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Abstract. The present research argues that the shear stress of shaft in torsion is not a true stress but an 

equivalent stress, based on the phenomena that the stress disproves the plane assumption, that the body 

part in torsion is unable to maintain equilibrium, and that shear stress on the longitudinal section drawn 

from reciprocal theorem is not only self-contradictory, but also in conflict with Newton's third law. 

Namely, the angle strain generated by torque equals that produced by shear stress. The above phenomena 

are caused by equivalent stresses. 

Introduction 

Shear stress is indispensable in designing the torsion of circular shafts in engineering. However, despite 

the use of the finite element method, which is precise, the shafts often break or lack in rigidity, which has 

frequently led to accidents and resulted in great loss. The reason lies in the false belief that there is true 

shear stress in the body of torsion. This fundamental error has mistaken the true shear stress for an 

equivalent stress in calculation; hence, it constitutes the principle reason for the breaking of shafts and the 

inadequacy of rigidity. 

The present paper will illustrate that the shear stress in torsion of shafts is not a true stress but an 

equivalent stress from the following perspectives: 1. the unequilibrium in torsion of circular shafts; 2. the 

self-contradiction of torsional shear stresses and 3. the contradiction between torsional shear stresses and 

the Newton's third law. 

The Torsional Shear Stress Disproving the Plane Assumption 

In the deduction of the torsional shear stress, a basic assumption is that during the deformation, cross 

sections still remain planes without the change in form and size[5, 10, 11]. If this assumption is disproved, 

it follows that the formula deducted from it is false. 

Fig. 1(a) shows the distribution of the shear stress on the cross section and the vertical section of the 

round shaft under the internal torque nM . A wedge is formed by the two intersecting sections through the 

axis oo' as shown in Fig. 1(b). 

The stress distribution of the wedge, as shown in Fig. 1(b), is drawn from the torsion deformation 

formula and the theorem of conjugate shear stresses. To make it clearer, abcd of the square is marked in 

Fig. 1(c) so as to study the deformation of the square[2, 3]. From the principle stress formula of the pure 

shear[1, 4, 7, 8], we get  -31  ， . When the principle stress acts on the two diagonals ac and bd, 

ac is tensioned so that a moves to a' and c to c' along the diagonal. In the same way, bd is compressed so 

that b moves to b' and d to d'. It could be seen that under the shear stress, the square has been turned into 

a lozenge. Obviously, a' is not on the original cross section o'ab while c' is not on ocd, as shown in Fig. 1(c). 

The cross section is slanted and it does not remain the plane it was. The elastic theory is contradictory with 

itself. Therefore, the shear stress formula and the deformation formula which are deducted from it are 

false. 

When the thin-wall circular tube is twisted as shown by Fig. 2(a), mm and nn, the two parallel 

circumference lines which are perpendicular to the axis x, still remain perpendicular to the axis x. In this 
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case, the cross section remains the plane with only a change of angle, and the plane assumption is valid. 

Only torque can account for it because if it is due to the internal shear stress, the effect will be different as 

shown by Fig. 2(b): instead of being perpendicular to the axis x, circumference lines mm and nn turn to be 

ellipses m'm' and n'n' slanting to the axis x. Thus we can see that, both theories and experiments proves 

that the theory of shear stress in torsion cannot guarantee the validity of the plane assumption. 

 

Fig. 1 The Shear Stress in Torsion of Circular Shaft Denies the Plane Assumption 

           
(a)                                                        (b) 

Fig.  2 The Torsional Shear Stress Violates the Plane Assumption in Torsion of the Thin-wall Circular 

Tube 

The Unequilibrium in the Torsion of the Cylinder 

Example 1 

As shown in Fig.3(a), the cylinder with the radius of R, which three force couples act on, is in 

equilibrium. 

Let  MMM CA  , with the equilibrium condition  MMMM CAB 2 , its torque should be 

what is shown in Fig. 3(b). 

 
(a) 

 
(b)  

(c) 

Fig. 3 The Torsioned Body of the Cylinder which Three Force Couples Act on is in Unequilibrium 

At the place distant from the couple force MB (as is required by Saint Venant's Principle), a section of 

equivalence shaft between the section of 1-1 and 2-2 is intercepted perpendicularly and is cut apart along 

the central line to study the equilibrium of the lower half of the cylinder, on which the couple force MB acts 

as shown in Fig 3(c). 
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  is the torsional shear stress which acts on the end plane (AB). Break   up into two stress 

components  
xz  and  xy , which are perpendicular to each other. Assume the angle between    and xy   

is   , we get 

  cosxy  .                                                                                                                  (1) 

xz sin  
.                                                           (2) 

The resultant force xyF  and 
xzF  from the action of xy  and 

xz  on the half-circle section (AB): 

AdAF
ABAB

dcosxyxy   

.                                                                                   (a) 

Within (AB), calculating the integral using polar coordinates and assuming   the radius to the center 

O, we get micro area: 

dA dsd  .     

and micro-arc: 

dds  .                                                                     (b) 

The torsional shear stress at any point on the cross section of the cylinder: 

n
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.                                                                                                      (3) 

Substituting Eq.(b) and Eq.(3), Eq.(a) becomes that 
2
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The resultant force xyF  from the action of xy  on the half-circle section AB is zero. The resultant force 

xzF  from the action of 
xz  on the half-circle section (AB): 
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Substituting 
4

2
PI R


 , Eq.(d) becomes that 
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.                                                                                                                               (e) 

Using the same method, we get the shear stress on the cross section (CD): 0' xyF ;
'

xz

4

3

M
F

R


. 

Note: xzF  and 
'

xzF  being the same in strength and direction, the resultant force:  

 

'

xz

8

3
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M
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  

.                                                                  (h) 

Eq.(h) indicates that semicolumn (AB) moves along the axis z, which is not what really happens. 

Meanwhile, xzF  generates moment on the axis y: 

xz

8
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.                                                                                                                 (i) 
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Eq.(i) shows that semicolumn twists around axis y, which is obviously contradictory with the truth.  

Some people attempt to explain the contradiction by stress concentration, as shown in 4(a). They 

maintain that in the area of △ x acted on by the force couple BM within the plane (ABCD), only the 

resultant force  yzF , which is composed of the shear stress yz , can reach the equilibrium with the 

resultant force  z , composed of xzF  and '

xzF . 

If yz  existed, there would be new unequilibrium: the existence of yz  would break the equilibrium of 

Abn'm', the front half of the cylinder which is intercepted perpendicularly at the point of △ x/4 in the area 

of △ x/2 in front of the acting line mn of moment BM . As shown in Fig. 4 (b), on the half-circle section of 

m'n', exists a resultant force xzF , which is in equilibrium, equal in magnitude and opposite in direction, 

with the resultant force xzF  on the half-circle section (AB); however, there is no force to balance the 

resultant force xzF  composed of shear stress yz  that acts on △ x/4. 

Only under the condition that 0yz  , the equilibrium of the semicolumn (Abn'm') can be achieved. 

However, neither through the methods of Elastic Mechanics nor through those of material mechanics can 

the shear stress yz  be found in area of △ x within the moment acting body. It proves that stress 

concentration cannot be used to explain the unequalibrium in the torsion of cylinder. 

 

Fig. 4 The Stress Concentration can not Explain the Unequilibrium of Torsional Body 

Example 2 

As shown in Fig.5 (a), the round shaft acted on by couple m is divided along diameter d, and on the 

longitudinal section, owing to the shear stress reciprocal theorem  6 9、
, there will exist   1 7、

, whose 

direction is shown in Fig. 5 (b). The resultant force of shear stress on the longitudinal section OO ' CD and 

that on OO ' BA make up a moment to y-axis, which is not balanced with others, because there is no stress 

on both ends (AD) and (BC). 

 

Fig. 5 Semi-round Shaft is in Unequalibrium Under the Action of Two Balanced Couples 

Contradiction between Shear Stress Reciprocal Theorem and Newton's Third Law 

What is shown in Fig. 6 (a) is the uniform bar that has been cut. After it is cut vertically from the 

position mn in the middle part, the shear stress on its section is shown in Fig. 6 (b). 
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On the surface (ABCE) of the straight bar that bears the torque 
nM  and has been cut, according to the 

shear stress reciprocal theorem, there exists yx  that is caused by xy . From the torque Fig.7 we can see 

that, along the x direction of the bar, torque is a constant, therefore, the absolute value of shear stress yx  

on line 11' or 22' that have equal distance from the z coordinate should be equal. The present problem is 

where we shall draw yx  as far as to? Someone say, yx  should be drawn as far as to line mn, and 
'

yx  to 

there, too. By this way of drawing, a result violating the Newton's third law shall appear: according to the 

shear stress reciprocal theorem, if 
''

xy  is applied on section (mn), on section (m'n') there will be 
'''

xy . 

Existence of 
'''

xy  and 
''

xy  that are same value and same direction violates the Newton's third law. The 

Newton's third law cannot be wrong; it is only possible that there exists limitation in the shear stress 

reciprocal theorem. 

 
(a)                                                                                     (b) 

Fig. 6 Contradiction between Shear Stress Reciprocal Theorem and Newton's Third Law 

Self-contradiction of the Shear Stress Reciprocal Theorem 

From above we can see that, yx  shear stress shall not be drawn as far as to the line mm, and it shall pass 

the line. This practice conforms to the derivation conditions of the shear stress reciprocal theorem. The 

differential balanced bodies chosen for derivation of the shear stress reciprocal theorem are randomly 

chosen in the body given a force, including those differential balanced bodies that are differential bodies 

on the action line of external force and external torque. 

 

Fig. 7 Shear Stress Reciprocal Theorem Denies by Itself  the Shear Stress on Longitudinal Section 

In Fig.7 is drawn the shear stress that is deduced through shear stress reciprocal theorem from yx  and 
'

xy , and is between sections mutually vertical. The arrow of line 1-1' indicates yx  that is caused by 
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torsional shear stress xy , and arrow of line (1)-(1') indicates 
'

yx  caused by 
'

xy . Originally, line 1-1' and 

line (1)-(1') coincide together, and separate from each other to make it clearer. Obviously, any point on 

the line 1-1' will bear shear stresses that are equal in magnitude and opposite in direction, i.e. on any point 

the joint shear stress shall be zero: yx -
'

yx =0. Similarly we can see that, the shear stress resultant force of 

any points on the section (ABCD) will be zero, i.e. there is no shear stress on the section (ABCD). 

Conclusion 

1. Through the analysis of above four contradictory examples of the elasticity theory, we can draw the 

following conclusions: 

(1) Pure torsional shear stresses of the round shaft deduced by the present elasticity theory is not a real 

shear stress, but an equivalent shear stress.  

(2) All contradictions above are caused by the mistake of regarding equivalent shear stresses regarded 

as true stresses. 

(3) In order to solve the above fundamental contradictions of elasticity theory, what we can do is to 

revise the zero stress torque (the limit of torque acted on the unit area) identified by present elasticity 

theory, and convert it into non-zero stress torque
[11]

. 

2. Present elasticity theory cannot solve the above contradictions of unequilibrium, while equilibrium 

is the foundation of the theory, because the present elasticity theory believes that stress torque(the limit of 

torque acted on the unit area) is zero, but actually it is not zero. From the above analysis, we can draw the 

following conclusions on the new elasticity(stress torque) theory: 

(1) There is no shear stress on pure torsion cross-section, and the torque on the ring is produced by 

torsion stress torque(the limit of torque acted on the unit area), instead of shear stress; 

(2) When the material yields, stress torque and the angle strain produced by the equivalent shear 

stress(not stress, just means how much shear stress it equals when angle strain that is same as the torsion 

stress torque is produced) should be equal. 
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