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Abstract 

In this paper, explicit expressions and some recurrence relations are derived for marginal and 

joint moment generating functions of generalized order statistics from extended type II 

generalized logistic distribution. Further the results are deduced for moments of −k th record 

values and ordinary order statistics. 
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1 Introduction 
A random variable X  is said to have extended type II generalized logistic distribution if its 

probability density function )( pdf  is of the form 
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and the corresponding survival function  is 
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where 

 )(1)( xFxF −= . 

For more details on this distribution and its application one may refer to Balakrishnan and 

Leung [4]. 

The logistic distribution plays an important role in growth curve have made it one of the 

many important statistical distributions. The shape of the logistic distribution that is similar to 

that of the normal distribution makes it simpler and also profitable on suitable occasions to 

replace the normal by the logistic distribution with negligible errors in the respective theories. 

Kamps [6] introduced and extensively studied the generalized order statistics )(gos . The 

order statistics, sequential order statistics, Stigler’s order statistics, record values are special 

cases of gos . Suppose ),,,(,),,,,1( kmnnXkmnX   are n   gos  from an absolutely 

continuous distribution function )(df  )(xF  with the corresponding pdf  )(xf . Their joint 

pdf  is  
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for  )1()0( 1

21
1 −− >≤≤≤<+ FxxxF n , 1−≥m , 0)1)(( >+−+= mrnkrγ , 

1,,2,1 −= nr  , 1≥k  and n  is a positive integer. 

 
Choosing the parameters appropriately, models such as ordinary order statistics 

1( +−= iniγ ; ni ,,2,1 = , i.e. 0121 ==== −nmmm  , )1=k , −k th record values 

ki =γ(  i.e. ),1121 Nkmmm n ∈−==== − , sequential order statistics ii in αγ )1(( +−= ; 
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)0,,, 21 >nααα  , order statistics with non-integral sample size 1( +−= ii αγ ; )0>α , 

Pfeifer’s record values ii βγ =( ; )0,,, 21 >nβββ   and progressive type II censored order 

statistics ),( NkNmi ∈∈ are obtained (Kamps [6], Kamps and Cramer [7]). 

The marginal pdf  of −r th gos , ),,,( kmnrX , is 
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 and the joint pdf  of ),,,( kmnrX and ),,,( kmnsX , nsr ≤<≤1 , is 
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and 

 )0()()( mmm hxhxg −= , )1,0[∈x . 

Recurrence relations are interesting in their own right. They are useful in reducing the number 

of operations necessary to obtain a general form for the function under consideration. 

Furthermore, they are used in characterizing distributions, which in important area, permitting 

the identification of population distribution from the properties of the sample. 

Ahsanullah and Raqab [1], Raqab and Ahsanullah [14, 15] have established recurrence 

relations for moment generating functions of record values from Pareto and Gumble, power 

function and extreme value distributions.  

Recurrence relations for marginal and joint moment generating functions of gos  from power 

function distribution and Erlang-truncated exponential distribution are derived by Saran and 

Pandey [16] and Kulshrestha et al. [8] respectively. Saran and Pandey [17] and Kumar [10, 

11, 12] have established recurrence relations for marginal and joint moment generating 

functions of lower generalized order statistics from power function, generalized logistic, 
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Marshall-Olkin extended logistic and extended type I generalized logistic distribution 

respectively. Al-Hussaini et al. [2, 3] have established recurrence relations for conditional and 

joint moment generating functions of gos  based on mixed population, respectively. Kumar 

[9] have established explicit expressions and some recurrence relations for moment 

generating function of record values from generalized logistic distribution. 

In the present study, we establish exact expressions and some recurrence relations for 

marginal and joint moment generating functions of gos  from extended type II 

generalized logistic distribution. Results for order statistics and record values are 

deduced as special cases. 

2.  Relations for marginal moment generating function 

Note that for extended type II generalized logistic distribution defined in (1.1) 

 
 )()1()( xfexF x−+=α .                                (2.1) 

 
The relation in (2.1) will be exploited in this paper to derive exact expressions and some 

recurrence relations for the moment generating function of gos  from the extended type II 

generalized logistic distribution. 

Let us denote the marginal moment generating functions of ),,,( kmnrX by )(),,,( tM kmnrX  

and its −j th derivative by )()(
),,,( tM j

kmnrX . 

We shall first establish some basic results which may be helpful in proving the main result. 

Lemma 2.1: For the extended type II generalized logistic distribution as given in (1.1) and 

any non-negative and finite integers a  and b  
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Proof:   From (2.3), we have 
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Making the substitution α/1)]([ xFz = , (2.4) reduces to 
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and hence the result given in (2.2). 
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Lemma 2.2: Let ),( baI  be as given in (2.3), where 0≥a  and 0≥b are integers. If 

1−≠m  

 

 )0),1(()1(
)1(

1),(
0

++







−

+
= ∑

=
muaI

u
b

m
baI

b

u

u
b

                                                (2.5) 

    )1,)1)1((()1(
)1( 0

+−+++







−

+
= ∑

=
ttumaB

u
b

m

b

u

u
b αα , 0≠t ,                    (2.6) 

 
if  1−=m  

    )1,()1(),( 1 +
∂

∂
−= + tBbaI

b

b
bb ν

ν
α ,                                                               (2.7) 

where 0)1( >−+= taαν  and ),( baB , 0, >ba  is the beta function. 
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Making use of Lemma 2.1, we establish the result given in (2.6). 

When 1−=m  we have that 
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By substitution α/1)]([ xFz = , (2.8), we get 
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where ),( baB , 0, >ba  is the beta function  )()( xkψ  is the −k th derivative of 
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=ψ ,  ,2,1,0 −−≠x  which is a digamma function. The result given 

in (2.7) is proved, in view of result (a).  

 
Theorem 2.1: For extended type II generalized logistic distribution as given in (1.1) and for 

nr ≤≤1 , ,2,1=k , 1−≠m  
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if  1−=m  
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where )1,1( −− rI rγ ,  )1,1( −− rkI  are as defined in (2.3). Using the result (b) recursively, 

we can obtain the moments of any value of  r .  

 
Proof:    From (1.4), we have 
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and hence the result given in (2.12). Making use of (2.6) in (2.9), we establish the result given 

in (2.10). 

When  1−=m , we have that 
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and hence the result given in (2.11). Making use of (2.7) in (2.11), we establish the result 

given in (2.12). 

Published by Atlantis Press 
Copyright: the authors 

278



Special cases 

i) Putting 0=m , 1=k  in (2.10), the explicit formula for marginal moment generating 

function of order statistics from the extended type II generalized logistic distribution can be 

obtained as 
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ii) Setting 1=k  in (2.12), we get the explicit expression for marginal moment generating 

function of upper k  record values from extended type II generalized logistic distribution can 

be obtained as 
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A recurrence relation for marginal moment generating function for gos  from df  (1.2) can 

be obtained in the following theorem. 

Theorem 2.2:   For the distribution given in (1.1) and for nr ≤≤2 , 2≥n  and 2,1=k  
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Proof:   From (1.4), we have 
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Integrating by parts treating )()]([ 1 xfxF r−γ  for integration and rest of the integrand for 

differentiation, we get 
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the constant of integration vanishes since the integral considered in (2.14) is a definite 

integral. On using (2.1), we obtain 
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Differentiating both the sides of (2.15) j  times with respect to t , we get 
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The recurrence relation in equation (2.13) is derived simply by rewriting the above equation. 

By differentiating both sides of equation (2.13) with respect to t  and then setting 0=t , we 

obtain the recurrence relations for moments of gos  from extended type II generalized logistic 

distribution in the form 
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Remark 2.1: Putting 0=m , 1=k  in (2.13) and (2.16), we can get the relations for 

marginal moment generating function of order statistics for extended type II generalized 

logistic distribution in the form 
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Remark 2.2: Setting 1−=m  and 1≥k , in (2.13) and (2.16), relations for record values 

can be obtained as 
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3. Relations for joint moment generating function 
Before coming to the main results we shall prove the following Lemmas. 

Lemma 3.1 For the extended type II generalized logistic distribution as given in (1.1) and 

non-negative integers a , b and c  
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On substituting the above expression of )(xG  in (3.3), we find that 
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Again by setting α/1)]([ xFw =  in (3.5) and simplifying the resulting expression, we derive 

the relation given in (3.1). 

Lemma 3.2: Let ),,( cbaI be as given in (3.2) where 0≥a , 0≥b  and 0≥c  are integers. 

If  1−≠m  
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where 12)1( ttqc −−++= αν  and 12 +++= tupφ . 

 
Proof:    When 1−≠m , we have  
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Making use of the Lemma 3.1, we established the result given in (3.7). 

When 1−=m , we have 
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On substituting the above expression of )(xI  in (3.9), we find that 
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Again by setting α/1)]([ xFw =  in (3.10) and simplifying the resulting expression, we derive 

the relation given in (3.8). 
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if  1−=m  
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Proof    From (1.3), we have  
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On expanding  ))((1 xFg r

m
−  binomially in (3.15) and simplifying the resulting expression, we 

have the result given in (3.11). Making use of (3.7) in (3.11), we establish the relation given 

in (3.12). 

When 1−=m , we have that  

1
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)()]([))](log())([log( 11 −−−−× . 

Making use of (3.8) in (3.13), we establish the relation given in (3.14). 

Special cases 

i) Putting 0=m , 1=k  in (3.12), the explicit formula for joint moment generating function 

of order statistics for the extended type II generalized logistic distribution can be obtained as 
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where 
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ii) Setting 1=k  in (3.14), we deduce the explicit expression for joint moment generating 

function of upper  record value for extended type II generalized logistic distribution (3.8) in 

the form 
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Making use of (2.1), we can derive the recurrence relations for joint moment generating 

function of gos  from (1.5). 

Theorem 3.2:    For the distribution given in (1.1) and for nsr ≤<≤1 , 2≥n  and 

,2,1=k  
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Proof:    Using (1.5), the joint moment generating function of ),,,( kmnrX  and ),,,( kmnsX  

is given by 
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where 
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Solving the integral in )(xI  by parts and substituting the resulting expression in (3.17), we get 
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the constant of integration vanishes since the integral in )(xI  is a definite integral. On using 

the relation (2.1), we obtain 

 ),(),( 21),,,1(),,,,(21),,,(),,,,( ttMttM kmnsXkmnrXkmnsXkmnrX −=  

    )}1,(),({ 21),,,(),,,,(21),,,(),,,,(
2 −++ ttMttM

t
kmnsXkmnrXkmnsXkmnrX

sαγ
         (3.18) 

Differentiating both the sides of (3.18) i  times with respect to 1t  and then j  times with 

respect to 2t , we get 
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which, when rewritten gives the recurrence relation in (3.16). 

One can also note that Theorem 2.1 can be deduced from Theorem 3.1 by letting 1t  tends to 

zero. 

By differentiating both sides of equation (3.16) with respect to 21, tt  and then setting 

021 == tt , we obtain the recurrence relations for product moments of gos  from extended 

type II generalized logistic distribution in the form 
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s
φ

αγ
++ −     (3.19)

 

where 

 yji eyxyx −−= 1),(φ . 

Remark 3.1:  Putting 0=m , 1=k  in (3.16) and (3.19), we obtain the recurrence relations 

for joint moment generating function and moments of order statistics for extended type II 

generalized logistic distribution as 
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and  

 )]([][
)1(

][][ :,
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Remark 3.2: Substituting 1−=m  and 1≥k , in (3.16) and (3.19), we get recurrence 

relation for joint moment generating function and product moments  of upper k  record values 

for extended type II generalized logistic distribution. 
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