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Most of statistical analysis for longitudinal data are based on normality assumption for the continuous response
of interest which might be violated in some practical areas due to skewed data which possibly contain excess
zeros. Some authors have proposed frequentist and Bayesian approaches to model semicontinuous data using a
zero-inflated log-normal model which do not consider the problem of incomplete responses which is an almost
inevitable complication in drawing inferences for follow up studies. In this article, we will propose a Mixed
effect zero inflated log-normal model along with a possibly non-ignorable dropout mechanism by utilizing a
practical Bayesian approach for parameter estimation. To account for the possibility of non-ignorable dropout
we will use a shared-parameter framework where the outcome and the missingness models are connected by
means of common latent variables or random effects. The approach will be illustrated by analyzing a real data
set from a longitudinal study for the comparison of two oral treatments for toenail dermatophyte onychomycosis
in which the outcome of interest present a typical example of log-normal data with excess zeros. These data
have been analyzed by many researchers with the normality assumption for the continuous response of interest
which cannot be justified based on the descriptive aspects of the data at hand and the zero-inflated log-normal
assumption leads to the better goodness of fit results
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1. Introduction

A growing number of researches in public health, medicine, social sciences and economic surveys
are performed by means of longitudinal studies that repeatedly measure the outcome of interest over
a period of time. Most of statistical analyses for longitudinal data are based on normality assump-
tion for the continuous response of interest which might be violated in some practical areas due to
semicontinuous outcomes. A random variable is referred to as semicontinuous when it has a proba-
bility mass at a specific point value which is often zero, but the remaining values which are mostly
positive follow a continuous distribution. The two main approaches for analyzing cross-sectional
semicontinuous data are the Tobit model and the two-part model proposed by [22] and [8], respec-
tively. Later, [5], [16] and [2] extended the two-part model of [8] for the analysis of semicontinuous
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longitudinal data. Also [14] and [1] developed an estimating equations approach for two-part mod-
els with application to clustered data. Recently, [12] has also presented a hierarchical zero-inflated
log-normal model for repeated measurements. Compared with the substantial literature on Maxi-
mum Likelihood estimation approach for the data with semicontinuous outcomes, few authors have
studied the Bayesian approach for modelling these kinds of data. Among them [25] developed a
Bayesian two-part model for the analysis of health care data. Also, [19] proposed a hierarchical
Bayesian approach to analyze a multivariate two-part model. Later, [9] proposed a flexible class of
zero-inflated Bayesian models in a longitudinal setting.

All the above literature on analyzing cross-sectional and longitudinal semicontinuous data has
been proposed for the case of complete vector of observed responses. However, an almost inevitable
complication in drawing inferences for follow up studies is the subject’s attrition from the study pre-
maturely which is known as dropout. In most of the applications, researchers perform a complete
case analysis with the ignorability assumption for the dropout mechanism which might be mislead-
ing if the missing mechanism has been generated from a non-random process. Actually, in this paper
we want to propose a practical Bayesian approach to make inference for incomplete semicontinuous
longitudinal data sets.

The dropout or missing data process might be generated from three different mechanisms which
should be considered in the data modelling step. The missing process is said to be completely at ran-
dom (MCAR) if the missingness is wholly unrelated to either the observed or unobserved response
variables. If the dropout process is independent of the unobserved data, conditional on the observed
ones, the mechanism is known as at random (MAR). If both MCAR and MAR are not valid which
means that the dropout depends on the value of the missing responses or on other unobservables
even after conditioning on observed data the dropout mechanism is not at random (MNAR). The
MCAR and MAR assumptions lead to the ignorable models, which allow valid inferences about
parameters to be based on the observed part of likelihood or the posterior function without the
need for an explicit dropout model, provided the distinctness of the parameter spaces of the miss-
ing mechanism and the response models (and also independence of their prior distributions in the
Bayesian approach).

Models for incomplete data are often divided into three different frameworks according to the
different factorizations of the joint distribution of the responses and the missingness or dropout pro-
cess. If the joint distribution is factorized as the conditional distribution of the missingness process
given the response variable and the marginal distribution of the response variable, the approach is
called selection model (SeM). In the second approach known as pattern mixture model (PMM), the
factorization of the joint distribution takes place in the reverse form. Finally, in the third framework
it is assumed that the response variable and the missingness process are conditionally independent
given a set of shared latent variables, e.g., random effects which are known as shared-parameter
model (SPM) ( [13] and [7]).

In this article we will propose a class of Bayesian two-part models for incomplete semicontin-
uous longitudinal data with the possibility of nonrandom dropouts. Our proposed model includes
the nonrandom dropout process in a shared parameter framework assuming shared random effects
between the two parts of the response model and the dropout mechanism. The proposed model will
be applied for analyzing a well known longitudinal data set for the comparison of two oral treat-
ments for toenail dermatophyte onychomycosis. The longitudinal outcome of interest in these data
presents a typical example of skewed data with excess zeros. Although these data have been ana-
lyzed by many researchers with the normality assumption for the continuous response of interest but
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this assumption cannot be justified based on the descriptive aspects of the data at hand and it will
be shown that the zero-inflated log-normal assumption leads to the better goodness of fit results.

The remainder of the paper is organized as follows. In Section 2, the Bayesian SPM model
with possibility of MNAR outcomes and its corresponding posterior function would be presented.
The Toenail data and its descriptive aspects will be explained in the first subsection in Section 3.
Also Section 3 includes model, computational steps and results of analyzing these data set using the
proposed model in Section 2. Finally, Section 4 presents some concluding remarks.

2. Model and Posterior function

Let Yit denote the semicontinuous outcome variable for the i-th subject at time t in a longitudinal
study of N subjects where the i-th subject have Ti visits, 1 ≤ i ≤ N and 1 ≤ t ≤ Ti. Suppose that
the semicontinuous observations are recorded as two variables (Wit ,Zit), where Wit is the indicator
variable of zero values in Yit , i.e.,

Wit =

{
1 i f Yit = 0
0 i f Yit ̸= 0

,

and Zit = g(Yit) for non zero values (positive values) of Yit where g(.) is some monotonically increas-
ing function (e.g. log) chosen to make the nonzero values of Yit approximately normally distributed.
To model the vector of repeated measurements for each individual, we assume that conditional on
a vector of q dimensional subject-specific random effect parameters B

′
i = (B

′
i1,B

′
i2), the vectors of

responses for each individual are independent along the time. Hence, for the joint distribution of
the vector of observed outcomes (Wit ,Zit) given Bi, we assume that the binary indicators Wit are
Bernoulli variables with the following probability of success:

πit = P(Wit = 1|Xit) = h(α ′
t Xit +B′

i1Uit), t = 1, . . . ,Ti, i = 1, . . . ,N

where h(.) is a specified monotonic link function (for example, the logit or probit). Also, Xit is the
vector of covariates for the i-th subject at time t, and Uit is some subset of Xit which could for
example include time-varying covariates that the researcher believes might have different slopes
among sample individuals. Actually when one considers Uit = 1, there is only a random intercept
included in the model varying from one individual to another, while considering Uit = Xit leads to
random slops for all the model covariates. Also it is assumed that Zit has a normal distribution given
that Yit > 0 as follows:

Zit = g(Yit)|Yit > 0 ∼ N(µit ,σ2
z ),

µit = β ′
t Xit +B′

i2Uit , t = 1, . . . ,Ti, i = 1, . . . ,N

where,

Bi =

[
B1i

B2i

]
∼ MV Nq(0,ΣB),ΣB =

[
Σ11 Σ12

Σ21 Σ22

]
.

Now to allow for the possibility of dropouts in the above semicontinuous model using a shared
parameter framework, let Rit denote the non-dropout indicator for the i-th individual at time t,
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defined as follows:

Rit =

{
0 i f Yit is not observed
1 i f Yit is observed.

We restrict our attention to monotone dropout pattern (Rit = 0 implies that Rit ′ = 0 for t ′ > t) in
which all subjects are observed at t = 1. We consider the Bernoulli distribution for Rit with suc-
cess probability depending on the current values of predictors (Xit) and the shared random effect
parameters Bi = (B1i,B2i) as follows,

P(Rit = 1|Xit ,Ri,t−1 = 1,Bi) = expit(γ
′
0tXit + γ

′
1Bi)

where expit(a) = exp(a)/(1+exp(a)) is the CDF for the standard logistic distribution and could be
replaced by CDF for normal or extreme value distributions as well. Also, γ1 = (γ11, . . . ,γ1q) is the
vector of non-ignorability parameters. In this model, γ1 = 01×q lead to MAR dropout mechanism
in which the parameter estimates of the response models could be obtained ignoring the missing
mechanism (assuming disjoint parameter spaces for response models and the dropout mechanism).
Note that using the shared parameter frame work, the vector of random effects Bi in the above
missing mechanism includes the same two random effect vectors of the zero inflated model. In
this way, the missing mechanism allow the possibility of the correlation between the unobserved
responses and the mechanism generating the incompleteness in the data.

It should be mentioned that, to allow time dependency for the model parameters αt , βt and γ0t

in the three previously mentioned model equations, one can use the interaction effect of time with
the other model covariates along with their main effects.

The posterior function of the model parameters Θ = {αt ,βt ,σ 2
z ,ΣB,γt} would be:

π(Θ|Y obs,R;X) =
f (Y obs,R|X ,Θ)π(Θ)∫

f (Y obs,R|X ,Θ)π(Θ)dΘ
. (2.1)

where,

π(Θ) = π(α)×π(β )×π(σ 2
z )×π(ΣB)×π(γ),

is the product of some low informative independent priors for the vector of model parameters.
Actually one can use independent normal priors with some large variances for the elements of the
vectors, α , β and γ along with gamma and Wishart priors for 1/σ 2

z and Σ−1
B , respectively. Also

assume that each individual with incomplete visits, has been observed for Mi < Ti times, hence
the joint distribution of the observed responses Y obs

i = (Yi1, . . . ,Yi,Mi) and the dropout indicators
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Ri = (Ri2, . . . ,Ri,Mi+1) for the i-th individual would be as follows:

f (Y obs
i ,Ri|Xi,Θ) =

∫
Bi

f (Y obs
i |Bi,Xi) f (Ri|Bi,Xi)ϕ(Bi)dBi

=
∫

Bi

Mi

∏
j=1

f (Yi j|Bi,Xi)
Mi+1

∏
j=2

f (Ri j|Bi,Xi)ϕ(Bi)dBi

=

∫
Bi

Mi

∏
j=1

f (Wi j|Bi1,Xi)× f (Zi j|Bi2,Xi)
(1−Wi j)

×
Mi+1

∏
j=2

f (Ri j|Bi,Xi)ϕ(Bi)dBi

=
∫

Bi

Mi

∏
j=1

πWi j
i j (1−πi j)

(1−Wi j)

[
1

σz
√

2π
exp{

(zi j −µi j)
2

2σ 2
z

}
](1−Wi j)

×
Mi+1

∏
j=2

f (Ri j|Bi,Xi)ϕ(Bi)dBi,

where ϕ(Bi) is the density function for the MV Nq(0,ΣB) distribution. The first equality in the above
equation is a result of shared parameter approach which leads to the conditional independence of
responses and their missingness indicators given Bi. Also the second equality is obtained due to
conditional independence of the vector of observed responses along time given Bi. Also the joint
density function for the completers who have been observed at all Ti visits would be as follows:

f (Yi,Ri|Xi,Θ) =
∫

Bi

f (Yi|Bi,Xi) f (Ri|Bi,Xi)ϕ(Bi)dBi

=
∫

Bi

Ti

∏
j=1

πWi j
i j (1−πi j)

(1−Wi j)

[
1

σz
√

2π
exp{

(zi j −µi j)
2

2σ2
z

}
](1−Wi j)

×
Ti

∏
j=2

f (Ri j|Bi,Xi)ϕ(Bi)dBi.

Consequently the joint distribution of observed responses and the dropout indicators for all study
subjects f (Y obs,R|X ,Θ), would be:

f (Y obs,R|X ,Θ) =
N

∏
i=1

f (Y obs
i ,Ri|Xi,Θ),

which should be substituted in to the posterior function of equation 2.1 to draw Bayesian parameter
estimations.

3. Application

3.1. Toenail Data

The data used in this section are extracted from a randomized, double-blind, parallel group, mul-
ticenter study to make a comparison between two oral treatments (in the sequel coded as A and
B) for Toenail Dermatophyte Onychomycosis (TDO) [see [6] for more details]. TDO is a common
toenail infection, difficult to treat, affecting more than 2 out of 100 persons ( [18]). Anti-fungal
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compounds, classically used for treatment of TDO, need to be taken until the whole nail has grown
out healthy. The development of new such compounds, however, has reduced the treatment duration
to 3 months. The aim of this study was to compare the efficacy and safety of 12 weeks of continuous
therapy with treatment A to that of treatment B.

In this study, 396 patients (198 in each treatment group), distributed over 36 centers, were ran-
domized to be examined. Subjects were followed during 3 months of treatment and followed further,
up to a total of 12 months. Measurements were taken at baseline, every month during treatment, and
every 3 months afterwards, resulting in a maximum of 7 measurements per subject. At the first occa-
sion, the treating physician indicates one of the affected toenails as the target nail, the nail which
will be followed over time. Finally, the resulting sample includes 148 and 150 subjects, in group A
and group B, respectively.

The important response of interest in this study is the patient’s Unaffected Nail Length (UNL)
in millimeters which is measured from the nail bed to the infected part of the nail, which is always
at the free end of the nail. Figure 1 shows the histogram of UNL variable during all study visits.
According to these plots, in all occasions there are a bulk of zero values along with some other
positive values which are rightly skewed. Hence this response variable should be considered as a
semi-continuous variable for further analysis of these data set.

Due to a variety of reasons, the vector of outcomes has been completely measured only for
226 (76%) out of the 298 participants and the others have been dropped out from the study at the
second visit or after that with a monotone pattern. Figure 2 shows the observed mean profile of the
semicontinuous response variable, UNL for different treatment groups. This figure shows that the
unaffected nail length was increased in the treatment period (first three months) and continued after
it. However, the increase is somehow higher for patients in group B comparing with those in group
A. Also Figure 3 displays the observed mean profile of the non-zero response values which have
nearly the same pattern as Figure 2 but a little difference is observable in the starting and finishing
time visits.

The frequency of zero values of the semicontinuous response variable along the time for differ-
ent treatment groups are displayed in Figure 4 via bar charts. This figure illustrates the existence of
a non-neglible mass of zero values in all visits where the frequencies are reduced through the end
of study.

To understand the nature of dropout mechanism based on the available cases, we have consid-
ered a binary logistic model for the dropout at the 9th month as a function of previous response of
UNL (at month 6) and the treatment group involved. Figure 5 shows that the dropout probability
in month 9 slightly increases as the UNL in month 6 increases and this probability is higher for
patients in group B compared with those in group A which shows the need for the consideration of
the dropout mechanism as a part of model estimation process.

3.2. Model For The Toenail Data

The Toenail study is a well-known longitudinal data which have been analyzed by different authors
to assess the effect of various therapies on the unaffected nail length (UNL) during the time. All
of these analyses involve some linear mixed model with the normality assumption for the UNL
variable (For example, [24] and [23]). However, In this section, we attempt to model the evolution
of the UNL response variable over the time applying a shared parameter zero-inflated log normal
model with possibility of non random dropout via a Bayesian approach. Let the response vector
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Fig. 1. Histogram of UNL response variable during the time
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Fig. 2. Observed mean profile of UNL for different treatment groups

Fig. 3. Observed mean profile of Non-Zero values of UNL for different treatment groups

for the ith individual at time t be denoted by Yit = (UNL∗
it ,Wit) where UNL∗

it indicates the nonzero
values of UNLit and Wit is the zero value indicator for the UNLit variable. Also assume that Rit

represents the non dropout indicator of Yit as is defined in Section 2. Now we use a Bayesian zero-
inflated shared parameter model similar to that proposed in Section 2, with a logistic model for the
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Fig. 4. Zero and Non-Zero Frequencies For UNL in two different treatment groups during the study

Fig. 5. Probability of Dropout at 9th month versus UNL at month 6 for various treatment groups.

dropout mechanism which can be summarized as follows:

Logit P(Wit = 1|Xit) = α0 +α1treati +α2t +α3treati × t +b1i,

Log [UNL∗
it ]|UNLit > 0 ∼ N(µit ,σ 2),

µit = β0 +β1treati +β2t +β3treati × t +b2i,

Logit P(Rit = 1|Xit ,Ri,t−1 = 1,b1i,b2i) = γ0 + γ1treati + γ2t

+γ3treati × t + γ4b1i + γ5b2i, (3.1)

t = 1, . . . ,7, i = 1, . . . ,298,
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where,

bi =

[
b1i

b2i

]
∼ BV N(0,Σb), Σb =

[
σ 2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
.

Also the following independent low informative prior distributions are considered for the model
parameters:

α j,β j ∼ N(0,100), j = 0, . . . ,3

γk ∼ N(0,100), k = 0, . . . ,5

1/σ2 ∼ Γ(0.2,0.001)

Σ−1
b ∼ Wishart(

[
1 0
0 1

]
,2)

Hence, the posterior distribution of the model parameters would be,

π(Θ|Y obs,R;X) =
f (Y obs,R|X ,Θ)π(Θ)∫

f (Y obs,R|X ,Θ)π(Θ)dΘ
.

where,

f (Y obs,R|X ,Θ) =
298

∏
i=1

∫
b1i

∫
b2i

Mi

∏
j=1

πWi j
i j (1−πi j)

(1−Wi j)

[
1

σ
√

2π
exp{

(UNL∗
i j −µi j)

2

2σ 2

](1−Wi j)

×
Mi+1

∏
j=2

f (Ri j|b1i,b2i,Xi)ϕ(b1i,b2i)db2i db1i

Given the complexity of the model and its posterior function which does not have a closed form,
Bayesian inferences need to be based on simulation techniques. For example Gibbs sampling or
Markov Chain Monte Carlo (MCMC) methods can be used to make inferences based on values
drawn from the joint posterior density which will be described more in the next Section.

3.3. Posterior Computations based on Gibbs Sampling

Bayesian parameter estimation for the zero-inflated lognormal model described in the system of
equations 3.1 proceeds via drawing samples from the following posterior function:

π(α,β ,γ,σ 2,Σb|Y obs,R,X),

which is equivalent to drawing from,

π(α,β ,γ,σ2,Σb,b1,b2,Y miss|Y obs,R,X).

These draws are obtained using Gibbs sampling based on the data augmentation algorithm (see [21])
implemented via iteratively sampling the following full conditional distributions of the random and
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fixed model parameters and the missing variables:

(i) π[α,β ,γ,σ2,Σb,b1,b2|Y,R,X ]

(i.1) π[α|β ,γ,σ 2,Σb,Y,R,X ,b1,b2]

(i.2) π[β |α,γ,σ 2,Σb,Y,R,X ,b1,b2]

(i.3) π[γ|α,β ,σ 2,Σb,Y,R,X ,b1,b2]

(i.4) π[b1,b2|α,β ,γ,σ2,Σb,Y,R,X ]

(i.5) π[Σb|α,β ,γ,σ 2,Y,R,X ,b1,b2]

(ii) π[Y mis|α,β ,γ,σ2,Σb,Y obs,R,X ,b1,b2],

where the first block represent an outer Gibss Sampling to draw from the posterior function of
the model parameters given the full response (augmented) and non dropout vectors and the second
block is related to the posterior function of the missing variables given all model parameters and the
observed responses. In practical problems, however, not all of the above full conditional posterior
distributions are known or have closed form where the rejection sampling ( [17], adaptive rejection
sampling ( [10]), the Metropolis algorithm ( [15]), or the Metropolis-Hastings algorithm ( [11]) are
commonly used for drawing values from these conditional distributions (see also [4]). Here, we will
use WinBUGS software ( [20]) to implement the above Gibss Sampling procedure to obtain the
draws from the posterior function and to derive inferences on parameters of interest. It should be
noted that in the use of this software some difficulty arises due to zero-inflated lognormal distribu-
tion needed for the vector of response variables which is not pre-designated in this software. We
have used the ”zeros trick” procedure in WinBUGS for defining this new sampling distributions.

3.4. Results for The Toenail Data

In this Section we will fit four different Bayesian models for the Toenail data to be compared.
Model (I) and (II) are shared parameter linear mixed models which are based on the normality
assumption for the UNL variable over the time with the MAR and MNAR mechanism, respectively.
The following equations are those used in Model (II) which are based on the normality assumption
for UNLit variable,

UNLit ∼ N(µit ,σ2),

µit = β0 +β1treati +β2t +β3treati × t +bi,

Logit P(Rit = 1|Xit ,Ri,t−1 = 1,b1i,b2i) = γ0 + γ1treati + γ2t

+γ3treati × t + γ5bi,

t = 1, . . . ,7, i = 1, . . . ,298,

where,

bi ∼ N(0,σ 2
2 ).

Also the first model (Model (I)) has the same structure as the above equations where it is assumed
that γ5 = 0. Model (III) and (IV) are shared parameter zero-inflated lognormal models, with MAR
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Table 1. Results of Bayesian analysis of Toenail data corresponding to Model (I)-
(IV).

Model (I) Model (II) Model (III) Model (IV)
Par. Est. S.D Est. S.D. Est. S.D. Est. S.D.
α0 – – – – -0.62∗ 0.25 -0.60∗ 0.22
α1 – – – – -0.19 0.33 -0.18 0.319
α2 – – – – -0.65∗ 0.07 -0.61∗ 0.07
α3 – – – – -0.09 0.11 -0.11 0.10
β0 1.60∗ 0.26 1.614∗ 0.26 0.71∗ 0.06 0.71∗ 0.05
β1 0.22 0.37 0.20 0.36 0.08 0.08 0.10 0.06
β2 1.20∗ 0.04 1.19∗ 0.04 0.24∗ 0.01 0.24∗ 0.01
β3 0.08 0.06 0.08 0.06 0.0002 0.01 -0.003 0.01
γ0 3.26∗ 0.38 3.31∗ 0.40 3.31∗ 0.39 3.98∗ 0.60
γ1 0.87 0.63 0.85 0.65 0.79 0.60 0.91 0.70
γ2 -0.09 0.09 -0.09 0.10 -0.10 0.09 -0.19 0.12
γ3 -0.15 0.15 -0.14 0.15 -0.13 0.14 -0.14 0.16
γ4 – – – – – – -0.99∗ 0.39
γ5 – – 0.06 0.06 – – -2.94∗ 1.22

σUNL 2.53∗ 0.05 2.53∗ 0.05 0.48∗ 0.01 0.48∗ 0.01
σ1 – – – – 4.04∗ 0.72 3.85∗ 0.74
σ2 2.57∗ 0.12 2.56∗ 0.12 0.28∗ 0.03 0.27∗ 0.03
ρ – – – – -0.87∗ 0.11 -0.81∗ 0.11

and MNAR assumptions for the dropout mechanism, respectively. The model equation for Model
(IV) is presented in equation 3.1. Also Model (III) has the same parameter structure as Model (IV)
with the exception of non-ignorability parameters γ5 and γ6 which are zero in this ignorable model.

Table 1 presents the results of the Bayesian estimation for Model (I)-(IV). To draw inferences,
we have performed the iterative Gibbs sampling procedure in 100,000 iterations, ignoring the first
90,000 iterations as burn-in to get closer to the convergence, so that the inferences about the model
parameters are obtained using 10,000 remaining iterations. We use the posterior mean of each
parameter as its estimate and the sample standard deviation as the estimated standard deviation
of the parameter of interest.

For the comparative study of the above fitted models, the deviance information criterion (DIC)
measure ( [20]) can be used which assess model complexity and is a good measure to compare
different models. The default DIC option in WinBUGS is not available for the zero-inflated models
presented in this paper. So that we have calculated these amounts outside of WinBUGS by importing
the posterior draws of the parameters, random effects and the augmented missing values into the R
software (R Development Core Team, 2007), calculating the following two quantities conditional
on the random effect values ( [3]) :

D̄(Θ) = E(D(Θ)|y),
D̂(Θ) = D(E(Θ|y)),

where D(Θ) is the deviance function defined as −2× log(likelihood(Θ)). Actually, D̄(Θ) represents
the posterior mean of the deviance and D̂(Θ) indicates a point estimate of the deviance obtained by
substituting in the posterior means of Θ. Using the above two quantities yields the PD (the effective

Published by Atlantis Press 
Copyright: the authors 

328



A Bayesian Shared Parameter Model for Incomplete Semicontinuous longitudinal Data

Table 2. Model comparision statistics for Model
(I)-(IV).

Model D̄(Θ) PD DIC
Model (I) 9629.91 333.43 9963.34
Model (II) 9632.31 334.81 9967.12
Model (III) 3842.09 360.02 4202.11
Model (IV) 3777.07 395.32 4172.39

number of parameters) and DIC (Deviance Information Criterion) measures as follows:

PD = D̄(Θ)− D̂(Θ),

DIC = PD + D̄(Θ).

The model with the smallest DIC is estimated to be the model that would best predict a replicate
dataset of the same structure as that currently observed.

The amount of PD and DIC quantities for Model (I)-(IV) are presented in Table 2. The results
show that Model (IV) has the smallest DIC value compared with the three other models which
reveals the need for the zero-inflated log normal distribution for the UNL response variable along
with the MNAR mechanism for the dropout process occurred in these data.

According to the posterior estimates of Model (IV) in Table 1 as the preferred model for these
data, the odds of having zero unaffected nail length decreases through the end of study. Also for
the patients with non-zero unaffected nail length, the nail length grows more in the later visits. The
parameter corresponding to the treatment covariate (β1) is significant at 0.1 error level for Model
(IV) while the results show that the parameters corresponding to the treatment and its interaction
with time are not significant for the other three models. The group B patients with non-zero UNL
have 0.1 mm longer unaffected nail length on average when comparing with group A patients with
non-zero UNL. Parameters in the Σb matrix for the covariance structure of shared random effects are
significantly estimated in this model which means that the occurrence of zero and non-Zero values
of UNL variable are correlated and that there is significant correlation among UNL measurements
for each patient in different Months. Also, the significant coefficients for the two shared random
effect parameters in the dropout mechanism (γ4 and γ5) illustrates the non random mechanism for
the monotone removal of the patients from the study.

Also for checking the convergence of the MCMC results for Model (IV) which includes Gibss
sampling steps along with Metropolis algorithm for unknown conditional posterior functions of the
model parameters (see Section 3.3), we should take care about the acceptance rate of the Metropolis
algorithm. Figure 6 shows the minimum, maximum and average acceptance rate averaged over 100
iterations as the Metropolis algorithm adapts over the first 4,000 iterations. As it is shown in this
plot, the rate lies between the two horizontal lines which shows the accurate use of Metropolis
algorithm in the Gibbs sampling steps of the Bayesian Model (IV) .

Also to examine if the posterior simulations of the model parameters have been stabilized, Fig-
ure 7 and Figure 8 have been plotted using posterior summaries of the model parameters in the last
10,000 iterations. Actually, Figure 7 plots out the running posterior mean in the last 10,000 itera-
tions, with 95% confidence intervals against iteration number and Figure 8 illustrates the trace plots
of the posterior sample values versus iteration for different model parameters. These plots show that
for the last 10,000 iterations of the MCMC procedure, the posterior sample values and their means
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Fig. 6. Minimum, maximum and average Metropolise acceptance rate

Fig. 7. Runinig posterior mean with 95% confidence intervals against iteration number

for all the model parameters have a stable state with no considerable fluctuations which means that
the chain has been converged acceptably.

4. Conclusion

Repeated measurements or follow up studies allow the researcher to assess variations in the interest-
ing variables for each individual as the time increases. The occurrence of missing data is a problem
which is commonly encountered in various researches, including both cross-sectional and longitu-
dinal or follow-up studies. Incomplete data in each setting call for some additional challenges in the
modeling step where the researcher should care about the possibility of non-random missingness
or dropout mechanism. Recently, there has been extensive methodological researches on analyzing
semicontinuous responses. However, none of them have considered the possibility of incomplete
semicontinuous data in their methods. In this paper, we have presented a flexible Bayesian model
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Fig. 8. Trace plots of the posterior sample values against iteration number

for incomplete semicontinuous longitudinal data with the possibility of non-random dropouts. Actu-
ally, our model is a two part model along with a dropout mechanism which are correlated due to
shared random effect parameters. The proposed approach has been applied for the analysis of a well
known longitudinal data set about Toenail infection (TDO) where the response of interest greatly
suffer from excess zeros along some positive continuous values at each time visit. We have also
compared four different Bayesian models for these data with differing response models and dropout
structures where the results show that our proposed model with semicontinuous responses and non-
random dropout has the best performance according to some Bayesian goodness of fit indices.
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