closed addressing with 
large data size along with various load factors and to see 
whether there is any impact of the size of key space on the 
performance of  hashing. We also try to evaluate impact of 
partitioning in hashing in which data are divided into 
multiple hash tables.   
 Since there are a large variety of software programs that 
are using hashing in different ways to handle data of 
different patterns, at first we want to summarize 
characteristics of the applications that affect our choice of 
data access and storage solutions. In this experiment, we 
focused on online advertising application which has the 
following characteristics: 

 Fast response and vast throughput; each data access 
has to completed in about 10 ms and there is no 
pause time of the system to reorganize any data; 
this means hashing has to be extremely reliable;  

 There is no rest time so that hashing has to be 
continuously reliable; 

 Huge data volume, so that it is critical to be 
memory-efficient; 

 User ids are normally randomly created since there 
is no precise way to keep track users; GUID is often 
used; as a result, the key space is huge, keys are 
sparse in the space, and there is little chance of key 
collision; 

 Nosql, no join, just discrete data; there is no 
interrelationship between different user ids; so the 
program performance is closely related to hashing 
performance and data can be easily partitioned; 

 We think such application scenarios most likely would 
give challenges to hashing by calling for reliable and 
consistent high performance.  Choosing such applications for 
the experiment might give insight on the performance of 
hashing. 
 

3.1. Hash algorithms 

Hash algorithm is the core of hash tables and it is a common 
effort to look for a better hash algorithm that could reduce 
the collision possibility.   
 In this experiment, we chose three representative hash 
algorithms: SHA-1, which represents complex and best-
quality hash functions, X31, a fast and simple one, Murmur, 
a popular and well-received tradeoff of the previous two. 

The result of Murmur hash is an eight-byte (64-bit) long and 
its calculation is shown in Figure 1: 
 
Public static long murmurHash (String key) { 

  byte[] data = key.getBytes (); 

  ByteBuffer bb = ByteBuffer.wrap (data); 

  LongBuffer lb = bb.asLongBuffer (); 

   

  int len = key.length (); 

  int seed = 42; 

  long m = 0x00c6a4a7935bd1e995L; 

  int r = 47; 

  long h = seed ^ (len * m); 

  for (int i=0; i < len / 8; i ++){ 

    long k = lb.get (i); 

    k *= m; 

    k ^= k >> r; 

    k *= m; 

    h ^= k; 

    h *= m; 

  } 

  if (len % 8 != 0) { 

    byte[] data2 = null; 

    data2  =  Arrays.copyOfRange(data,  (len  /  8)  *  8, 

len); 

    switch(len & 7){ 

      case 7: h ^= ((long)data2[6]) << 48; 

      case 6: h ^= ((long)data2[5]) << 40; 

      case 5: h ^= ((long)data2[4]) << 32; 

      case 4: h ^= ((long)data2[3]) << 24; 

      case 3: h ^= ((long)data2[2]) << 16; 

      case 2: h ^= ((long)data2[1]) << 8; 

      case 1: h ^= ((long)data2[0]); 

    h *= m; 

    }; 

  } 

  h ^= h >> r; 

  h *= m; 

  h ^= h >> r; 

 

  return h; 

}	

Fig. 1. Murmur hash in Java code 

 Compared to more complex calculation of Murmur hash, 
X31 is much simpler although it still returns a 64-bit value 
(see Figure 2).  Simple hash functions like X31 have been 
commonly used in non-critical situations where the high 
calculation speed is preferred.  In reality, simple hash 
functions often provide satisfactory performance. 
 
 
 
 
 
 

Published by Atlantis Press 
Copyright: the authors 

62



Liu and Xu 

 
public	static	long	stringHashCode(String	str)	{	

	 char	[]	val	=	str.toCharArray	();	

	 	

	 int	h	=	0;	

	 for	(char	c	:	val)	{	

	 	 h	=	31*h	+	c;	

	 }	

	 return	0x00FFFFFFFFL	&	h;	

	 }	

Fig. 2. X31 hash in Java code 

 SHA-1 is a currently popular cryptographic hash 
function which returns 160-bit value.  It is so popular and 
CPU-expensive that Intel supports its calculation with 
hardware [22].  In the situations where hash collisions are all 
to be avoided, SHA-1 is often used.  Due to its complex, the 
implementation is not shown here. 
 

3.2. Hash table size 

All hash tables have limited size and in fact, many are not 
even large unless they have to be.  Data could be rehashed if 
the volume is increased and a bigger hash table size is 
needed. 
 We use prime numbers for the table sizes which allow 
easy probing in open addressing, because any step length is a 
relative prime of the table size so that the open addressing 
can surely find an empty spot only if the number of items is 
smaller than or equal to the table size.  
 In reality the hash table size could exceed multiple 
trillion slots sometimes. However, no matter how large the 
hash table is, its size is still trivial compared to the value 
space of hash algorithms. X31 and Murmur return values of 
64 bits, while SHA-1 returns 160 bits.  In order to map from 
a much bigger value space into a smaller one, the 
randomness might need to be sacrificed, which is the 
motivation of us to investigate the performance of different 
hash algorithms.   
 

3.3. Key space 

Keys play an important role in the performance of hash 
tables as well.  If a hash algorithm could not always scatter 
hash values for adjacent key values, in the situations where 
keys are sequentially created, collisions might have large 
chance to happen.   
 In this study, we focus on random keys, which are often 
adopted in web applications.  A typical key generation 
algorithm in practice is UUID [23].  As UUID has a 
tremendous value space of fixed size, in this experiment we 

generate random keys by ourselves so that we can control its 
value space and thereafter the chance of clustering.  A 
primitive randomization utility (Apache Commons, [24]) is 
used.  
 

3.4. Collision solutions 

Both closed addressing and open addressing are tested. In 
open addressing, linear probing and a long-jump strategy are 
tested.  The formula to calculate probing step length in the 
long-jump strategy is as below: 
probingStepLength = hashValue % (hasTableSize -1) + 1 (1) 

This formula creates a probing step of dynamic length 
and has been seen in concrete hash table implementation.  
The trick is to only use prime table size so that any step 
length will guarantee that it is able to probe all slots in the 
table.  Table sizes that have been used in our experiments are 
listed in Table , from which we can see that using prime table 
sizes still enable us to roughly double table size along with 
data growth. 

 

3.5. Critiria:  number of memory accesses 

We do not measure hash table building time or lookup time 
in this experiment.  Our random key creation is CPU 
intensive and may take remarkably long time compared to 
memory lookup.  Since we test keys of different lengths, the 
portion of time dedicated to memory search is not a constant 
value so that it is unfair for us to directly compare them.  
Meanwhile, while we emulate hash tables of different sizes, 
the effect of high-speed cache improve memory search to 
different extents.  Moreover, modern multi-thread operating 
systems bring fluctuation into execution times.  Due to those 
considerations, we do not measure access time of hash table; 
instead, we chose a more objective and hardware-
independent metric: how many memory (cache included) 
accesses for one read or write.   
 

3.6. Process 

For different hash table sizes, keys of different lengths are 
randomly created, different collision solutions are used, and 
different numbers of items are filled into the hash table. 

All test settings are listed in Table : cross multiplication 
of all columns represents experiment configurations.  
Moreover, we run such configuration for keys of length 
3~15, exception for linear probing when table size is bigger 
than 3145739 when we found out the testing took many 
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minutes so that in reality nobody would consider it as a 
practical implementation. 

We wrote a Java program to simulate hash operations 
with such configurations and the source code is available at 
the personal website of one author (http://cicadida.com/ 
HashTesting.java). After we run our emulation program for a 
few days to fill into our database with data, we run SQL 
queries such as the sample shown in Fig. 3 to get statistical 
result. 

 
Table 1. Combinations of Test paramters 

Hash	
Algorithm	

Key	
length	

Collision	
Solution	

Table	
Size	

Load	
factor	

Read/	
write	

SHA‐1	

	

	

Murmur	

	

	

X31	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

Linked	

	

	

	

	

Linear	

probling	

	

	

	

	

Long	jump	

3079	

6151	

12289	

24593	

49157	

98317	

196613	

393241	

786433	

1572869	

3145739	

6291469	

12582917	

25165843	

5%	

10%	

15%	

…	

…	

…	

70%	

75%	

80%	

85%	

90%	

95%	

100%	

Read	

write	

 

 

Select	percentage,	max(maxConflict),	avg(maxConflict),	avg(ratio)	

from	hashTest		

where	hashAlgorithm=’murmur’	

	 and	conflictSolution=’Linked’	

	 and	stringLength=13	

	 and	size=786433	

group	by	percentage	

order	by	ratio;	

Fig. 3. Sample SQL statements executed to get statistics 

4. Experiment Result and Analysis 

Since the complete statistical table is huge, we could only 
present a representative part here which best shows our 
concern.  Specifically, without annotation, we will use data 
collected for Murmur as the representative for our analysis.   
 

4.1. Space utilization 

Space utilization for open addressing is simply the number 
of entries; but for separate chaining, while 95%*size entries 
are saved, there is still 39% free space left. That means we 
waste 39%*size memory with head records in the buckets 
implementation. We tried 100%*size entries and there are 

still about 37% empty buckets.  Trying 200%*size entries 
still left us about 13.5% free space; trying 300%*size entries 
still left 5% free space.  As fewer slots are used, some slots 
are occupied by multiple keys and therefore collision is 
unavoidable.  While unused space reduces along with 
growth of keys count, the number of collisions is more 
linearly proportional.  Space utilization of closed addressing 
is shown in Fig. 4. 
 

 

Fig. 4.  %Collisions is roughly portioned to %keys 

 

This observation helps us to understand the normal belief 
that a hash table should be enlarged when the load factor is 
0.7, when only about 60% of slots are occupied.  In other 
words, roughly (7-6)/7=14.3% keys have collisions. 

We observed that the space wasting may be slightly 
higher when hash table size is bigger, the difference is 
around 1%; nonetheless, we did not do statistical analysis 
since we just ran emulation a couple of times and 1% is not 
statistically significant.   

It seems that closed addressing would waste 37% space 
when the number of items is equal to the hash table size.  
This strongly suggests the use of separate chaining instead of 
separate chaining with list heads.  If open addressing is used, 
high space utilization will increase collision possibility, 
especially when the number of items is near to the table size.  
Linear probing should be generally avoided and might only 
be considered for the favor of cache locality.   

 

4.2. Collisions 

For closed addressing, collisions are related to space 
utilization in that a collision would miss an empty spot; it 
provides more information in that we can see the worst 
performance of the hash table. 
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For open addressing, for random jump probing, if we try 
95% and 100% size of entries when size=49157, from Table 

2 we can see clearly that when the amortized performance 
for hash table degraded 5 times, the worst performance 
deteriorated quickly: 283.7 times.  This analysis is 
theoretical and shows clearly that a fully loaded open 
addressing hash table is barely useful. 

 
Table 2: size=49157, Murmur, Linear probling, str Len=13 

#keys	 Amortized	collisions	 Max	collision	
95%	 2.17838	 155	

100%	 10.60608	 43973	

 

It is not a surprise along the big jump in the last 5% of 
writes because while the table is almost full some unlucky 
writes have to probe many times.  Linear probing 
deteriorates more quickly when hash table becomes full.  

As to collisions, linked hash table provides the most 
predictable worst cases, linear probing is intolerable, 
especially when the table gets full, and random jump probing 
performs average. 

 

4.3. Max collisions become worse as hash table sizes grow 

From Fig. 5, Fig. 6, and Fig. 7, we can see clearly that worst 
cases (max collisions) are getting worse along with the 
growth of hash tables.  This coincides with the fact there are 
always access time outliers in presence of large amount of 
data.  
 

 

Fig. 5. Average max conflict for Murmur, size=6,1511 

                                                           
1 Long jump curve does not monotonically increase because we ran 

separate emulations for each percentage; later we collected data along with 
one round of execution so that all later curves are monotonic. 

 

Fig. 6. Average max conflict for Murmur, size=786,433 

 

 

Fig. 7. Average max conflict for Murmur, size=100,663,319 

Based on the experiment result, it seems that linear 
probing is not a good choice when hash table becomes 
crowded and the normal load factor 0.7 of hash table is too 
large for open addressing for fast response with large amount 
of saved data. 

 

4.4. Max collision of open addressing 

In this section, collision is also used to depict the number of 
checks there are before the sought key is found. In other 
words, how many times of rehashing there would be before 
the target is reached. 

For open addressing, in general, we can see the worst 
cases get worse along with the growth of hash table size, 
which is reasonable because rare cases have bigger chance to 
happen.   

The other discovery is the consistent amortized collision 
ratios.  
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Fig. 8. Max collisions for Murmur, long jump, string length = 13 

 

Fig. 9. Amortized collision, Murmur, long jump, string length=13 
* all lines are overlapped  

We can see at load ratio 0.7 the worst case of collision is 
about 40 times, which may be fatal for real-time applications 
because we are very sure cache misses happen most of the 
time and 40 accesses of main memory will put the host 
thread in an inferior situation when competing with other 
threads that only access main memory a couple of times. 

 

 

Fig. 10. Max collisions for Murmur, linear probing, string 
length=13 

 

Fig. 11. Amortized collision, Murmur, linear probing, string 
length=13 

 
From figures 10-11, we can see that linear probing 

clearly demonstrates its fast deterioration when the hash 
table is filled up.  Table 33 shows that worst case of write 
can be large.  Table4 shows that 5% additional data will 
increase the amortized write count by 0.23 if load ratio is 
already 0.7.  Thereafter the amortized collision ratio of this 
5% data is: 

(1.1688 * 0.7 – 0.9299 * 0.65) / 0.05 = 4.2745 
While collision 4.3 times is negligible, the max collision 

times can be up to 156, which may be unacceptable. 

Table 3. Max collision, Murur, linear probing, string length=13 

	 196613	 786433	 3145739	 12582917	 25165843	
65%	 71	 66	 77	 110	 156	

70%	 84.5	 93	 133	 171	 156	

75%	 124.5	 153.5	 202	 222	 242	

Table 4: Amortized #write,  Murur, linear probing, str length=13 

	 196613	 786433	 3145739	 12582917	 25165843	
60%	 0.74	 0.7438	 0.75	 0.747	 0.75	

65%	 0.92	 0.9248	 0.928	 0.92587	 0.9299	

70%	 1.15	 1.15957	 1.1679	 1.163	 1.1688	

 

Such discoveries prompt partitioning a large hash table 
into a few smaller ones to avoid worse worst case. 

 

4.5. Hash table predictability  

From all of our above discussions, we can see that amortized 
access time for hash table is largely independent from table 
size; however, the worst cases get worse along with the 
growth of table size.  Such discovery has not been mentioned 
in existing literature. 
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4.6. Key length 

If key length is too small, there are surely duplicated 
randomly generated keys so that hash performance is lower 
than expected.  From Fig. 12, we can see that merely when 
key length reaches 5, the hash table performance would 
become stable.  Apache Commons is used to create random 
strings; under the hood a primitive randomization algorithm 
is used.   
 
 

 

Fig. 12. Collision ratio per string length, Murmur, linked, 
size=25165843 

 
We also observed that while key length is above or equal 

to 5, all three hash algorithms perform similarly.  It seems 
that if a key is long enough and thereafter randomness is 
plenty, there is no need to increase the length anymore.   

 

4.7. Better hash functions bring fewer collisions? 

From Fig. 13, we can see that a better hash function would 
reduce collisions only when keys themselves are neither too 
dense nor too sparse in the key space.  When key length is 3, 
there are only 623 distinct keys and it is doomed to be too 
many same keys in the experiment so that all hash function 
result in 0.99 collision ratio; (actually with load factor 0.95 
all hash functions performed similarly again for the same 
reason; constrained by limited space, no) when key is equal 
to or larger than 7, keys are so sparse that no hash function 
can further increase the randomness.   

We know log62(100663319)=4.464912, however, due to 
birthday effect, keys become really sparse only when their 
length reaches 7.  This observation shows the better hash 
function would help reduce collisions only when 
randomness of keys is in a middle range.  If there are many 

duplicated keys, no hash algorithm can help to distinguish 
them. On the other side, if keys are already scattered into a 
large space, mathematical quality of hash algorithms do not 
matter much as well.   

 
 

 

Fig. 13. Load=0.7, size=100663319 (*Murmur and SHA-1 are 
overlapped) 

4.8. Summary 

Based on the experiment, it seems that close addressing has 
better stability than open addressing when they are used in 
an on-line application with a large set of data. For close 
addressing, when the size of key space reach a certain level, 
bigger key space does not improve the performance of 
hashing. 

Other conclusions which could be made include: 

 Linear probing is not a really feasible variant in 
general. 

 One third of in-list space is wasted in close addressing 
when the load factor is 1.0 so that separate chains with 
head in list would waster 30% memory. 

 Better hash function works better for small key space 
where keys are not far from each so that avalanche 
effect can help distribute their index more evenly. 

 When key space is big enough and keys are random, 
there is no difference between different hash algorithms; 
although better hash algorithm can distribute hash value 
more evenly, folding it into a much smaller index space 
damages its performance. 

 Hash table performance is related to its size.  The 
bigger the size is, the larger the max memory access 
time is to solve a collision. 

 Space efficient 0.7 may be too large for time-critical 
applications, especially when the data size is large, 
when close addressing is used. 
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5. Conclusion and Future Work 

In this paper we have conducted an empirical study of hash 
table performances for a particular kind of software 
applications. The result demonstrates that closed addressing 
has better stability than open addressing when they are used 
in an on-line application with a large set of data. For closed 
addressing, when the size of key space reaches a certain 
level, bigger key space does not improve the performance of 
hashing. It seems that hash table performance is related to its 
size, and the bigger the size is, the larger the max memory 
access time is to solve a collision. 

This work would help programmers better understand 
why their system cannot achieve 100% consistency and 
select hash table products wisely even before they do 
benchmark tests.   

Our future work is to find a way to improve 
predictability of hash table having a large amount of data. 
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