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Abstract. For imprecise stress solution of the plastic zone near mode-I crack line of infinite wide 
plate under unidirectional uniform stress in relevant research literatures, this paper, by virtue of 
Mohr-Coulomb yield criterion and line field analytical method, re-infers and solves the stress 
general solution of the plastic zone satisfying equilibrium equation and yield criterion, as well as the 
stress solution and the elastic-plastic boundary of the plastic zone (scope of the plastic zone), points 
out unreasonable points in relevant research literatures, solves the similarities and differences about 
the stress solution of the plastic zone near mode-I crack line with Tresca yield criterion and 
Mohr-Coulomb yield criterion under unidirectional tension and press, and corrects imprecise results 
about the stress solution of the plastic zone near mode-I crack line of infinite wide plate under 
unidirectional uniform stress in relevant research literatures.  

Introduction  

Different from classical fracture theory which takes the stress field near the crack tip as the object 
of study, the analytical method of crack line field takes the stress field near the crack line as the 
object of study and solves the stress solution of the plastic zone through simultaneous equilibrium 
equation and selected yield criterion, which can effectively solve the problem that in a certain area 
near the crack line it is not restricted by small yield assumptions, and whose derivation process is of 
strict mechanical and physical significance, and in theory we can get infinitely precise solution of 
the whole crack elastic-plastic zone’s stress values. As early as 1984, J. D. Aachenbach et al [1, 2] 
first proposed the idea of line field analysis, in 1987, Guo Quanxin et al [3] developed this 
analytical method, and based on this, Yi Zhijian et al [4-6] proposed a complete line field analytical 
method, while Jian-hua Wang [7], Zhou Xiaoping [8-11], C. Guo [12], Y. X. Zhang [13], Guo 
JunHong [14], M. K. Huang [15], B. H. Zhang [16], Wang Cheng [17-18] et al developed research 
on theory and application with line field analytical method. Although the analytical method of crack 
line field, after thirty years of development, has made some valuable research achievements, there 
are still many problems not completely solved, limiting this method’s development, application and 
promotion. For problems of mode-I crack of infinite wide plate under unidirectional uniform stress, 
there are main research literatures including: literatures [4]~[6] research ideal elastic-plastic 
materials with Tresca yield criterion; literature [18] researches the damage of concrete micro-crack 
elastic and brittle static force under unidirectional tension with Mohr-Coulomb yield criterion, of 
which literatures [4] and [5] only get a group of particular solutions for the stress field of the plastic 
zone and think that simply by equilibrium equation and yield criterion we cannot get the stress 
general solution of the plastic zone, literature [6] proves that this conclusion is wrong through 
derivation, but the lack of one ordinary differential equation derived by yield criterion in literature 
[6] causes the problem that first order power term and higher order terms in the stress general 
solution of the plastic zone derived do not fully satisfy the yield criterion, and the general solution is 
not precise enough; literatures [17] and [18] follow the derivation process of literature [5] with line 
field analytical method, whose results are as unreasonable as that in literature [5]; literatures 
[7-11]cite the plastic zone stress general solution in literature [6] in the study on a pair or two pairs 
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of concentrated force with Tresca yield criterion, resulting in imprecise derivation results. For 
imprecise stress solution of the plastic zone near mode-I crack line of infinite wide plate under 
unidirectional uniform stress in above relevant research literatures, this paper, by virtue of 
Mohr-Coulomb yield criterion, will re-infer and solve the stress solution and the elastic-plastic 
boundary (scope of the plastic zone) of the plastic zone near the crack line satisfying equilibrium 
equation and yield criterion, solve the similarities and differences about the stress solution of the 
plastic zone with Tresca yield criterion and Mohr-Coulomb yield criterion under tension and press, 
and fully correct imprecise results about the stress solution of the plastic zone near mode-I crack 
line of infinite wide plate under unidirectional uniform stress. 

Stress Solution of the Elastic Zone near the Crack Line  

 

Fig. 1 Infinite Plate for Unidirectional Tension Stress Cracking on Mode-I Plane 

   For the elastic mechanical problem shown in Fig. 1, Using Westergaard stress function [4, 6, 7], 
the Stress expressions are: 
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Expand equation (1) at 0  with Taylor series, then we can get the stress power series 
formal solutions of the elastic zone near the crack line as follows:  
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Equation (1) can be infinitely expanded with Taylor series according to precision requirements, 
this paper herein takes ’s third power term and ignores 4  higher order term. Through Taylor 
expansion analysis in equation (3), first terms of e y

x y ，  are exact stress solutions on the classical 
stress intensity factor fracture theoretical crack line, namely a particular solution of equation (3) 
when 0  .   

Equilibrium Equation  

For the infinite wide plate with mode-I crack under unidirectional uniform tension shown in Fig. 
1, its equations of static equilibrium are:  
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Mohr-Coulomb Yield Criterion 

According to Mohr-Coulomb theory, in consideration of principal stress intensity 
order 1 2 3    , the yield criterion can be expressed as:   
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Wherein, c  and   respectively refer to rock-soil cohesion and internal friction angle 
parameters.  

From elastic mechanical stress positive and negative rules that “both positive and negative are 
positive”, for the plane stress problem under unidirectional tension, the values of e e

x y  、 、  in 

equation (3) are all greater than 0, and in the vicinity of 0  , the first term of e

xy  relative to 
e

x  and e

y  is a high order minor term, namely e e e

xy x y  、 , so the principal stress intensity 
order is:  
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Substitute equation (6) into Mohr-Coulomb yield criterion equation (5), we can get: 
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Wherein, c and respectively refer to rock-soil cohesion and internal friction angle parameters.  
To simplify the formula, please let 2 cos

1 sint

c
C








.  

For the plane stress problem under unidirectional uniform compression, the values of e e

x y  、 、  
in equation (3) are all less than 0, upon comparison of the principal stress intensity, we can get 
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Mohr-Coulomb yield criterion as follows: 
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Wherein, c and respectively refer to rock-soil cohesion and internal friction angle parameters.  
To simplify the formula, please let 2 cos
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Compare equations (7) and (8) with Tresca yield criterion, as shown in the expression of Tresca 
yield criterion, i.e. 1 3

max 2
k

 



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 ( k refers to the maximum shear stress limit), for the plane 

stress problem under unidirectional tension and press, in consideration of the principal stress 
intensity order, when we substitute it into Tresca yield criterion, the left side of the equation is 
consistent with the left sides of equations (7) and (8), but the constant term on the right side of the 
equation is of different physical significance, reflecting in that the yield stress of Mohr-Coulomb 
yield criterion is less than the yield stress of Tresca yield criterion.    

Stress General Solution of the Plastic Zone near the Crack Line  

In the plastic zone near the crack line,
x and

y are symmetric relative to the crack line,
xy is 

anti-symmetric relative to the crack line, the coordinate system is as shown in Fig. 1, so we can 
expand stress component at 0y   with Taylor series as follows:  
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Substitute equation (9) into equilibrium equation (4), compare y ’s power, omit high order infinite 
minor terms above 4y , we can get:  
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Substitute equation (9) into yield criterion equation (7), compare y ’s power, omit high order 
infinite minor terms above 4y , upon simplification, we can get:  
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As shown in equations (10) and (11), when 0 tq C and 0p is a constant less than
tC , we can get a 

group of particular solutions satisfying equilibrium equation and yield criterion: 

2 2 1 3 0q p s s     . According to the analysis in the previous section, the left side of Tresca 
yield criterion expression is the same as that of Mohr-Coulomb yield criterion expression, 
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literatures [4] and [5] only get a group of particular solutions with Tresca yield criterion and an 
incorrect 0r  expression through elastic-plastic boundary matching, which think that simply by 
equilibrium equation and yield criterion we cannot get the stress general solution of the plastic zone, 
the derivation in literature [6] and this paper’s follow-up derivation prove that this conclusion is 
wrong, but the lack of (12c) ordinary differential equation derived by yield criterion in literature [6] 
causes the problem that first order power term and higher order terms in the stress general solution 
of the plastic zone derived do not fully satisfy the yield criterion, hereby we need to point out that 
both literatures [17] and [18] follow the derivation process of literature [5] respectively in the study 
on the damage of concrete micro-crack elastic and brittle static force under unidirectional tension 
and the study on the crack under internal pressure of rock mass joint, whose results are as 
unreasonable as that in literature [5].  

Simultaneous equations (10a), (10c) and (11b), substitute 
0 tq C  into the equation, we can get 

the ordinary differential equation general solution as follows:  
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Substitute equation (12) into equations (10a) and (10c), we can get:  
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Simultaneous equations (10b) and (10c), substitute equations (13) and (14) into the equation, we 
can get:  
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Substitute 0 tq C  and equations (12)-(16) into equation (9), we can get the stress general 
solutions of the plastic zone near the crack line as follows:  
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Wherein, 1c , 2c  and 3c are undetermined coefficients.  
Equation (17) is the general solution expression of y ’s third order power term and lower order 

power terms strictly satisfying equilibrium equation and yield criterion, namely satisfying equations 
(10) and (11) at the same time. As shown in the above general solution derivation process, if you 
want to solve 4y  and higher order power terms, you only need to expand the plastic zone stress 
equation (9) into high order multiple-term equation with Taylor series and substitute it into 
equilibrium equation and yield criterion, compare y ’s power, equations (10) and (11) will increase 
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corresponding equations, increased number of equations is the same as the number of unknown 
terms, and the general solution can be obtained by solving the system of ordinary differential 
equations, namely that the stress power series form general solution of the plastic zone near the 
crack line can be solved to y ’s any power high order.  

For solving the plane stress under unidirectional compression with Mohr-Coulomb yield criterion, 
we only need to select yield criterion equation (8), simultaneous equilibrium equation, substitute it 
into the above general solution solving process, and change 

tC  into 
cC , we can get the general 

solution expression the same as equation (17), specific derivation process will not be repeated here.  
In the study on the plane stress problem under unidirectional tension and press, the left side of 

Tresca yield criterion expression is consistent with the left side of equation (7), we only need to 
change 

tC  into 2k , and the expression for the stress general solution of the plastic zone obtained is 
the same, specific derivation process will not be repeated here. In this paper, the zero-order power 
term of general solution expression (17a, b) and the first-order power term of equation (17c) are the 
same as that in literature [6]. However, we must point out that the zero-order power term and the 
first-order power term obtained in literature [6] can only satisfy equilibrium equation and partial 
Tresca yield criterion, while second-order power term and higher order terms 

2 2 1 3p q s s、 、 、  do 
not satisfy equation (11c), namely not fully satisfying yield criterion, and the general solution is 
imprecise. Therefore, literatures [7-11] cite the plastic zone stress general solution shown in 
literature [6], whose results of derivation are imprecise. 

To match with the elastic zone stress component equation (3), we need to change x y，  
expressed in equation (17) into r，  through coordinate transformation. Substitute cosx r   
and siny r   into equation (17), expand it at 0  with Taylor series, omit high order infinite 
minor terms above 4y , we can get: 

)(
)(

2
)(

),( 42

2
3

2

2
3

2
2

1

2

1p  O

cr

rc

cr

rc
C

cr

c
r tx 



























                (18a) 

)(
)(

2),( 42
3

2

2
1p  O
cr

rc
Cr ty 




                                   (18b) 

)(
)(

3
)()(

6
)(

),( 43

2
5

2

3
3

2
2

1
3

2

2
1

2
2

1p  O

cr

rc

cr

rc

cr

rc

cr

rc
rxy 






























         (18c) 

Wherein, 1c , 2c  and 3c  are undetermined coefficients.  

Elastic-Plastic Boundary near the Crack Line and Matching Results  

Elastic-plastic boundary 
p ( )r r   is symmetric relative to the crack line, expand elastic-plastic 

boundary 
p ( )r r   at 0   with power series as follows [3]: 
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Wherein: 
0r  refers to the length of the plastic zone on the crack line, while 

0r  and 
2r  are 

undetermined coefficients.  
Substitute equation (19) into equation (18), we can get the Taylor series expansion equation of 

the plastic zone stress on the elastic-plastic boundary at 0   as follows:  
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In a similar way, substitute equation (19) into equation (3), we can get the elastic zone stress as 
follows:  
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The matching conditions for the elastic zone and the plastic zone on the elastic-plastic boundary 
near the crack line are: they should meet continuity conditions on the elastic-plastic boundary, 
namely the normal component at any a point along the boundary of the elastic stress field and the 
plastic stress field should be the same, so does the tangential component. Solve the unit normal 
component at any a point on the elastic-plastic boundary near the crack line with equation (19), 
substitute into normal and tangential stress formula [5], compare  ’s power, upon simplification 
and decoupling, we can get [5]: 
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Wherein: ,3,2,1,0n  
Substitute equations (20) and (21) into equation (22), we can solve undetermined coefficients as 

follows:  
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Substitute equations (23a) and (23b) into equation (19), namely the elastic-plastic boundary. 
Substitute equations (23a) and (23c)-(23e) into equation (17), namely the stress solution of the 
plastic zone near the crack line, the expressions of equations (23a, c, d) are consistent with those in 
literature [6]. The first-order power term and higher order terms of the stress general solution of the 
plastic zone in literature [6] do not strictly satisfy yield criterion, the elastic-plastic boundary 
matching equation is different, so the expressions of equations (23b, e) are inconsistent with those 
in literature [6], but this paper adopts the plastic zone stress general solution strictly satisfying yield 
criterion to solve undetermined coefficients, so the physical and mechanical relationship is more 
precise.       

Obviously, through elastic-plastic boundary decoupling matching, for the plane stress problem 
under unidirectional uniform tension and press, the expression for undetermined coefficients solved 
with Mohr-Coulomb yield criterion and Tresca yield criterion only needs to change 

tC  in equation 
(23a) respectively into 

cC  and 2k , the expressions for other undetermined coefficients are the 
same, specific derivation process will not be repeated here 

Conclusion 

(1)This paper points out imprecise stress solution of the plastic zone near the crack line in 
relevant research literatures, re-infers the plastic stress solution near mode-I crack of infinite wide 
plate under unidirectional uniform tension with Mohr-Coulomb yield criterion, solves the stress 
general solution of the plastic zone satisfying equilibrium equation and yield criterion, as well as the 
stress solution and the elastic-plastic boundary of the plastic zone (scope of the plastic zone), and 
corrects imprecise results about the stress solution of the plastic zone in relevant research 
literatures.  

(2)Under unidirectional uniform tension and press, the expressions of Mohr-Coulomb yield 
criterion are somewhat different, but the expressions for the stress solution and the stress general 
solution of the plastic zone near mode-I crack line are the same.   

(3)Under unidirectional uniform tension and press, the expressions for the stress solution and the 
stress general solution of the plastic zone near mode-I crack line with Mohr-Coulomb yield criterion 
and Tresca yield criterion simultaneous equilibrium equation are the same, with difference only in 
material’s physical constant.  

(4)For various materials satisfying Mohr-Coulomb yield criterion and Tresca yield criterion, with 
line field analytical method, the stress solution of the plastic zone near mode-I crack line can be 
exactly solved to y ’s any power high order, and all order power terms will strictly satisfy 
equilibrium equation and yield criterion.   
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