

Comparison of Hash Table Performance with Open Addressing and Closed Addressing:
An Empirical Study

Dapeng Liu
Gradient X, 3100 Donald Douglas Loop North

Santa Monica, CA 90405, USA
Liodapeng@gmail.com

Shaochun Xu

Department of Computer Science, Algoma University, 1520 Queen Street East
Sault Ste Marie, ON, P6A2G4, Canada

simon.xu@algomau.ca

Abstract

In this paper, we conducted empirical experiments to study the performance of hashing with a large set of data and compared
the results of different collision approaches. The experiment results leaned more to closed addressing than to open addressing
and deemed linear probing impractical due to its low performance. Moreover, when items are randomly distributed with keys
in a large space, different hash algorithms might produce similar performance. Increasing randomness in keys does not help
hash table performance either and it seems that the load factor solely determines possibility of collision. These new
discoveries might help programmers to design software products using hash tables.

Keywords: hash table, open addressing, closed addressing, nosql, online advertising.

1. Introduction

Hash table [1] is a critical data structure which is used to
store a large amount of data and provides fast amortized
access. When two items with same hashing value, there is a
collision. There are different implementations to solve
collisions and reduce the possibility of collisions, such as
open addressing and closed addressing. Some hash variants,
such as Cuckoo [2], worked to improve access time even
more predictable. A few approaches [3] tried to reduce
collisions by using a family of multiple hash functions
instead of one. Some work tried to find out better hash
functions, such as SHA-1 [4]; while most of such effort is
used in cryptography. Most previous researches mainly

focused on the amortized access time, instead of
understanding the worst cases or finding quantitative
measurements. It seems necessary to study the performance
of hash functions so that we can make good choice for the
hash tables. On the other hand, most of existing research
work on hashing did not focus on a large amount of data.
Nowadays, it is not rare to work with multiple billion data
sets and large data sets are often partitioned into multiple
hash tables; which are not necessarily distributed hash tables.
 A lot of computer applications are expected to respond
fast while processing a large amount of requests which may
be continuous. Such applications are typical online ones,
including online search and online advertising.

International Journal of Networked and Distributed Computing, Vol. 3, No. 1 (January 2015), 60-68

Published by Atlantis Press
Copyright: the authors

60

Liu and Xu

 In this paper, we would like to choose on-line
applications to conduct some experiments with different
hashing approaches to make comparison. Such experiments
could help us to understand further the performance of open
addressing and closed addressing with a large set of data.
The experiment results might be useful for programmers in
making design decisions.
 The research questions of this work include:

 Would it be the case that open addressing and
closed addressing perform similarly when a large
set of data are involved?

 If open addressing and closed addressing have
different performance, when will they diverge
along with the increase of data?

 Would a better hash algorithm increase amortized
hash table access time? Or, in another word, what
factors might affect the hash table performance?

 For closed addressing, how does the size of the key
space affect the performance of hashing?

 This paper is organized as follows: Section 2 introduces
related work. The experiment motivation and setting are
given in Section 3. Section 4 describes experiment results
and provides analysis. Section 5 concludes the paper and
lists future work.

2. Related Work

Hash table [5] is an associative array that maps keys to hash
values and uses the hash values as the indexes of the array to
store the data. The core is a hash function that computes an
index of buckets in an array, from which the item can be
found. It has been believed that in many situations, hash
tables turn out to be more efficient than search trees or any
other lookup structures.
 There have been many researches on hashing. Robin
Hood Hashing [6] tied to equalize the length of probe
sequences by leaving the item with the longer probe
sequence in current probing position and move forward the
other one with shorter probe sequence in case of collision.
Cuckoo Hashing [7][8][9] used two hash tables and two
different hash functions respectively; each item, is either in
the first hash table or in the other one. If a new item has a
collision in the first hash table, the collided item is moved to
the second hash table using the second hash function. Items
are moved back and forth until the last collided item moves
to an empty location or a limit is reached. If the limit is
reached, new hash functions are chosen to rehash the tables.
It was reported that for tables that are a bit less than half full

and with carefully chosen universal hashing functions,
performance would be good.
 There are also some researches focusing on the quality of
hash function. A basic requirement is that the function
should provide a uniform distribution of hash values, which
may be evaluated empirically using statistical tests, e.g. a
Pearson's chi-squared test for discrete uniform distributions
[10][11]. Cryptographic hash functions, such Message
Digest Algorithm (MD, well-known example MD5) [12] and
Secure Hash Algorithm (SHA, representative SHA-1) [13],
are believed to provide good hash functions for any table
sizes.
 Hash table has recently been widely used in many
NoSQL products such as Memcached [14], Cassandra [15],
Redis [16], and Riak [17]. One common characteristic of
NoSQL products is that they can handle large data volume,
such as multiple billion rows, given enough hardware
capability. The popularity of these NoSQL products has
validated the effectiveness of hash table.
 With the growth of the key size of the items, a hash table
often needs to be rehashed with distribute keys into a bigger
space and some effort was taken to reduce the impact on
performance [18]. Due to limited system resources, large
data might have to be saved into multiple hash tables on
different computers. One specific such variant is distributed
hash table [19][20][21] which especially cares about the
distributed and unreliable environments.
 Although there are a lot of researches and applications on
hash table, further work on some directions are still needed.
For example, it is commonly believed that closing
addressing provides better predictability than open
addressing, but there are few works measuring their practical
performances. In addition, a lot of existing work did not test
their algorithms or approaches with large hash tables with
multiple million rows.

3. Experiment Design

It has been well known that there are two approaches
handling hash collision: open addressing and closed
addressing and the load factor is better to be controlled under
0.7. However, the preference has been rarely given to any
addressing and how hash table performance degrades along
with the increase of the load factor. In reality, better hash
functions are often sought to improve the worst case
performance of hash tables. Given the limited hash table
size and enormous value space of hash functions, it seems
that a better hash function might not be able to increase the
worst case performance of hash tables. Thereafter, we

Published by Atlantis Press
Copyright: the authors

61

Hash Table Performance with Open Addressing and Closed Addressing

designed a set of experiments to investigate the impact of
various factors on hash table performance.
 The purpose of the experiment is to compare the
performance of open addressing and closed addressing with
large data size along with various load factors and to see
whether there is any impact of the size of key space on the
performance of hashing. We also try to evaluate impact of
partitioning in hashing in which data are divided into
multiple hash tables.
 Since there are a large variety of software programs that
are using hashing in different ways to handle data of
different patterns, at first we want to summarize
characteristics of the applications that affect our choice of
data access and storage solutions. In this experiment, we
focused on online advertising application which has the
following characteristics:

 Fast response and vast throughput; each data access
has to completed in about 10 ms and there is no
pause time of the system to reorganize any data;
this means hashing has to be extremely reliable;

 There is no rest time so that hashing has to be
continuously reliable;

 Huge data volume, so that it is critical to be
memory-efficient;

 User ids are normally randomly created since there
is no precise way to keep track users; GUID is often
used; as a result, the key space is huge, keys are
sparse in the space, and there is little chance of key
collision;

 Nosql, no join, just discrete data; there is no
interrelationship between different user ids; so the
program performance is closely related to hashing
performance and data can be easily partitioned;

 We think such application scenarios most likely would
give challenges to hashing by calling for reliable and
consistent high performance. Choosing such applications for
the experiment might give insight on the performance of
hashing.

3.1. Hash algorithms

Hash algorithm is the core of hash tables and it is a common
effort to look for a better hash algorithm that could reduce
the collision possibility.
 In this experiment, we chose three representative hash
algorithms: SHA-1, which represents complex and best-
quality hash functions, X31, a fast and simple one, Murmur,
a popular and well-received tradeoff of the previous two.

The result of Murmur hash is an eight-byte (64-bit) long and
its calculation is shown in Figure 1:

Public static long murmurHash (String key) {

 byte[] data = key.getBytes ();

 ByteBuffer bb = ByteBuffer.wrap (data);

 LongBuffer lb = bb.asLongBuffer ();

 int len = key.length ();

 int seed = 42;

 long m = 0x00c6a4a7935bd1e995L;

 int r = 47;

 long h = seed ^ (len * m);

 for (int i=0; i < len / 8; i ++){

 long k = lb.get (i);

 k *= m;

 k ^= k >> r;

 k *= m;

 h ^= k;

 h *= m;

 }

 if (len % 8 != 0) {

 byte[] data2 = null;

 data2 = Arrays.copyOfRange(data, (len / 8) * 8,

len);

 switch(len & 7){

 case 7: h ^= ((long)data2[6]) << 48;

 case 6: h ^= ((long)data2[5]) << 40;

 case 5: h ^= ((long)data2[4]) << 32;

 case 4: h ^= ((long)data2[3]) << 24;

 case 3: h ^= ((long)data2[2]) << 16;

 case 2: h ^= ((long)data2[1]) << 8;

 case 1: h ^= ((long)data2[0]);

 h *= m;

 };

 }

 h ^= h >> r;

 h *= m;

 h ^= h >> r;

 return h;

}	

Fig. 1. Murmur hash in Java code

 Compared to more complex calculation of Murmur hash,
X31 is much simpler although it still returns a 64-bit value
(see Figure 2). Simple hash functions like X31 have been
commonly used in non-critical situations where the high
calculation speed is preferred. In reality, simple hash
functions often provide satisfactory performance.

Published by Atlantis Press
Copyright: the authors

62

Liu and Xu

public	static	long	stringHashCode(String	str)	{	

	 char	[]	val	=	str.toCharArray	();	

	 	

	 int	h	=	0;	

	 for	(char	c	:	val)	{	

	 	 h	=	31*h	+	c;	

	 }	

	 return	0x00FFFFFFFFL	&	h;	

	 }	

Fig. 2. X31 hash in Java code

 SHA-1 is a currently popular cryptographic hash
function which returns 160-bit value. It is so popular and
CPU-expensive that Intel supports its calculation with
hardware [22]. In the situations where hash collisions are all
to be avoided, SHA-1 is often used. Due to its complex, the
implementation is not shown here.

3.2. Hash table size

All hash tables have limited size and in fact, many are not
even large unless they have to be. Data could be rehashed if
the volume is increased and a bigger hash table size is
needed.
 We use prime numbers for the table sizes which allow
easy probing in open addressing, because any step length is a
relative prime of the table size so that the open addressing
can surely find an empty spot only if the number of items is
smaller than or equal to the table size.
 In reality the hash table size could exceed multiple
trillion slots sometimes. However, no matter how large the
hash table is, its size is still trivial compared to the value
space of hash algorithms. X31 and Murmur return values of
64 bits, while SHA-1 returns 160 bits. In order to map from
a much bigger value space into a smaller one, the
randomness might need to be sacrificed, which is the
motivation of us to investigate the performance of different
hash algorithms.

3.3. Key space

Keys play an important role in the performance of hash
tables as well. If a hash algorithm could not always scatter
hash values for adjacent key values, in the situations where
keys are sequentially created, collisions might have large
chance to happen.
 In this study, we focus on random keys, which are often
adopted in web applications. A typical key generation
algorithm in practice is UUID [23]. As UUID has a
tremendous value space of fixed size, in this experiment we

generate random keys by ourselves so that we can control its
value space and thereafter the chance of clustering. A
primitive randomization utility (Apache Commons, [24]) is
used.

3.4. Collision solutions

Both closed addressing and open addressing are tested. In
open addressing, linear probing and a long-jump strategy are
tested. The formula to calculate probing step length in the
long-jump strategy is as below:
probingStepLength = hashValue % (hasTableSize -1) + 1 (1)

This formula creates a probing step of dynamic length
and has been seen in concrete hash table implementation.
The trick is to only use prime table size so that any step
length will guarantee that it is able to probe all slots in the
table. Table sizes that have been used in our experiments are
listed in Table , from which we can see that using prime table
sizes still enable us to roughly double table size along with
data growth.

3.5. Critiria: number of memory accesses

We do not measure hash table building time or lookup time
in this experiment. Our random key creation is CPU
intensive and may take remarkably long time compared to
memory lookup. Since we test keys of different lengths, the
portion of time dedicated to memory search is not a constant
value so that it is unfair for us to directly compare them.
Meanwhile, while we emulate hash tables of different sizes,
the effect of high-speed cache improve memory search to
different extents. Moreover, modern multi-thread operating
systems bring fluctuation into execution times. Due to those
considerations, we do not measure access time of hash table;
instead, we chose a more objective and hardware-
independent metric: how many memory (cache included)
accesses for one read or write.

3.6. Process

For different hash table sizes, keys of different lengths are
randomly created, different collision solutions are used, and
different numbers of items are filled into the hash table.

All test settings are listed in Table : cross multiplication
of all columns represents experiment configurations.
Moreover, we run such configuration for keys of length
3~15, exception for linear probing when table size is bigger
than 3145739 when we found out the testing took many

Published by Atlantis Press
Copyright: the authors

63

Hash Table Performance with Open Addressing and Closed Addressing

minutes so that in reality nobody would consider it as a
practical implementation.

We wrote a Java program to simulate hash operations
with such configurations and the source code is available at
the personal website of one author (http://cicadida.com/
HashTesting.java). After we run our emulation program for a
few days to fill into our database with data, we run SQL
queries such as the sample shown in Fig. 3 to get statistical
result.

Table 1. Combinations of Test paramters

Hash	
Algorithm	

Key	
length	

Collision	
Solution	

Table	
Size	

Load	
factor	

Read/	
write	

SHA‐1	

	

	

Murmur	

	

	

X31	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

Linked	

	

	

	

	

Linear	

probling	

	

	

	

	

Long	jump	

3079	

6151	

12289	

24593	

49157	

98317	

196613	

393241	

786433	

1572869	

3145739	

6291469	

12582917	

25165843	

5%	

10%	

15%	

…	

…	

…	

70%	

75%	

80%	

85%	

90%	

95%	

100%	

Read	

write	

Select	percentage,	max(maxConflict),	avg(maxConflict),	avg(ratio)	

from	hashTest		

where	hashAlgorithm=’murmur’	

	 and	conflictSolution=’Linked’	

	 and	stringLength=13	

	 and	size=786433	

group	by	percentage	

order	by	ratio;	

Fig. 3. Sample SQL statements executed to get statistics

4. Experiment Result and Analysis

Since the complete statistical table is huge, we could only
present a representative part here which best shows our
concern. Specifically, without annotation, we will use data
collected for Murmur as the representative for our analysis.

4.1. Space utilization

Space utilization for open addressing is simply the number
of entries; but for separate chaining, while 95%*size entries
are saved, there is still 39% free space left. That means we
waste 39%*size memory with head records in the buckets
implementation. We tried 100%*size entries and there are

still about 37% empty buckets. Trying 200%*size entries
still left us about 13.5% free space; trying 300%*size entries
still left 5% free space. As fewer slots are used, some slots
are occupied by multiple keys and therefore collision is
unavoidable. While unused space reduces along with
growth of keys count, the number of collisions is more
linearly proportional. Space utilization of closed addressing
is shown in Fig. 4.

Fig. 4. %Collisions is roughly portioned to %keys

This observation helps us to understand the normal belief
that a hash table should be enlarged when the load factor is
0.7, when only about 60% of slots are occupied. In other
words, roughly (7-6)/7=14.3% keys have collisions.

We observed that the space wasting may be slightly
higher when hash table size is bigger, the difference is
around 1%; nonetheless, we did not do statistical analysis
since we just ran emulation a couple of times and 1% is not
statistically significant.

It seems that closed addressing would waste 37% space
when the number of items is equal to the hash table size.
This strongly suggests the use of separate chaining instead of
separate chaining with list heads. If open addressing is used,
high space utilization will increase collision possibility,
especially when the number of items is near to the table size.
Linear probing should be generally avoided and might only
be considered for the favor of cache locality.

4.2. Collisions

For closed addressing, collisions are related to space
utilization in that a collision would miss an empty spot; it
provides more information in that we can see the worst
performance of the hash table.

Published by Atlantis Press
Copyright: the authors

64

Liu and Xu

For open addressing, for random jump probing, if we try
95% and 100% size of entries when size=49157, from Table

2 we can see clearly that when the amortized performance
for hash table degraded 5 times, the worst performance
deteriorated quickly: 283.7 times. This analysis is
theoretical and shows clearly that a fully loaded open
addressing hash table is barely useful.

Table 2: size=49157, Murmur, Linear probling, str Len=13

#keys	 Amortized	collisions	 Max	collision	
95%	 2.17838	 155	

100%	 10.60608	 43973	

It is not a surprise along the big jump in the last 5% of
writes because while the table is almost full some unlucky
writes have to probe many times. Linear probing
deteriorates more quickly when hash table becomes full.

As to collisions, linked hash table provides the most
predictable worst cases, linear probing is intolerable,
especially when the table gets full, and random jump probing
performs average.

4.3. Max collisions become worse as hash table sizes grow

From Fig. 5, Fig. 6, and Fig. 7, we can see clearly that worst
cases (max collisions) are getting worse along with the
growth of hash tables. This coincides with the fact there are
always access time outliers in presence of large amount of
data.

Fig. 5. Average max conflict for Murmur, size=6,1511

1 Long jump curve does not monotonically increase because we ran

separate emulations for each percentage; later we collected data along with
one round of execution so that all later curves are monotonic.

Fig. 6. Average max conflict for Murmur, size=786,433

Fig. 7. Average max conflict for Murmur, size=100,663,319

Based on the experiment result, it seems that linear
probing is not a good choice when hash table becomes
crowded and the normal load factor 0.7 of hash table is too
large for open addressing for fast response with large amount
of saved data.

4.4. Max collision of open addressing

In this section, collision is also used to depict the number of
checks there are before the sought key is found. In other
words, how many times of rehashing there would be before
the target is reached.

For open addressing, in general, we can see the worst
cases get worse along with the growth of hash table size,
which is reasonable because rare cases have bigger chance to
happen.

The other discovery is the consistent amortized collision
ratios.

Published by Atlantis Press
Copyright: the authors

65

Hash Table Performance with Open Addressing and Closed Addressing

Fig. 8. Max collisions for Murmur, long jump, string length = 13

Fig. 9. Amortized collision, Murmur, long jump, string length=13
* all lines are overlapped

We can see at load ratio 0.7 the worst case of collision is
about 40 times, which may be fatal for real-time applications
because we are very sure cache misses happen most of the
time and 40 accesses of main memory will put the host
thread in an inferior situation when competing with other
threads that only access main memory a couple of times.

Fig. 10. Max collisions for Murmur, linear probing, string
length=13

Fig. 11. Amortized collision, Murmur, linear probing, string
length=13

From figures 10-11, we can see that linear probing

clearly demonstrates its fast deterioration when the hash
table is filled up. Table 33 shows that worst case of write
can be large. Table4 shows that 5% additional data will
increase the amortized write count by 0.23 if load ratio is
already 0.7. Thereafter the amortized collision ratio of this
5% data is:

(1.1688 * 0.7 – 0.9299 * 0.65) / 0.05 = 4.2745
While collision 4.3 times is negligible, the max collision

times can be up to 156, which may be unacceptable.

Table 3. Max collision, Murur, linear probing, string length=13

	 196613	 786433	 3145739	 12582917	 25165843	
65%	 71	 66	 77	 110	 156	

70%	 84.5	 93	 133	 171	 156	

75%	 124.5	 153.5	 202	 222	 242	

Table 4: Amortized #write, Murur, linear probing, str length=13

	 196613	 786433	 3145739	 12582917	 25165843	
60%	 0.74	 0.7438	 0.75	 0.747	 0.75	

65%	 0.92	 0.9248	 0.928	 0.92587	 0.9299	

70%	 1.15	 1.15957	 1.1679	 1.163	 1.1688	

Such discoveries prompt partitioning a large hash table
into a few smaller ones to avoid worse worst case.

4.5. Hash table predictability

From all of our above discussions, we can see that amortized
access time for hash table is largely independent from table
size; however, the worst cases get worse along with the
growth of table size. Such discovery has not been mentioned
in existing literature.

Published by Atlantis Press
Copyright: the authors

66

Liu and Xu

4.6. Key length

If key length is too small, there are surely duplicated
randomly generated keys so that hash performance is lower
than expected. From Fig. 12, we can see that merely when
key length reaches 5, the hash table performance would
become stable. Apache Commons is used to create random
strings; under the hood a primitive randomization algorithm
is used.

Fig. 12. Collision ratio per string length, Murmur, linked,
size=25165843

We also observed that while key length is above or equal

to 5, all three hash algorithms perform similarly. It seems
that if a key is long enough and thereafter randomness is
plenty, there is no need to increase the length anymore.

4.7. Better hash functions bring fewer collisions?

From Fig. 13, we can see that a better hash function would
reduce collisions only when keys themselves are neither too
dense nor too sparse in the key space. When key length is 3,
there are only 623 distinct keys and it is doomed to be too
many same keys in the experiment so that all hash function
result in 0.99 collision ratio; (actually with load factor 0.95
all hash functions performed similarly again for the same
reason; constrained by limited space, no) when key is equal
to or larger than 7, keys are so sparse that no hash function
can further increase the randomness.

We know log62(100663319)=4.464912, however, due to
birthday effect, keys become really sparse only when their
length reaches 7. This observation shows the better hash
function would help reduce collisions only when
randomness of keys is in a middle range. If there are many

duplicated keys, no hash algorithm can help to distinguish
them. On the other side, if keys are already scattered into a
large space, mathematical quality of hash algorithms do not
matter much as well.

Fig. 13. Load=0.7, size=100663319 (*Murmur and SHA-1 are
overlapped)

4.8. Summary

Based on the experiment, it seems that close addressing has
better stability than open addressing when they are used in
an on-line application with a large set of data. For close
addressing, when the size of key space reach a certain level,
bigger key space does not improve the performance of
hashing.

Other conclusions which could be made include:

 Linear probing is not a really feasible variant in
general.

 One third of in-list space is wasted in close addressing
when the load factor is 1.0 so that separate chains with
head in list would waster 30% memory.

 Better hash function works better for small key space
where keys are not far from each so that avalanche
effect can help distribute their index more evenly.

 When key space is big enough and keys are random,
there is no difference between different hash algorithms;
although better hash algorithm can distribute hash value
more evenly, folding it into a much smaller index space
damages its performance.

 Hash table performance is related to its size. The
bigger the size is, the larger the max memory access
time is to solve a collision.

 Space efficient 0.7 may be too large for time-critical
applications, especially when the data size is large,
when close addressing is used.

Published by Atlantis Press
Copyright: the authors

67

Hash Table Performance with Open Addressing and Closed Addressing

5. Conclusion and Future Work

In this paper we have conducted an empirical study of hash
table performances for a particular kind of software
applications. The result demonstrates that closed addressing
has better stability than open addressing when they are used
in an on-line application with a large set of data. For closed
addressing, when the size of key space reaches a certain
level, bigger key space does not improve the performance of
hashing. It seems that hash table performance is related to its
size, and the bigger the size is, the larger the max memory
access time is to solve a collision.

This work would help programmers better understand
why their system cannot achieve 100% consistency and
select hash table products wisely even before they do
benchmark tests.

Our future work is to find a way to improve
predictability of hash table having a large amount of data.

6. Acknowledgments

Shaochun Xu, a faculty member of Algoma University,
would like to acknowledge the support of Algoma
University Travel and Research Fund, and the Oversea
Expert Grant provided by Changsha University, China.

7. References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Third edition. The MIT Press,
2009.

[2] R. Pagh, N. M. Bldg, D.-A. C, and F. F. Rodler, Cuckoo
Hashing. 2001.

[3] M. Thorup, “Even strongly universal hashing is pretty fast,”
in Proceedings of the eleventh annual ACM-SIAM symposium
on Discrete algorithms, Philadelphia, PA, USA, 2000, pp.
496–497.

[4] H. Feistel, “Cryptography and Computer Privacy,” Scientific
American, vol. 228, no. 5, pp. 15–23, May 1973.

[5] A. V. Aho, J. D. Ullman, and J. E. Hopcroft, Data Structures
and Algorithms, 1st ed. Addison-Wesley, 1983.

[6] P. Celis, P.-A. Larson, and J. I. Munro, “Robin hood
hashing,” in , 26th Annual Symposium on Foundations of
Computer Science, 1985, 1985, pp. 281–288.

[7] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Journal of
Algorithms, 2001, p. 2004.

[8] M. Drmota and R. Kutzelnigg, “A precise analysis of Cuckoo
hashing,” ACM Trans. Algorithms, vol. 8, no. 2, pp. 11:1–
11:36, Apr. 2012.

[9] L. Devroye and P. Morin, “Cuckoo Hashing: Further
Analysis,” Information Processing Letters, vol. 86, p. 2003,
2001.

[10] K. Pearson, On the Criterion that a Given System of
Deviations from the Probable in the Case of a Correlated
System of Variables is Such that it Can be Reasonably
Supposed to Have Arisen from Random Sampling. 1900.

[11] R. L. Plackett, “Karl Pearson and the Chi-Squared Test,”
International Statistical Review / Revue Internationale de
Statistique, vol. 51, no. 1, p. 59, Apr. 1983.

[12] R. Rivest, “The MD5 Message-Digest Algorithm.” [Online].
Available: http://tools.ietf.org/html/rfc1321. [Accessed: 17-
Apr-2013].

[13] Federal Information Processing Standards Publication 180-1,
SECURE HASH STANDARD. 1995.

[14] “Memcached,” Wikipedia, the free encyclopedia. 13-Apr-
2013.

[15] “Apache Cassandra,” Wikipedia, the free encyclopedia. 16-
Apr-2013.

[16] “Redis,” Wikipedia, the free encyclopedia. 15-Apr-2013.

[17] “Riak.” [Online]. Available: http://basho.com/riak/.
[Accessed: 17-Apr-2013].

[18] Q. Ye, D. Parson, and L. Cheng, “Hybrid open hash tables for
network processors,” in 2005 Workshop on High
Performance Switching and Routing, 2005. HPSR, 2005, pp.
113–117.

[19] J. Li, J. Stribling, T. Gil, R. Morris, and F. Kaashoek,
“Comparing the performance of distributed hash tables under
churn,” presented at the Proc. of the 3rd International
Workshop on Peer-to-Peer Systems, 2004.

[20] M. Naor and U. Wieder, “A Simple Fault Tolerant
Distributed Hash Table,” in In Second International
Workshop on Peer-to-Peer Systems, 2003, pp. 88–97.

[21] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood,
“Fast hash table lookup using extended Bloom filter: an aid to
network processing,” in In ACM SIGCOMM, 2005, pp. 181–
192.

[22] “Intel® SHA Extensions.” Accessed May 18, 2014.
https://software.intel.com/en-us/articles/intel-sha-extensions.

[23] Leach, Paul J., Michael Mealling, and Rich Salz. “A
Universally Unique IDentifier (UUID) URN Namespace.”
Accessed May 19, 2014. http://tools.ietf.org/html/rfc4122.

[24] “Apache Commons - Apache Commons.” Accessed June 8,
2014. http://commons.apache.org/.

Published by Atlantis Press
Copyright: the authors

68

