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Abstract. In this paper, a theoretical algorithm using united Lagrangian-Eulerian method was 
presented to study the fluid-structure interaction (FSI) problems. This method was used to solve the 
large deformation of the elastic plate in a continuous cross-flow of ideal fluid. In this approach, 
material was described by relatively form (e.g., Lagrangian for structures, Eulerian for fluids, 
Lagrangian and Eulerian for the interfaces of them). The coupling between the fluid and elastic 
plate domains were kinematic and dynamic conditions at the interface. For the elastic plate in a 
continuous flow of ideal fluid, the kinematic equation and dynamic equation of fluid- structure 
contact surfaces were established using united Lagrangian-Eulerian method. The knowledge of the 
large deformation is given by using the Fourier series expansions method. It is shown that the 
united Lagrangian - Eulerian method is an effectively method for the problem of elastic plate in an 
ideal cross-flow. 

Introduction 

The area of fluid-structure interaction(FSI) problems has received the greatest attention within 
aerospace, mechanical or biomedical applications, and thus has been studied by many authors over 
the past few years from different points of view (theoretical algorithm, numerical analysis and 
simulation)[1-3]. This paper deals with the mathematical analysis of problems dealing with steady 
fluid- structure interaction phenomena. To the authors knowledge, the situation has mainly been 
analysed the vibration and stability problems by numerical methods. On the contrary, the theoretical 
results of deformations and velocity are few. Examples of vibration are widespread [4, 5]. The 
different finite element methods such as Galerkin, Monolithical are described [6-9]. 

Typically, fluid and structure are given in different coordinate systems making a common 
solution. Fluid flows are given in Eulerian coordinates whereas the structure is treated in a 
Lagrangian framework. We use united Lagrangian-Eulerian method to present the large 
deformation of elastic plate in a continuous cross-flow of nonviscous, incompressible fluid. It is a 
new method of where fluid and structure equations are given in their preferred reference frames. 
The coupling between the fluid and structure domains are kinematic and dynamic conditions at the 
body surface. The effect of large deformation of the elastic plate is taken into account by united 
Lagrangian-Eulerian method. 

A sketch of steady and irrotational flow of a nonviscous, incompressible fluid around an elastic 
plate is shown in figure 1. Thus the effect of viscosity, compression and fluid rotation are neglected. 
An orthogonal xyz coordinate system is used, and all investigated values of the plate and fluid are 
assumed to be functions independent of the coordinate z. The surfaces A and B of box plate are 
elastic, and the others are rigid. The surface A is very close to B. This article mainly studies the 
simply supported plate A. The pressure inside of the box plate is assumed to be constant. The 
physical parameters of the two-dimensional plate are: The length b, thickness h and bending 
stiffness D= )]1(12/[ 23 Eh , where E is Young's modulus and   is the Poisson’s ratio.  
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Fig. 1 Sketch of Flow around Elastic Plate 

Steady State Equations  

In this section the steady state governing equations for the fluid and structure are presented 
together with the interface coupling conditions. 

Structure and Fluid Equations 

The elastic plate equations of state is expressed using the Lagrangian formulation. The 
displacement field of the middle surface of the surface A of the plate is given by the following 
components: w ,u ; for x and y axes, respectively. The balanced equations are [10, 11] 
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where ）（ 2,1iZ i  are the projections of the external force vector. 
The fluid state equations can be written in an Eulerian reference frame. The steady state 

equations for a potential flow can be described as  
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in which   is the velocity potential, p  is the pressure, , andp V  
 are the pressure, mass 

density, and velocity of the stationary flow on the infinite boundary, respectively.  And   satisfies 
the condition  

xV ,     22 yx .                                                  (4) 

Contact Conditions 

The structure and fluid state equations can be written in Lagrangian and Eulerian reference frame, 
respectively. The coupling between the fluid and structure domains are kinematic and dynamic 
conditions at the interface. The kinematic condition is the noslip condition, i.e., continuity in 
velocity, and the dynamic condition is interface continuity in tractions. The kinematic and dynamic 
conditions can be written as [10, 11] 
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Thus the balanced equation of the plate is expressed as  






















































3

2

22

2

2

2

2

4

4

2
1

2
1

y

w

y

w

y

w

yy

w























 2

22

2
1

x

pw

x

p
w

y

p
up

D
.                 (7) 

Theoretical Solutions 

Let us consider the general forms of the displacement and velocity potential  
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where 
nW  and B  are coefficients to be determined. We obtain 
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For the displacement wand u , the following equation can be written  










































22

4
11

2
1

x

w

x

w

x

u

.                                                          (11) 

Substituting (8), (9), (10) and (11) into (5) and (7), we obtain the following expressions by using 
the Fourier series expansions method 
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The coefficients 1W , 2W  and B are reduced from (12)-(14). Then the deformation w , velocity 
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Numerical Example 

In this section, numerical examples are presented. The test elastic plate and fluid flow have the 
following characteristics: plate thickness 31 10h   m, Young’s modulus 9200 10E   N/m2, 
Poisson’s ratio 0.3  , flow velocity V 0.12m/s, mass density 1000  kg/m3. The results are 
shown in figure 2-4. 

Figure 2 shows the deformation w by varying the length of plate. The deformation w is the 
maximum value near the middle of the plate, closer to 0y  . And w is zero at 0,y b , respectively. 

Figure 3 illustrates the fluid velocity from united Lagrangian-Eulerian method. Bernoulli's 
equation predicts a maximum velocity would exist near the plate tips. 

 
Fig. 2 Deformations of Plate for b=0.8m, 0.9m and 1.0m 
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Fig. 3 xVx   and xVy   Curves when b=1m and by   

Conclusions 

To united Lagrangian-Eulerian (ULE) method, the structure and fluid state equations can be 
written in Lagrangian and Eulerian reference frame, respectively. The coupling between the fluid 
and plate domains are kinematic and dynamic conditions at the interface. The theoretical large 
deformation of elastic plate around by ideal fluid has been derived by ULE method. For FSI 
problem, Lagrangian and Eulerian coordinates for the interfaces of structure and fluid is easier than 
only Lagrangian or Eulerian coordinates. Numerical results reveal the streamlines with very high 
velocities near the plate tips. It is shown that the united Lagrangian - Eulerian method is an 
effectively methods for the problem of elastic structure acted by ideal fluid flow. 
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