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Abstract. Dynamic response of a functionally graded material circular plate subjected to thermal 
shock is investigated based on the von Kármán’s plate theory. The geometric imperfections of the plate 
are taken into account and the bottom surface of the circular plate is subjected to uniform thermal shock 
loadings. The deflections of dynamic response are obtained by numerically solving the governing 
equations using series expansions and Runge-Kutta method. The effects of the material constitution 
and initial geometric imperfection of the plate on the dynamic response are discussed. 

Introduction 

Comprehensive works on the transient response of structures under thermal shock have been reported 
in the literature. Most of these researches are involved the conventional composite materials or 
homogeneous materials. Huang and Duan[1] studied the dynamic buckling of a circular copper plate 
under laser irradiation. Based on the fully coupled thermoelastic theory, thermal dynamic stability of 
symmetrically laminated orthotropic rectangular plates subjected to an oscillating thermal load was 
analyzed by Markus, et al. [2].  

Functionally graded materials (FGM) have been regarded as one of the advanced inhomogeneous 
composite materials, usually made from metal and ceramic, taking advantage of the merits of constituent 
materials adequately. However, there have been few researches involving dynamic stability of FGM 
structures under thermal shock. Based on the classical shell theory with Sanders’ nonlinear kinematic 
relations, a dynamic thermal post-buckling behavior of functionally graded cylindrical shells subjected to 
the combined action of thermal load and applied actuator voltage was analyzed by Mirzavand, et al. [3]. 
A finite difference based method combined with the Runge–Kutta method was employed to predict the 
post-buckling equilibrium paths. On the basis of the third-order shear deformation shell theory, 
Mirzavand, et al. [4] obtained the piezoelectric functionally graded cylindrical shell buckling equilibrium 
paths and dynamic buckling temperature. Mehrian and Naei[5] studied dynamic response of functionally 
graded partial annular disk under radial thermal shock by using a hybrid Fourier-Laplace transform in 
conjunction with finite element approach.  

In the present paper, the dynamic response of imperfect circular FGM plates under thermal shock is 
investigated. Some regular conclusions are achieved through analyzing and discussing the 
numerical solutions in detail. 

Problem Formulation 

Material Properties of the FGM Plate  

We consider a circular functionally graded plate with uniform thickness h, radius R. The mid- plane of 
the plate is referred to cylindrical coordinates r and θ in the radial and the circumferential directions. 
Thickness direction coordinate is z, positive upward. The material properties of the FGM plate are 
assumed to vary only in the thickness direction from full metal at the top surface to full ceramic at the 
bottom. The volume fractions and material properties are 
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Where cP  and mP  are material properties of ceramic and metal, respectively.  cV z  is the volume 
content of the ceramic, k  is the volume fraction index of the ceramic.  

Fundamental Equations 

The corresponding displacements in the mid-surface of the circular plate are designated ( , )u r t  and 

( , )w r t in directions of r and z, respectively. Considering axisymmetric deformation, the displacement 
v in the direction of  is zero. Linear geometrical equations and constitutive equations are expressed as  
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Where r and

 are the normal strains at an arbitrary point in the mid-surface of the deformed plate, 

r and
 are curvatures, produced by the deformation, 0 ( )w r is the initial geometric imperfection, t is the 

time,  r and  are the normal stresses in r and directions, respectively.  ,T z t  is the temperature rise. 
Substituting Eqs.(2a, b) into Eqs.(3a, b), integrating r and  along the thickness direction, the 

membrane forces and the bending moments per unit area are given by 
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The Transient Temperature Field  

The dynamic response of FGM circular plate under the initial steady-state heat balance environment 
and suddenly subjected to uniform thermal loads on its lower surface is investigated. The temperature 
field of the plate varies with time and the location of the thickness direction, and its upper surface 
exchanges heat with the external environment. Thus, the heat conduction equation in the absence of 
internal heat sources reduces to
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The thermal initial conditions and the boundary conditions on the lower and the upper surfaces, are 
specified as 
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Where rh is the heat exchange coefficient between the upper surface of the plate and the environment. 
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The Laplace transformation technique and the power series method are employed to solve Eps(5, 6) so 
the temperature can be obtained. 

Motion Equations and Dynamic Governing Equations  

Equilibrium equations of the circular plate with axisymmetric deformations are derived in terms of the 
resultant forces as follows: 
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Substitute Eqs. (2a, b), (4a, b) into Eqs. (7a, b) and introduce the following dimensionless quantities for 
an easy solution. 
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Where mE  is the Young’s modulus of metal material. Therefore, the dimensionless governing 
equations are 
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in which the linear differential operators 
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differential expressions of U and W, given in the Appendix. 
The edge of the plate considered is simply supported, so the dimensionless boundary conditions at the 

edge and the continuous conditions at the center of the plate are written as 
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Assume that the circular FGM plate axisymmetric deflection of expression is a power series[1], this is 
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initial deflection at the center point of plate. 
Substituting Eqs.(10a, b) into Eqs.(8a, b) , and integrating the dimensionless governing equations, 

yields 
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Where 1C ～ 6C  are constants of integration, 1 , 2 , 1 ～ 5  polynomial for x. Use the boundary 

conditions U=0 at x=0 and x=1, we have 
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Substituting Eq.(11a) into Eq.(11b), in view of the finiteness of W  and 
2 3

2 30

1 d dlim 0
d dx

W W
x x x

 
  

   
at x=0, we have 3 0C  , 5 0C  . 

Use the boundary conditions at x=1 will be 0W  , 
2

2 0W
x





, we obtained  

2
4 1 2 4 5

3
3C B B B B B       , 3 2

6 6 7 8 9 10C B B B B B       . 
Detailed expressions of polynomial 1B ～ 10B  are given in the Appendix. The Eqs.(11b) will be solved 

numerically by using Runge-Kutta method.

 
Numerical Results and Discussions 

In the computation, a circular FGM plate made of the constituents of SiC and Ni is considered. 
Poisson’s ratio of the plate is constant and spedified as 0.3  . The material properties of the constituents 
are reference to literature [6]. The geometries of the FGM circular plate are 0.2mR  , 0.01mh  . The 
lower surface is subjected to thermal shock loading ( 2, ) (1 )atT h t T e    , here 300KT  , 10a  . 
Given the heat exchange coefficient is 50rh  .  
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Fig. 1 The Central Deflection Responses of the 
FGM Circular Plate with Different n 
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Fig. 2 The Central Deflection Responses of the 
FGM Circular Plate for Some Specified 

Imperfections 
For some specified values of volume fraction index n at 0 0.001  , Fig.1 shows the transient central 

deflections in the middle surfaces of the FGM circular plate under thermal shock. The maximum central 
deflections of the metal and ceramic FGM circular plate are intermediate to those of the metal and the 
ceramic plate and increase monotonously with the increasing of volume fraction index n for thermal 
shock. Given value of power law index n=2, Fig.2 shows the dynamic response of the plate is very 
sensitive to the magnitude of the initial imperfect. Similar discussions can be found in literatures [1, 6]. 

Summary 

Dynamic response of a functionally graded material circular plate subjected to thermal shock is 
investigated by using the series expansions techincal and Runge-Kutta method. It is found that the 
maximum central deflections increase monotonously with the increasing of volume fraction index n for 
thermal shock. The ability of the structure to withstand thermal shock is reduced with the increasing of 
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power law index n. And the dynamic response of the plate is very sensitive to the magnitude of the initial 
imperfect. 
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  

     

   



 
    

      

 

2 2 2 2 4 2 4
7 2 4 2 4 1 4 2 0 2 1 4 4 0

2 4 4
4 1 4 4 0 2 4

2
2 4 2

4
2 2 4 4

0.146 0.275 0.596 1 0.352 0.352

0.741 1 0.09 0.625 0.307 1 0.778

0.382 1 0.778

1

1

B A A A A D D A A D D A

A D D A A A D D A

A D D A

    

   

 

   

          

    

   
 



       

     

  

2 2 2 2 4 2 4
8 2 4 1 4 2 0 2 4 4

2 4
2 2 4 2 4 2 4 4

4 2 1 4 0 4
2

0 1 4 4 0
1

4
2 4 2 4 2 0

.397 1 0.097 0.183 0.313 0.389

50.06 0.234 0.494 0.382 1

0.307 0.625 0.778

0 1 1

1

1 ,

TB A A D D A A A D N

D D AA A D D A D D A
D

A A D D A

   

    

 

    

    

   


  







  

4 4
9 4 4 0 2 4 0.380 9 0.313T TB A D N A D N  , 10 0 0 2 0 4=0.078 +0.024 +0.112B D D A D A . 
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