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Abstract. Taking into account the impact of the flexural and in-plane vibrations , an improve 
Fourier series method is employed to analyze the vibration of moderately thick coupled plates. The 
vibration displacement is sought as the linear combination of a double Fourier cosine series and 
auxiliary series functions. The use of these supplementary functions is to solve the discontinuity 
problems along the edges. Then Rayleigh-Ritz method can give the matrix eigenvalue equation 
which is equivalent to governing differential equations of the plate. Finally the numerical results are 
presented to validate the correct of the method. 

Introduction 

Coupled structures are commonly used structural components in many branches, and their 
vibrational behavior is very important to the performance of the equipments, so many scholars 
studied the vibration characteristics of coupled plates and proposed various modeling methods. 
Cuschieri used mobility power flow analysis approach to compute the transmitted vibrational power 
of two plates joined at a right angle along a common edge [1]. Other researchers used wave 
propagation and modal analysis method [2], dynamic stiffness method [3] to research the coupled 
plates. These investigations mentioned above considered only the bending waves and ignored the 
in-plane waves, but the exclusion of in-plane waves may lead to errors at high frequencies. In order 
to establishment more correct vibrational model of coupled plates, some researchers studied the 
vibration characteristic by using the bending and in-plane vibration. [4, 5, 6]. 

These researches of the coupled plates above are based on the classical Kirchhoff hypothesis, and 
this theory neglects the effect of shear deformation which results in the over-estimation of vibration 
frequencies. The more correct model can be established by Mindlin hypothesis, so McCollum et al 
used this theory to study the vibration characteristic of coupled plates [7]. But the researches based 
on Mindlin theory are rarely, and the boundary conditions of coupled plates which have been 
researched are classic conditions, the coupling angle is right, the coupling stiffness is infinite.  

To solve the limitions of the analysis method to the coupled plates with boundary supports and 
coupling conditions, taking into account the impact of the flexural and in-plane vibrations and based 
on Mindlin theory, the vibration model of coupled plates is established. To simulate arbitrary 
coupled conditions and boundary conditions, six types of springs along the coupling edges and five 
kinds of springs along the edges are attached. The displacement functions of the flexural and 
in-plane vibration are described by the improve Fourier series method. Using Rayleigh-Ritz method, 
the model of coupled plates with arbitrary boundary conditions is established. Finally the numerical 
results are presented to validate the correct of the method. 

Structural Model of Coupled Plates 

In order to establish a general model, the structural model of coupled plate is shown in Fig. 1. 
Coupled plate consists of plate i (i=1, 2,…, n), and the coupling angle of these two plates is θi. The 
length, width and thickness of plate i is ai, bi and hi. Suppose that the second plate is connected to 
plate 1 at the common edge x1=a1 (or x2=0). Oxyz coordinate system is the overall coordinate 
system of the coupled plated, Oxiyi is the local coordinate system of i-th rectangular plate structure. 
The boundary conditions and coupling conditions of coupled plates are simulated by setting 
restraining springs along edges and coupling edge. To simulate the boundary conditions of coupled 
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plates, five types of linear spring (translational, rotational, torsional, normal and tangential springs) 
are needed. The six types of spring are three types of displacement restraining spring and three 
types of rotational restraining spring to simulate the arbitary coupling conditions. All classical 
homogeneous boundary conditions and the rigid coupling condition can be easily derived by simply 
setting each of the spring constants to be infinite or zero.  
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Fig. 1 A Couple Plate Structure with General Elastic Boundary Support and Coupling Conditions 

The Displacement Functions of Coupled Plates 

According to the bending and in-plane vibration theory, the transverse displacement of the plate 
median surface and the rotations of the cross-section, respectively, along the x direction and the y 
direction, the in-plane longitudinal and shear displacements are utilized. In this study, these 
quantities are expressed in form of improved Fourier series expansions: 
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Where l=1, 2, s=1,2,…,5, λm=mπ/a, λn=nπ/b, Aimn, Bimn, Cimn, Dimn, Eimn, ,s j
lmd  and ,s j

lnf  are the 
expansion coefficients of i-th rectangular plate, and 
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Theoretically, there are an infinite number of these supplementary functions. However, one needs 
to ensure that the selected functions will not nullify any of the boundary conditions. It is easy to 
verify that ξ1a(0)= ξ1a(0)=ξ1a

’(a)=0, ξ1a
’(0)=1, ξ2a(0)=ξ2a(0)=ξ2a

’(0)=0, ξ2a
’(a)=1, similar conditions 

exist for the supplementary function in y-direction. Though these conditions aren’t necessary, they 
can simplify the subsequent mathematical expressions and the corresponding solution procedures.  

One shall notice from Eqs. (1), (2), (3), (4) and (5) that beside the standard double Fourier series; 
four single Fourier series are also included. The potential discontinuity associated with the 
x-derivative and y-derivative of the original function along the four edges can be transferred onto 
these auxiliary series functions. Then, the Fourier series would be smooth enough in the whole 
solving domain. Therefore, not only is this Fourier series representation of solution applicable to 
any boundary conditions, but also the convergence of the series expansion can be improved. 

Energy Model of Coupled Plates 

The Rayleigh-Ritz method will be used to find the solution, specifically the Fourier expansion 
coefficients in eqs. (1) – (5). The Lagrangian’s function L for the coupled plate system can be 
generally defined as 

L V T                                                  (7) 

In the above equation, the total potential energy V can be expressed as 
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Where bend
iV  and inplane

iV  represent the strain energy associated with the bending and in-plane 
vibration of the i-th plate; spring

iV  indicates the potential energy stored in the bending-related and 
in-plane-related boundary springs of the i-th plate; bend

iT  and inplane
iT  are the kinetic energies of the 

i-th plate; couple
iV  denotes the potential energy associated with the coupling springs.  

  By substituting the displacement functions (1) - (5) into the Lagrangian (8) and minimizing the 
result against all unknown Fourier coefficients, one is able to obtain a final system of linear 
equations as 

2( )h  K M G 0                                        (10) 

Where K and M are the stiffness and mass matrices, and G is a vector of the entire unknown 
Fourier expansion coefficient. The natural frequencies and eigenvectors of coupled plates can be 
obtained through solving Eqs. (10).  
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Result and Discussion 

Several examples involving various boundary conditions will be discussed in this section. To 
avoid any comparison of the round off results which might be unrealistic, the non-dimensional 
frequency is used. For the analysis, and Poisson’s ratio μ=0.3, and shear correction factor k=5/6 are 
used. The lengths for plate 1 and 2 are a1=1m and a2=1.4m, respectively, and the widths are 
b1=b2=1.2m. In identifying the boundary conditions, letters F, S and C have been used to indicate 
the free, simply and clamped boundary conditions along an edge, respectively. 

In previous studies, the coupling angle is mostly assumed to be 90°. The coupling angle is not 
always 90° in engineering practice, so it’s also significance to establish the vibration model of 
coupled plates with arbitrary angle, this method can obtain the desired model through setting the 
coupling angle θ. The non-dimensional frequencies Ω=ω(ρ1h1/D1)1/2 of coupled plates with different 
angle are shown in Table 1. The thicknesses of two plates are h1=h2=0.1m, the coupling stiffness is 
rigid, the boundary condition of bending and in-plane vibration all are free. At the same time, the 
solutions with FEA are also presented.   

Tab. 1 The First Seven Frequency Parameters for Coupled Plates with Different Coupling Angle 

θ method 
the non-dimensional frequency Ω＝ω(ρ1h1/D1)1/2 

1 2 3 4 5 6 Differenc
e 

90° IFSM 3.0193 4.6708 6.9868 9.6565 15.2791 16.8031 0.79% FEA 3.0124 4.6337 6.9562 9.6673 15.246 16.8130 

120° IFSM 3.3268 4.5372 7.7774 9.7742 15.5197 16.7193 0.68% FEA 3.3199 4.5063 7.7479 9.7857 15.4950 16.7300 

150° IFSM 3.6271 4.4907 9.0659 10.4740 16.1683 16.3911 0.26% FEA 3.6199 4.4849 9.0420 10.4580 16.1710 16.4060 
Traditionally, the coupling conditions and boundary conditions are limit to rigid coupling and 

classic boundary. In this paper, the coupling and boundary conditions are simulated by setting the 
restrain springs along edges, and the vibration model of coupled plates with arbitrary elastic 
coupling and boundary conditions. The first three modes are shown in Fig.2. The coupling spring 
stiffness Kc1=Kc2=Kc3=kc1=kc2=kc3=10×D1, and the boundary condition of bending and in-plane 
vibration all are CFCCCF. It’s seen that the weak coupling actually allows the plates to move 
almost independently. 

 
(a) The first mode       (b) The second mode         (c) The third mode 

Fig. 2 The first Three Mode Shapes of Coupled Plates with Elastic Coupling 

Conclusion 

An improved Fourier series method is proposed to analyze the free vibration of coupled plates 
with general elastic boundary supports and arbitrary coupling conditions. The unknown expansion 
coefficients can be solved through using Rayleigh-Ritz method. In comparison with most existing 
techniques, the current one does not need any formulation or implementation modifications to 
accommodate different boundary and coupling conditions. Finally, the numerical results are 

275



 

presented to validate the accuracy and convergence of the method. 
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