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Abstract 

The present paper deals with the two modified ratio estimators for estimation of population mean of the study 
variable using the linear combination of the known population values of the Correlation Coefficient and the Median 
of the auxiliary variable. The biases and the mean squared errors of the proposed estimators are derived and are 
compared with that of existing modified ratio estimators for certain natural populations. Further we have also 
derived the conditions for which the proposed estimators perform better than the existing modified ratio estimators. 
From the empirical study it is also observed that the proposed modified ratio estimators perform better than the 
existing modified ratio estimators. 

Keywords: Bias, Class, Mean squared error, Natural populations, Simple random sampling 

1. Introduction 

The simplest estimator of population mean is the sample mean obtained by using simple random sampling without 
replacement (SRSWOR), when there is no additional information on the auxiliary variable available. Sometimes in 
sample surveys, along with the study variableY , information on auxiliary variable X , correlated withY , is also 
collected. This information on auxiliary variable X  may be utilized to obtain a more efficient estimator of the population 
mean. Ratio method of estimation is an attempt in this direction. This method of estimation may be used when (i) X  
represents the same character as Y , but measured at some previous date when a complete count of the population was 

made and (ii) the character X  is cheaply, quickly and easily available. Consider a finite population  N21 U,...,U,UU   

of N  distinct and identifiable units. Let Y  is a study variable with value iY measured on N1,2,3,...,i;Ui  giving a 

vector  N21 Y,...,Y,YY   and let X  is an auxiliary variable which is readily available. The problem is to estimate the 
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population mean 



N

i
N

1
iY1Y with some desirable properties on the basis of a random sample selected from the 

population U  using auxiliary information. When population parameters of the auxiliary variable X  such as Population 

Mean, Coefficient of Variation, Coefficient of Kurtosis, Coefficient of Skewness, Correlation Coefficient, Median are 
known, a number of estimators such as ratio, product and linear regression estimators and their modifications are 
proposed in the literature. Before discussing further about the modified ratio estimators and the proposed modified ratio 
estimators the notations to be used in this paper are described below: 

 N ‐ Population size 

 n ‐ Sample size 

 N
nf  ‐ Sampling fraction 

 Y ‐ Study variable 

 X - Auxiliary variable 

 X,Y ‐ Population means 

 x ,y ‐ Sample means 

 xy S,S ‐ Population standard deviations 

 xy C,C ‐ Co-efficient of variations 

  ‐ Correlation Coefficient  

 
 

   3

N

1i

3
i

1
S  2N 1N

XXN
β







 ‐ Coefficient of skewness of the auxiliary variable 

 
   

    
 

  3N2N

1N3

S3-N 2N1N

XX1NN
β

2

4

N

1i

4
i

2 









 ‐ Coefficient of kurtosis of the auxiliary variable 

 dM ‐ Median of the auxiliary variable 

  .B ‐ Bias of the estimator 
  .MSE ‐ Mean squared error of the estimator 

 






ipi ŶŶ ‐ Existing (proposed) modified ratio estimator of Y  

 
The ratio estimator for estimating the population mean Y of the study variable Y  is defined as 

XR̂X
x

y
ŶR             (1) 

where 
x

y

x

y
R̂  is the estimate of  

X

Y

X

Y
R   

The ratio estimator given in (1) is more precise than the SRSWOR sample mean, when there exists a positive correlation 
between X and Y . Further improvements are also achieved on the classical ratio estimator by introducing a large 
number of modified ratio estimators with the use of known parameters like, Coefficient of Variation, Coefficient of 
Kurtosis, Coefficient of Skewness and Population Correlation Coefficient, Median. The lists of modified ratio estimators 
together with their biases, mean squared errors and constants available in the literature are classified into two classes 
namely Class 1, Class 2 and are given respectively in Table 1 and Table 2 respectively. 
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Table 1: Existing modified ratio estimators (Class 1) with the constants, the biases and the mean squared errors 

Estimator Constant  i  Bias -  .B  Mean squared error  .MSE  
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Table 2: Existing modified ratio estimators (Class 2) with the constants, the biases and the mean squared errors 

Estimator Constant iR   Bias -  .B  Mean squared error  .MSE  
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For a more detailed discussion on the ratio estimator and its modifications one may refer to Upadhyaya and Singh1, 
Singh2, Yan and Tian3, Kadilar and Cingi4 and 5, Cochran6, Khoshnevisan et al.7, Koyuncu and Kadilar8, Murthy9, 
Prasad10, Rao11, Singh and Chaudhary12, Singh and Tailor13 and 14, Singh et al.15, Sisodia and Dwivedi16, Subramani and 
Kumarapandiyan17 and 18 and Tailor and Sharma19. The modified ratio estimators given in Table 1 and Table 2 are biased 
but have smaller mean squared errors compared to the classical ratio estimator. The list of estimators given in Table 1 
and Table 2 uses the linear combinations of the known values of the parameters like X , xC , 1β , 2β , ρ and dM  . 
However, it seems, no attempt is made to use the linear combination of known values of the Correlation Coefficient and 
Median of the auxiliary variable to improve the ratio estimator. The points discussed above have motivated us to 
introduce modified ratio estimators using the linear combination of the known values of Correlation Coefficient and 
Median of the auxiliary variable. It is observed that the proposed estimators perform better than the existing modified 
ratio estimators listed in Table 1 and Table 2. The materials of this paper are arranged as follows: The proposed modified 
ratio estimators using the linear combination of the known values of the Correlation Coefficient and Median of the 
auxiliary variable are presented in section 2 where as the conditions in which the proposed estimators perform better than 
the existing modified ratio estimators are derived in section 3. The performances of the proposed modified ratio 
estimators and the existing modified ratio estimators are assessed for certain natural populations in section 4 and the 
conclusion is presented in section 5 

2.  Proposed Modified Ratio Estimators  

In this section, we have suggested two modified ratio estimators using the linear combination of Correlation 
Coefficient and Median of the auxiliary variable. The proposed modified ratio estimators for estimating the population 
mean  Y	ഥ  together with the first degree of approximation, the biases and mean squared errors are given below: 


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3. Efficiency Comparison  

For want of space; for the sake of convenience to the readers and for the ease of comparisons, the modified ratio 
estimators given in Table 1, Table 2 are represented into two classes as given below:  
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Class 1:The biases, the mean squared errors and the constants of the modified ratio type estimators 1Ŷ to 7Ŷ listed in the 

Table 1 are represented in a single class (say, Class 1), which will be very much useful for comparing with that of 

proposed modified ratio estimator 
1pŶ and are given below: 
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Class 2:The biases, the mean squared errors and the constants of the remaining 7 modified ratio estimators 8Ŷ to 14Ŷ

listed in the Table 2 are represented in a single class (say, Class 2), which will be very much useful for comparing with 

that of proposed modified ratio estimator 
2pŶ and are given below: 
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As derived earlier in section 2, the biases, the mean squared errors and the constants of the proposed modified ratio 
estimators are given below: 
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From the expressions given in (4) and (6) we have derived the conditions for which the proposed estimator 
1pŶ is more 

efficient than the existing modified ratio  estimators given in Class 1, 71,2,3,...,i;Ŷi   and are given below: 

 if ŶMSEŶMSE ip1











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C

C

2

θθ
ρ

y

xip1 

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From the expressions given in (5) and (7) we have derived the conditions for which the proposed estimator 
2pŶ is more 

efficient than the existing modified ratio estimators given in Class 2, ,148,9,10,...i;Ŷi  and are given below: 

 if ŶMSEŶMSE ip2











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                      (9) 

4. Empirical Study 

The performances of the proposed modified ratio estimators listed are assessed with that of existing modified ratio 
estimators listed in Table 1 and Table 2 for certain natural populations. In this connection, we have considered three 
natural populations for the assessment of the performances of the proposed modified ratio estimators with that of existing 
modified ratio estimators. The population 1 is taken from Singh and Chaudhary2 given in page 141, the population 2 is 
taken from Cochran6 given in page 152 and population 3 is the closing price of the industry ACC in the National Stock 
Exchange from 2, January 2012 to 27, February 201220. The population parameters and the constants computed from the 
above populations are given below: 
   

Table 3: Parameters and Constants of the Populations 
Parameters Population 1 Population 2 Population 3 

N  22 49     40 
n  5 20     20 

Y  22.6201 116.1633 5141.5363 

X  1467.5455 98.6735 1221.6463 
  0.9021 0.6904       0.9244 

xS  33.0469 98.8286   256.1464 

yC  1.4601 0.8508       0.0557 

xS  2562.1449 102.9709   102.5494 

xC  1.7459 1.0436       0.0839 

2β  13.3693 5.9878      -1.5154 

1β  3.3914 2.4224    0.3761 

dM  534.5000 64.0000 1184.2250 

 

The constants of the existing and proposed modified ratio estimators for the above populations are given in the Table 4 and Table 5: 
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Table 4: The constants of the (Class 1) existing and proposed modified ratio estimators 

Estimator 
Constants iθ  

Population 1 Population 2 Population 3 

1Y
ˆ

 0.9948 0.9450 1.0150 

2Y
ˆ

 0.9999 0.9982 1.0000 

3Y
ˆ

 0.6602 0.6989 0.8175 

4Y
ˆ

 0.8845 0.8516 1.0586 

5Ŷ  0.9998 0.9959 1.0002 

6Ŷ  0.9973 0.9756 1.0033 

7Ŷ  0.9987 0.9770 0.9963 

1pŶ    0.7124*   0.5156*   0.4881* 

 
Table 5: The constants of the (Class 2) existing and proposed modified ratio estimators 

Estimator 
Constants iR  

Population 1 Population 2 Population 3 

8Ŷ  0.0154 1.1752 4.2089 

9Ŷ  0.0153 1.1126 4.2718 

10Ŷ  0.0154 1.1485 4.2226 

11Ŷ  0.0154 1.1694 4.1711 

12Ŷ  0.0154 1.1595 4.2084 

13Ŷ  0.0154 1.1759 4.2108 

14Ŷ  0.0153 1.0821 4.2143 

2pŶ   0.0110*   0.6070*  2.0544* 

 
The biases of the existing and proposed modified ratio estimators for the above populations are given in the Table 6 and Table 7: 
 

Table 6: The biases of the (Class 1) existing and proposed modified ratio estimators 

Estimator 
Bias ۰ሺ. ሻ 

Population 1 Population 2 Population 3 

1Y
ˆ

 2.5432 1.3519 0.3697 

2Y
ˆ

 2.6106 1.6268 0.3507 

3Y
ˆ

 0.6665 0.3559 0.1515 

4Y
ˆ

 1.2215 0.9203 0.4274 

5Ŷ  2.6095 1.6144 0.3509 

6Ŷ  2.5763 1.5070 0.3548 

7Ŷ  2.5943 1.5146 0.3460 

 
1pŶ     0.3226*   0.0913*  0.0552* 
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Table 7: The biases of the (Class 2) existing and proposed modified ratio estimators 

Estimator 
Bias ۰ሺ. ሻ 

Population 1 Population 2 Population 3 

8Ŷ  10.6540 3.7302 0.9058 

9Ŷ  10.5456 3.3433 0.9331 

10Ŷ  10.5989 3.5627 0.9118 

11Ŷ  10.6484 3.6937 0.8896 

12Ŷ  10.6279 3.6313 0.9056 

13Ŷ  10.6549 3.7347 0.9067 

14Ŷ  10.4439 3.1630 0.9082 

2pŶ     5.4079*   0.9953*   0.2158* 

  
The mean squared errors of the existing and proposed modified ratio estimators for the above populations are given in 
the Table 8 and Table 9: 

Table 8: The mean squared errors of the (Class 1) existing and proposed modified ratio estimators 

Estimator 
Mean Squared Error۳܁ۻሺ. ሻ 

Population 1 Population 2 Population 3 

1Y
ˆ

 45.2894 214.7486 1050.6525 

2Y
ˆ

 45.8857 233.6573   995.6899 

3Y
ˆ

 33.5787 159.2888   492.6945 

4Y
ˆ

 35.4638 187.4850 1222.9729 

5Ŷ  45.8758 232.7813   996.2592 

6Ŷ  45.5814 225.2956 1007.5083 

7Ŷ  45.7405 225.8185   982.4136 

1pŶ     31.8505*   152.2157*     370.1528* 

 
Table 9: The mean squared errors of the (Class 2) existing and proposed modified ratio estimators 

Estimator 
Mean Squared Error۳܁ۻሺ. ሻ 

Population 1 Population 2 Population 3 

8Ŷ  272.4185 584.5606 4955.0419 

9Ŷ  269.9654 539.6120 5095.3661 

10Ŷ  271.1716 565.0981 4985.4911 

11Ŷ  272.2918 580.3192 4871.7809 

12Ŷ  271.8270 573.0710 4953.9273 

13Ŷ  272.4393 585.0781 4959.2739 

14Ŷ  267.6660 518.6688 4967.1427 

 
2pŶ    153.7472*   266.8558*   1407.3186* 
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           From the values of Table 6 and Table 7, it is observed that the bias of the proposed modified ratio estimator
1pŶ is 

less than the biases of the existing modified ratio estimators 71,2,3,...,i;Ŷi  given in Class 1 and the bias of the 

proposed modified ratio estimator
2pŶ is less than the biases of the existing modified ratio estimators ,148,9,10,...i;Ŷi   

given in Class 2. Similarly from the values of Table 8 and Table 9, it is observed that the mean squared error of the 

proposed modified ratio estimator
1pŶ is less than the mean squared errors of the existing modified ratio estimators 

71,2,3,...,i;Ŷi  given in Class 1 and the mean squared error of the proposed modified ratio estimator 
2pŶ is less than 

the mean squared errors of the existing modified ratio ,148,9,10,...i;Ŷi  given in Class 2. 

5. Conclusion 

In this paper we have proposed two modified ratio estimators using linear combination of Correlation Coefficient 
and Median of the auxiliary variable. The biases and mean squared errors of the proposed estimators are obtained and 
compared with that of existing modified ratio estimators. Further we have derived the conditions for which the proposed 
estimators are more efficient than the existing modified ratio estimators. We have also assessed the performances of the 
proposed estimators for some known populations. It is observed that the biases and mean squared errors of the proposed 
estimators are less than the biases and mean squared errors of the existing modified ratio estimators for certain known 
populations. Hence we strongly recommend that the proposed modified estimators may be preferred over the existing 
modified ratio estimators for the use of practical applications. 
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