
Dynamic Buckling of a FGM Euler-Bernoulli Beam under Thermal Shock 

via Symplectic Method 

Jing-Hua ZHANG
1,a

, Xing-Xing ZHAO
1,b,*

 
1
 School of Sciences, Lanzhou University of Technology, Lanzhou 730050, China 

a
zjhhrb@163.com, 

b
zhaoxx0810@126.com 

*Corresponding author 

Keywords: Euler-Bernoulli Beam, FGMs, Thermal Shock, Symplectic Method, Dynamic Buckling. 

Abstract. Based on Euler-Bernoulli beam theory, the dynamic buckling of a functionally graded beam 
subjected to thermal shock is investigated in the Symplectic space. The boundaries of the FGM beam are 
simply supported at one end, and the other is clamped. The dynamic buckling problem is reduced to 
zero-eigenvalue problem. The buckling mode and critical thermal axial forces can be obtained through 
bifurcation condition, and the critical temperature rise of the functionally graded beam is obtained by 
inverse solution.  

Introduction  

Functionally graded materials (FGMs) have been regarded as one of the advanced inhomogeneous 
composite materials. The structure made from functionally graded materials, often operates in high 
temperature gradient thermal environment with static or dynamic thermal loads. Buckling and 
post-buckling caused by thermal loads have been attracted much research interest of mechanics workers 
[1]. 

Up to now, most of the research on functionally graded structural thermal buckling or thermal 
post-buckling is limited to static problems. Javaheri and Eslami[2] investigated the thermal buckling of 
rectangular FGM plate based on classical as well as higher-order shear deformation theories and obtained 
the closed form solutions of the problem under several types of thermal loadings. Based on the first-order 
and the third-order shear deformation theories, investigation of nonlinear bending and post-buckling of 
circular functionally graded plates subjected to mechanical and thermal loadings were performed by Ma 
and Wang [3]. 

In contrast with the static buckling, dynamic buckling of functionally graded structures under thermal 
shock is much less. Based on the classical shell theory, dynamic thermal post-buckling behavior of 
functionally graded cylindrical shells subjected to the combined action of thermal load and applied 
actuator voltage was analyzed by Mirzavand, etc. [4], in which the temperature dependency of FGM 
properties was considered. Then, a finite difference method combined with the Runge–Kutta method was 
employed to predict the post-buckling equilibrium paths, and the dynamic buckling temperature 
difference was detected according to Budiansky’s stability criterion. On the basis of the obtained results, 
Mirzavand etc. [5] predicted post-buckling equilibrium path and obtained dynamic buckling temperature 
of piezoelectric FGM cylindrical shell, based on the third-order shear deformation shell theory. Dynamic 
thermal buckling of suddenly heated FGM cylindrical shells under combined axial compression and 
external pressure was also investigated by Shariyat[6] using the finite element method, where the 
temperature dependency of FGM properties is considered. 

However, the traditional methods were adopted to solve elastic mechanics in aforementioned studies. 
Herein, the Symplectic method is used to study the stability of functionally graded Euler-Bernoulli beam 
under thermal shock.  
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Problem Formulations  

Material Properties of the FGM Beam 

We consider a FGM beam (length l , thickness h and width b) with rectangular cross-section, which is 
made from a mixture of ceramics and metals. The material properties of the FGM beam are assumed to be 
varied only in the thickness direction from full metal at the top surface to full ceramic at the bottom. The 
volume fractions are expressed by a simple power law distribution, as follows. 
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Where 
cP  and 

mP  are material properties of ceramic and metal, respectively.  cV z  is the volume 
content of the ceramic, k  is the volume fraction index of the ceramic. 

Canonical Equations  

The corresponding displacements in any point of the beam are designated ( , )u x t  and ( , )w x t  in 
directions of axis x and transverse z, respectively. FGMs are considered as a linear thermo-elastic. 

According to Euler-Bernoulli beam theory, the axial stress x  can be expressed by 
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Where  ,T z t (Unit: K) is the temperature variations, t (Unit: s) is the time.  
The FGM beam is considered as one end fixed and other end simply supported, the boundary 

conditions are expressed by 
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The bending deformation can play a dominated role in all the deformations of the beam. For FGM 
beams, Lagrange function can be expressed by 
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Where I is the quality of unit length of FGM beam, D is stiffness coefficient of FGM beam, TN and 
TM are thermal axial force and thermal moment, respectively. I , D , TN and TM are defined as 
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For introducing the Hamilton System, the original variable are defined by w q , f
f

t



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,where  f  is 

a random variable. The dual variables is defined by 
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Where  denotes the variation, p  represents the momentum of system. H is a Hamilton function of 
system. It can be expressed by 
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According to Hamilton principle, dual canonical equations in the Hamilton system can be obtained:  
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Then, in the Hamilton system, the boundary conditions (3) can be expressed by 
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The Transient Temperature Field 

The dynamic response of FGM beam under the initial steady-state heat balance environment and 
suddenly subjected to uniform thermal loads on its bottom surface is investigated. The temperature field 
of the beam varies with time and the location of the thickness direction, and its upper surface exchanges 
heat with the external environment. Thus, the heat conduction equation in the absence of internal heat 
sources reduces to
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The thermal initial conditions and the boundary conditions on the lower and the upper surfaces, are 
specified as 
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Where rh is the heat exchange coefficient between the upper surface of beam and the environment. Here, 
the Laplace transformation technique and the power series method are used to solve Eqs.(10,11), and the 
transient  temperature field in the FGM beam can be obtained. 

Solving the Canonical Equations  

Introduce the following dimensionless quantities for an easy solution. 

x
X

l


, 

q
Q

l


, 

2TN l

D
 

                                                                                              (12) 

In the Hamilton system, a dimensionless form of the canonical equation is expressed by 
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Equation (13) is a linear homogeneous equations, its general solution is given by 
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Substituting the boundary Conditions into Equation (14) and solving it, we can obtain bifurcation 
conditions and buckling modes equation, as follows: 
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Numerical Results and Discussions  

The bifurcation condition of functionally graded beams is solved by Newton-Raphson method. So, the 
dimensionless characteristic values can be obtained, there are 

1 20.19  , 2 59.67  , 3 118.90  , 4 197.85  , 5 296.55  , ....... 
Then, substituting 

n  into equation (15), the buckling mode can be obtained. First and second buckling 
modes are plotted in Fig.1 and Fig.2. 
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Fig.1 First Order Critical Buckling Mode             Fig. 2 Second Order Critical Buckling Mode 

In the computation, the FGM beam made from SiC and Ni is considered. Material properties of the 
constituents can be found in reference [7]. If no special specification, the geometries of the FGM beam are 

0.4ml  , 0.01mh  , 5st  and 10a  . The heat exchange coefficient is 50rh  . The critical 
temperature rise T of the functionally graded beam is contained in the thermal axial forces. It can be 

obtained by inverse solving 
2TN l

D
  . 

Tab.1 the Critical Temperature Rise of the FGM Beam 

order 1 2 3 order 1 2 3 

n  20.19 59.67 118.90 n  20.19 59.67 118.90 
SiC 249.76 738.15 1470.86 5k   110.69 327.13 651.86 

0.5k   157.37 465.09 926.76 10k   101.55 300.13 598.05 
1k   137.41 406.11 809.23 100k   85.87 253.80 505.73 
2k   123.80 365.89 729.08 Ni 83.61 247.11 492.41 

Table 1 shows the critical temperature rise of FGM beam. It can be found that the critical temperature 
rise significantly increase with the increasing of the order of modes. With volume fraction index k of 
material constituents increasing, the critical temperature rise decrease. However, with the increasing of k, 
the ability of withstanding thermal shock decreases. 

Summary 

The dynamic buckling characteristics of functionally graded beam under the thermal shock are studied. 
The solving process for dynamic buckling of the functionally graded beam subjected to thermal shock is 
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established by using symplectic method. The problem is finally reduced to zero-eigenvalue problem in the 
symplectic space. The buckling mode and critical thermal axial forces are obtained through bifurcation 
condition, and the critical temperature rise of the functionally graded beam is obtained by inverse solution. 
The results show that the critical temperature rise significantly increases with the increasing of the order 
of modes. With volume fraction index k of material constituents increasing, the critical temperature rise 
decrease. 
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