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Abstract. This work applies the radial basis function-finite difference method (RBF-FD) for the solution 
of 2D elastic problems. Compared with traditional finite difference methods based on polynomial 
interpolation, the RBF-FD does not require a regular arrangement of nodes but can achieve high accuracy. 
With  -property, the boundary conditions can be easily imposed. To deal with the stress boundary 
conditions, the Hermite interpolation is used in calculation of the approximation function and discrete 
equation. The validity is examined by typical examples in the treatment of 2D problems in elasticity. 

Introduction 

Meshless method [1] is a numerical method developed in recent years. Compared with FEM, the 
meshless methods, which don’t discrete problem domain using grid, own many advantages, for example, 
simple in pre-processing and adaptive analysis, easy to construct higher-order smooth shape functions, 
prone to expand low-dimensional problems into high- dimensional problems and solves difficult problems 
that the traditional numerical methods can’t deal with [2], such as extremely large deformation, dynamic 
crack propagation, high-speed impact and so on. Therefore, the meshless method is considered a potential 
numerical analysis method. 

Recently, dozens of meshless methods have been developed. According to the formulations, the 
different procedures can be divided into three categories: (1) strong-form-based collocation meshless 
methods, such as the finite point method [3] and hp-clouds[4]; (2) weak-form-based meshless methods, 
such as EFG method [5], the diffuse element method [6] and  MLPG method [7]; (3) Combined weak and 
strong forms meshless method- MWS [7]. In these methods, the EFGM is widely used at present, which 
has high accuracy and good stability. Because of requiring background grid for quadrature and matrix 
inversions, it involves a large amount of calculation. In contrast, collocation meshless methods are truly 
meshless methods, and are very efficient. However, this method exist stability and convergence speed 
issues, and further improvement is needed. 

Wright and Fornberg [9] proposed a radial basis function-finite difference method (RBF-FD), which is 
mainly adopted in fluid mechanics. This paper attempts to apply this method to 2D elastic problems. 
Compared with traditional finite difference methods based on polynomial interpolation, the RBF-FD does 
not require a regular arrangement of nodes but can achieve high accuracy. Due to the  -property, it is 
easy to impose boundary conditions. Meanwhile, in order to reduce the error arising from stress boundary 
conditions, the Hermite interpolation is adopted. Finally, the accuracy of the method is discussed by some 
classic examples. 
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2D Elastic Problem 

Equations 

Assume that   represents the problem domain, t  represents the traction boundary and u  represents 
the displacement boundary. 

In plane stress problems, in terms of the displacement 1u  and 2u  the problem can be formulated in the 
matrix form 































































 2

1

2

1

2
1

2

2
2

2

21

2
21

2

2
2

2

2
1

2

2

2
1

2
1

2
1

2
1

1 f
f

u
u

xxxx

xxxxE





    in  ,                         (1) 









































































 2

1

2

1

1
1

2
2

2
1

1
2

1
2

2
1

2
2

1
1

2

2
1

2
1

2
1

2
1

1 t
t

u
u

x
n

x
n

x
n

x
n

x
n

x
n

x
n

x
n

E










 in t ,                             (2) 



















2

1

2

1

u
u

u
u

in u ,                (3) 

where E  is Young's modulusy and   Poisson's ratio. 

For Plane strain problems, 21 
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. 1n  and 2n  are the direction cosines of the outward 

normal direction of boundary t . 

Discrete Equations 

Assuming that there are N nodes in domain, tN  nodes on t , uN  nodes on u , n  nodes in  , and 

ut NNNN  . 

From (1) ~ (3), let iL be the following differential operators, 10 L , 
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Substituting 1
ijc , 2

ijc , 3
ijc  into (1) results in 

f=DU                                                                                                                               (4) 
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Substituting 4
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Substituting 0
ijc into (3) gives rise to 
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Organizing (4) ~ (6) leads to 

PKU                                                                                                                            (7) 
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The stresses can be solved by 
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Improved Stress Boundary Conditions  

For the problem of the second boundary condition, the accuracy of the results obtained using the above 
method is not high, especially in the vicinity of the boundary. This paper adopts the Hermite interpolation 
to improve the accuracy. The specific process of the method is given below. 

The interpolant takes the form 
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Referring to the paper [9], the corresponding results are acquired, and (4) ~ (7) are adapted 
appropriately. 

In this paper, the following examples make use of this approach to stress boundary conditions. 

Numerical Examples 

Two numerical examples are studied in this section. The materials used in the examples are all linear 
elastic with Young’s modulus E =1 and Poisson’s ratio v = 1/3. The units used in this paper can be any 
consistent unit based on international standard unit system. 

Internal Pressurized Hollow Cylinder 

A hollow cylinder subjected to internal pressure (shown in Fig.1) is analyzed. The cylinder is of 
internal radius a=1, outer radius b=5, and internal pressure p=1 units. Plain strain condition is 
considered and the analytical solutions can be referred to [10] 
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Fig. 1 A Quarter Model of Hollow Cylinder                   Fig. 2 Nodal Arrangement 

The problem is discretized by 123 irregularly distributed nodes (shown in Fig. 2). Meanwhile the 
ABAQUS (adopting CPE3) and the exact solution are used to calculate the displacements and stresses at 
the same nodal distribution. Symmetry conditions are imposed on the left and bottom edges, the inner 
boundary of the hole is internal pressure p, and the external boundary of the hole is traction free. 

The result and relative error of the measured points (A, B) are calculated in Table 1. The figures (Fig.3 
and Fig.4) show that the numerical solutions obtained using the present method is in a very good 
agreement with the exact solutions and the accuracy is higher than ABAQUS. 
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Fig.3 Displacement Distribution along Radial Line        Fig.4 Stress Distribution along Radial Line 

    of Hollow Cylinder (  45 )                             of Hollow Cylinder(  45 ) 

Tab. 1 The Result and Relative Error of the Measured Points (A, B) 

 A B 
ur σr σɵ  ur σr σɵ  

Result 
RBF-FD 1.4265 -1.0045 1.0908 0.3698 -0.0014 0.0769 

ABAQUS 1.3832 -0.8017 1.0273 0.3655 -0.0044 0.0838 
Exact solu. 1.4074 -1 1.0833 0.3704 0 0.0833 

The relative 
error (%) 

RBF-FD 1.36 0.45 0.69 0.16 / 7.68 
ABAQUS 3.08 19.83 5.17 1.16 / 0.64 

Cook Skew Beam 

The Cook skew beam is also analyzed. The model and size are shown in Fig. 5. The right boundary of 
the beam is applied by the distribution of shear force F=1/16. The left boundary of the beam is 
displacement boundary condition with u=0, v=0. 

                             
Fig. 5 Cook Skew Beam Suffered from                         Fig. 6 Nodal Arrangement 

Distributed shear force on the right 

Plane stress condition is considered and traction boundary conditions are imposed on the upper and 
right edges with free. The domain is discretized using 117 irregularly distributed nodes, as shown in Fig. 
6. Meanwhile the ABAQUS (adopting CPS3) and the reference solution are analyzed with the same nodal 
distribution.  

In the Cook skew beam, the stress and displacement of 3 measured points (A, B, C) are calculated 
(shown in Table 2).Compared with reference solution,it is clear that the solution of the RBF-FD method 
is more accuracy than the ABAQUS. 

 A
A 
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Tab. 2 Comparison of the Stress and Displacement for 3 Measured Points 

Method σmaxA σminB VC 
RBF-FD 0.2334 -0.1969 23.85 

ABAQUS 0.2105 -0.1712 22.91 
Reference solution[11] 0.2362 -0.2023 23.96 

Conclusion 

Radial basis function-finite difference method (RBF-FD), which is widely used in computational fluid 
mechanics, is introduced to solving 2D problems in elasticity. The Hermite interpolation is adopted to 
deal with the stress boundary conditions. Finally, the accuracy of the method is discussed by two classic 
examples. The following main conclusions can be obtained. 

1. Using the Hermite interpolation can greatly improve the solution accuracy. 
2. This method belongs to strong-form-based collocation meshless methods, which needs not domain 

integration, so its programming is simple and it has a higher efficiency. 
3. This method has higher accuracy than the conventional finite element. 
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