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Abstract

We present a framework for decision-making in relation
to disaster management. The use of causality reasoning
based on the temporal evolution of a scenario provides
a natural way to chain meaningful events and possible
states of the system. There is usually several ways to
analyse a problem and several possible strategies to fol-
low as a solution and it is also often the case that in-
formation originating in different sources can be incon-
sistent. Therefore we allow the specification of possi-
ble conflicting situations as they are a typical element
in disaster management. A decision procedure to de-
cide on those conflicting situations is explained which
not only provides a framework for the assistance of one
decision-maker but also how to handle opinions from a
hierarchy of decision-makers.

Keywords: Disaster prevention, Causal Reasoning, De-
cision Theory, Artificial Intelligence.

1. Introduction

Disaster management, which encompasses monitoring,
predicting, preventing, preparing for, responding to,
mitigating and recovering disasters, aims to deal with
any potential and actual disaster by effective and effi-
cient organization, communication, interaction and uti-
lization of counter-disaster resources. Usually decisions
are made by humans but more and more computer-
based decision-making support has been accepted and
developed. Although human decision-makers (DMs)
are usually better than machines to judge complex sit-
vations and make thoughtful decisions, computers can
provide a stress-free view of the situation, efficiently
compile important amounts of knowledge and make ob-
jective, calculated decisions.

In this paper we propose a unique Al-based hy-
brid approach to making decisions in the speciic domain
of disaster prevention. We use a temporal logic lan-
guage to represent causal relations of the world, which
also assimilates dynamic and heterogeneous informa-
tion. Decision-making support is performed by evalu-
ating alternative explanations that can be used as pre-
dictions of potential future states of a world. A theory
on preferences and associated algorithms are developed

for arbitration of different explanations and of different
advisers, which gives rise to the optimal decision for the
situation.

Here we describe a theoretical framework to cap-
ture some key aspects of a decision support system. We
focus in this paper on the logical core of it, which uses
a simple representation of causal relationships (see Sec-
tion 2) to build explanations for possible diagnosis of
situations (see Section 3). These notions are illustrated
by way of a scenario (Section 4) which is later used to
explain how decision making can be supported by our
system. Different preference criteria can be encoded to
rank order explanations based on particular evidence. In
the classical preference structures, the decision-maker
is supposed to be able to totally compare the expla-
nations. But certain situations, such as lack of infor-
mation, uncertainty, ambiguity, and conflicting prefer-
ences, can lead to partial orders between explanations.
This problem is considered in Section 5 where we de-
fine a framework through which different preferences
can be merged to make a preference criteria and se-
lect in between alternative explanations. This process is
generalized in Section 6 for the case where a DM have
to take decisions based on the advise of other subordi-
nates.

2. Causal representation of the sys-
tem

An essential part of the decision making process deals
with connecting current states of the system with po-
tential scenarios for the DM to assess the situation and
make appropriate judgments. We represent basic key
features of the system and their inter-relation from a
causal perspective.

States are partitioned into two classes: dependent
(Sp) and independent (S7). S is the opposite of S.
An independent state does not depend causally on other
states holding at the same time, whereas a dependent
state can do so. An independent state can only be
initiated by the occurrence of initiating or terminating
events. A state S will be co-independent if S is inde-
pendent. Events will represent external influences to
the system being modelled and will drive its internal
change.



A specification of a system will be interpreted over
a sequence of states, starting with the initial state Sy:
S0, 51,92, ... indexed by time. When the clock ticks
at time ¢ the system leaves .S; and the system is at state
Stt1. This new state is computed from S; by first ap-
plying any event E; such that occurs(E;,t : t + 1) and
then applying the causal rules. An example of this will
be given later when we introduce a practical scenario.

The following technical language, based on that of
[1], is used to represent our scenarios. We restrict our-
selves to a propositional language where cause-effect
relationships can be expressed directly in a simple way.

Definition (syntax) ([1] page 3): There are two kinds
of causal rule,

Same-time rules: S; M Sy M---MS, ~ S
Next-time rules: S1 M .SoM---M.5, ~ OS

where each S; is an atomic state and S € Sp.

Definition (semantics): lets assume a set of S of states
S0,51,92,... and a time ¢, t € Nat, then by S; we
represent the formulas which are true in the system at
the state it is at time ¢:

S,t) E Siff S € S,

S,t) = —-Siff S¢S,

S,t) |: S1 M Sy iff S; € Sy and Sy € Sy
S, t)

S, t)

)

(
(
(
( E S~ Siff (S,t) E—-S"or (§,t) =S

( ES ~ OSiff(S,t) E—-S or (S,t+1)ES
Same-time rules are required to be stratified. This
is explained as follows [1]:

1. Stage 1 rules are: S; M .S, M ---M S, ~ S, with
S1,...,S5y all independent. In this case S is said to
be I-dependent. (The independent states are called
0-dependent.)

2. Stage k rules are: Sy M .Sy M ---M S, ~ S, with
each of S,...,S, at most (k — 1)-dependent, and
at least one of them being (k — 1)-dependent. Then
S is said to be k-dependent. In this case we also
say that S is co-k-dependent.

3. A set of same-time rules is stratified so long as for
every rule in the set there is a number £ such that
the rule is a Stage k rule.

Causal rules are applied to transition the system
from state S; to the next state S;y; in order of k-
dependency, i.e., first 1-dependent, then 2-dependent
and so on. See more details on this at [1].

The language presented above can be extended by
covering different alternatives (e.g., nonlinear, contin-
uous time, delays, etc). We keep it simple enough to
easily allow specification of dynamic systems and a
tractable combination with other features of our system
to be introduced later.

3. Alternative and conflicting expla-
nations

Decision-making is about evaluating alternatives, fol-
lowing a particular sequence of events the decision-
maker is presented with a query and it is her/his task
to assess the possible options to follow and make a de-
cision. In this section we focus on the process of gath-
ering the explanations available. At a later section we
consider how to assess them.

Whenever a query about a particular state S of the
system is passed to the DM our system will assist the
analysis by considering the causal structure leading to
that particular state at a particular point in time. The
assistance provided comes in the form of an explana-
tion, i.e., it provides details on what events eq, es, . ..
are meaningful for that state to be reached and what
causal laws 71,72, ... governing the system are being
exercised when events in the system can cause a state .S
to hold. We will call that a causal explanation.

There may be more than one possible explanation
for how the modelled system can reach S. These expla-
nations can be consistent with each other in which case
there is no conflict. But it may also be, due to the am-
biguity or lack of information characteristic in real-time
applications, that some of the explanations are contra-
dictory or somehow antagonistic. Analyzing the quality
of the explanations and why some of these are contra-
dicting to each other is a difficult and time consuming
task, to be avoided when a DM has to react to an immi-
nent hazard. This part of our system is strongly related
to previous developments in theory of temporal argu-
mentation ([2, 3, 4, 5]).

We consider possible competing causal explana-
tions (c1, s1) and (co, o) at time ¢, where ¢; is a causal
structure (containing causal rules r;) explaining why the
system may reach state s; at time ¢ and cg an alterna-
tive causal structure (based on a set of causal rules 7,
disjoint with r;) explaining why the system may reach
state sy at time t. These causal explanations can be such
that s; contradicts sy or contradicts the possibility that
co may exist. In this paper we focus on the way these
possible causal explanations can be found and also on
the potential scenarios that can cause two possible ex-
planations to be mutually contradictory or undermining
(similarly to rebuttal or undercutting arguments [6]).

4. Airport security

Hazards can arise in many contexts and for many rea-
sons. The following scenario describe situations involv-
ing hazards and possible explanations for them, each ex-
planation will be suggesting different courses of action.



Suppose an airport gathers information that a bomb
may have been placed there. To react to this specific
event and avoid potential disaster, the system contacts
national intelligence departments (NIDs) to collect the
latest information on airport related terrorist threats. It
also checks all surveillance information within the air-
port, such as video footage, and any reported suspected
incidents. Lets assume no feedback has indicated at-
tacks either being planned or underway. Facing with the
bomb threat the airport authority has to make a hard de-
cision on what to do next. While keeping the airport op-
erating normally is critical, protecting human life from
a bomb attack is certainly of paramount importance.
Lets assume we have the following simplified de-
scription of the decision making process. States are:
bombAlert (a bomb alert has been issued), assesm-
Risk (assessment of real risk is needed), nidReq (NID
is requested information on current threats), checkLl
(check current security related reports at the airport),
nidRepOK (NID reports everything is normal), lo-
callnfoOK (security related information from the air-
port is normal), sourcel (one source of information),
source2 (another source of information), emergency
(state of emergency is declared), suspectArrived (sus-
pect is within the airport), passedC (suspect passed se-
curity checks), resultALowR (report indicates low risk),
resultAHiMeR (report indicates medium or high risk).
Independent states are: bombAlert, resultALowR,
resultAHiMeR, -resultALowR), and -resultAHiMeR).
nidRepOK and locallnfoOK are known to be true
initially and all the rest false. The following
events occur during the development of activi-
ties: initially occurs(ingr(bombAlert) at instant
1:2, occurs(ingr(sourcel) and occurs(ingr(-source2)
at 3:4, occurs(ingr(suspectArrived) at 5:6, oc-
curs(ingr(passedC) at 6:7, occurs(ingr(resultALowR)
and occurs(ingr(- resultAHiMeR) at 8:9. The following
causal rules captures the basic aspects of the scenario:

bombAlert ~» assesmRisk
bombAlert ~ nidReq
bombAlert ~» checkLI

—nidRepOK ~ Oemergency
—locallInfoOK ~» Oemergency
nidRepOK MlocallnfoOK MreliableSource ~»
Oemergency
nidRepOK MlocallnfoOK MunrelSource ~»
O — emergency

suspect Arrived ~ —localln foOK
suspect Arrived M passedC ~ localIn foOK

nidReq Mresult ALowR ~» nidRepO K
nidReq Mresult AHiMeR ~ —nidRepOK

Based on the above rules, our Prolog-based
prototype can extract the two possible competing
explanations (A1 and A2) in relation to the declaration
of emergencies:

[{nidRepOK MlocallnfoOK MreliableSource ~»
Oemergency}, emergency]

[{nidRepOK MlocalInfoOK MunrelSource ~
O — emergency}, —emergency|

5. Dynamic POSet generation for
explanation preference handling

Each time two or more explanations differ in the con-
clusion they have to be analyzed to decide which of
them, if any, can be considered the most credible expla-
nation(s). This section gives a more precise description
on the process to compare and select competing expla-
nations.

Typically the competing explanations can be
arranged in a partial order and our approach will take
that as the departing point aiming to generate a POSet
out of the set of explanations being considered. In occa-
sions it will be possible to order the options into a total
order if there are a few options. Notice that we cannot
ensure the POSet will be a lattice as we leave open the
type of order relationships that can be used (provided
the user gives an algorithm on how to use them) and
therefore we cannot ensure the POSet will have a great-
est lower bound or a lowest upper bound. The process
can be generically depicted as in Figure 1. The possi-
ble explanations are given to a specific module of the
system which evaluates them based on domain specific
and also general criteria to assess which is their relative
strength.

Ey Ez = Ey
Domain l l J,
Spec.
ol \l Preference
Handlling

Criteria l
Hierarchy

POSet

Fig. 1: Preference POSet Generation

A structure to evaluate the preference POSet of
explanations can be syntactically constructed as fol-
lows: (A, B,C, D, Z,(1,0)) where A is a set of alter-
native explanations; B € Z is a validity benchmark



(what is the minimum value for an explanation to be
valid/useful?); C' a criteria to compare explanations and
build a POSet and D is the domain specific informa-
tion. Here C' is also a complex structure (C1, Csy, Cs)
where C1 is a set of criteria {CR1,CRa,...,CR,,};
Cs is a set of order meta-relationships defined over
different criteria {M;, Ms,...,M,} and C5 is a
meta-criterion defined over elements of C using Cb.
Z 1is a range of possible values used to rank the
strength of the explanations. Symbol “1” repre-
sents the top element and “0” represents the bot-
tom element, {“1”,“0”} C Z. For example, lets
assume we have a structure (A, B,C,D, Z,(1,0))
defined over two possible explanations a; and aso:
({a1,az},“acceptable” ({S, T, EP},{ < }{S <
T < EP}), {“excellent”, “verygood’, “good’,
“acceptable” , “bad” },(“excellent” “bad”)).

Lets assume S stands for Specificity ([7], [5]), T
for Trust and E P for Event Probability. < is the meta-
relation ‘precedence’ which in the case of S < T <
E P indicates that our procedure will first apply .S and
if that is not enough to decide then will apply 7" and if
that is not enough it will apply F P. If this is not enough
then the explanations have equal strength. It may also
be that one or both explanations a; and a; cannot be
judged using some of this criteria so a; and a; will be
said ‘incomparable’. For the purpose of evaluating and
comparing different explanations we will use a function
V(a;) such that V : A x D — Z which will measure
the strength value of an explanation a; € A, possibly
using information from the domain D, into a value of
Z.

Airport scenario revisited: when a bomb alert is
triggered several reassuring mechanisms are started as
a consequence. Gathering information from different
sources to confirm or discard the threat is essential. In-
formation is gathered locally and also from specialized
units (e.g., NID).

For the case of local information gathered we have
two competing explanations: (S7, —locallnfoOK)
and (S2, localIn foOK) where

Sy = [suspect Arrived ~ —locallnfoOK]|
Sy = [suspect Arrived M passedC ~ localIn foOK]

Lets call these explanations S7 and S5 respectively. As
the set of causes related to explanation S is entirely
contained in S5 and furthermore So complements and
extends Sp (is a “richer” explanation) then S5 should be
preferred to S;. So the conclusion of the system will be
that the alarm is off at 11 and the explanation is S3. This
conflict was decided purely on syntactical basis, i.e., the
structure of the explanation allows us to take a deci-
sion based on the structure of the competing explana-
tions. Sy takes into account all that S has to offer and

also brings extra information on what happens after the
presence of a suspect is detected. It states not only that
the suspect has been detected but later on all the con-
trols carried out over the individual has been negative
in terms of identifying a cause of concern. Given that
So is preferable to S; by being more specific (i.e., ac-
cording to criteria S: Sy >g S1) the preference order is
in this particular case a total order (left to right meaning
going from up to down): [1,V(S3, D), V (S, D), 0].
NID information is gathered as a risk estimation.
For this particular problem it only matters if it is
low enough for the threat to be considered. If it is
high or even medium then preventive measures have
to be taken which is highlighted by the rules describ-
ing the scenario. We have two competing explanations:
(N1,nidRepOK) and (N3, —nid RepOK') where

Ny = [nidReq N result ALowR ~» nidRepOK|

Ny = [nidReq Mresult AHiMeR ~ —nidRepOK]

Nj and N, are equally specific and the sources of evi-
dence are equally strong (the same official organism) so
according to the meta-criteria we consider next criteria
E P which (again this is domain dependent information)
is based on the statistical information pointing out to the
risk of attack being more likely the case N, by the crite-
ria /P and the resulting preference order is in this par-
ticular case a total order: [1, V' (N1, D), V(N2, D), 0].

Although confirmation from NIDs officials and ‘in
situ’ evidence of danger suggest to ignore the call and
even when the intuition of the DM tells everything is
safe, information arrives that the source of the bomb
alert can be trusted. If the DM is trying to collate all
the supporting evidence from the system in terms of la-
belling a the situation as an emergency or not the sys-
tem will consider the two possible contending expla-
nations A; and As for declaring an emergency or ig-
noring the threat. But at time 9 there is evidence for
both, however the system will prefer explanations based
on more reliable sources of information and hence Al
will be preferred. Suppose in this context we have
two competing explanations: (A, emergency) and
(As, —emergency) where

Ay = [nidRepOK MlocallnfoOK MreliableSource

~ Qemergency|
As = [nidRepOK MlocallnfoOK MunrelSource
~ O—emergency]

A and A, are equally specific but the domain infor-
mation in D says the source of information informing
about the possible threat is a reliable source of evidence.
So according to the meta-criteria we consider next cri-
teria T and A; is preferable to A, by the criteria 7" and



Input: < A, B,C,D, Z,(1,0) > and
V : Ax D — Z as defined in Section 5
Output: S C A such that it ranks the highest
according to C
1 repeat
2 Evaluate all elements of A applying the first
criteria as specified in Cs
3 Make P the current POSet and S the set of
elements with highest z € Z associated such
that for all @ € S, if V(a, D) is its strength
then V(a, D) > B
4 until (S is a singleton) or (all criteria on C3
have been exhausted);
5 case of
6 S = {}: there is no acceptable explanation

w n

7 Sisasingleton, S = {a}: “a" is the best

explanation
8 S={ay,...,a,}: elements of S are
9 equally strong
explanations
10 end case

Fig. 2: Weigthing explanations with a hybrid criteria.

the resulting preference order is in this particular case a
total order: [1,V(A;, D),V (A2, D),0].

Figure 2 gives a basic description of the algorithm
that is used to implement the dynamic POSet generation
in the preference handling kernel of our system.

The process above only considers what the out-
come of only one DM. There can be occasions where
more than one DM produces a decision and then an-
other DM above them in the hierarchy will decide
which advice is better. For example, DM1 takes: <
A,B,C',D,Z,(1,0) > to produce a POSet P, and
DM2uses: < A, B,C?, D, Z,(1,0) > (with C* # C?)
producing a POSet P». One important problem to con-
sider then is to sensibly merge P; and P into a final P.
This problem is addressed in the next section.

6. Combination of preferences

The decision making process involving multiple de-
cision makers (MDM) can be formulated as follows.
We have a set of decision makers (voters) V =
{v1,v2,vs3, - ,v,}, a set of alternative explanations
A ={ay,as,a3, - ,am}, and a set I of (individual)
preferences where each o € I is a partial order over a
subset of A.

The task of MDM is to find a total order that agrees
maximally with all preferences in I. The preference re-

lation considered here is qualitative, therefore we can-
not use the standard Borda score based solution [8, 9].
We present a probabilistic approach instead.

We treat a preference as a sequence, and con-
sider the probability that one alternative is before an-
other, based on individual preferences. We then ap-
ply the well known ORDERB YPREFERENCE algorithm
[10] which takes as input such probabilities and gener-
ate an approximately optimal total order (i.e., approxi-
mately maximally agrees with the preferences). In the
next section we focus on how to obtain such probabili-
ties from given preferences.

6.1. Contextual probability

Let Q) be a set, F be a o-field over 2. For example,
F = 2% The elements of F are called neighbor-
hoods, and we can embed €2 in F so ) C F. If there is
a probability function P over F we have a probability
space < ), F,P >. The contextual probability [11] is
G : F — [0,1] such that, for X € F

G(X)= > PE(XNE)/K

EeF

where K = ), P(E)f(FE) is normalization factor
and f(X) is a non-negative measure of X satisfying
f(Xl U Xg) = f(Xl) + f(XQ) 1fX1 n Xg = @, c.g.,
f(X) =|X|. Fort € Qand h € F,if t € h we say
t is covered by h. Let I be a finite sample of {2, where
N = |I|. It has been shown that G can be estimated
based on [ as follows:

Lemma 1 ([11]) Fort € €,
A 1
G(t) = N F Zcov(t,x)

xzel

where cov(t,x) = {E € F : t € E,x € E}| is the
number of all neighborhoods that cover both t and .

6.2. Calculating cover for sequences

Let A be a finite set of symbols (explanations). A
sequence « is {s;}§ = {so,s1, - ,sn}, or simply,
S0S1 - Sp. We consider a data space, €2, of all se-
quences without repetition. Obviously (2 is finite.
Consider a sequence « and a,b € «a. If a comes
before b (from left to right) then a <, b. Consider two
sequences « and (3. If « can be obtained by removing
some symbols from (3, « is a subsequence of 3, written
by a = (. A neighborhood is a set of all sequences
that share a single subsequence y. We then say it is a
neighborhood with respect to . Thus a neighborhood
corresponds to a sequence. We write F for the set of all



Input: Sequence « and 3
Output: A list, N(«, 3), of all common
subsequences of « and [3.
1 Init: Seq = {e}, ind(Seq) =0, L = {{e}};
2 for (i = 0;¢ < |af;i + +) do

3 x = «i]

4 if B[j] = « then

5 Seq' =0

6 for everyl € L do

7 if j > ind(l) then Seq’ = Seq’ Ul
8 end

9 Seq = {yx : Yy € Seq'}
10 ind(Seq) =j

1 L =LU{Seq}

12 end

13 end

14 N(a, ) = Ugerz.

Fig. 3: Gathering advise from multiple experts.

neighborhoods, or sequences. We can show that F is a
o-field. Incidentally the data space and the o-field are
the same.

A neighborhood of sequence « is a neighbor-
hood with respect to a subsequence v of . There-
fore the set of all neighborhoods of « is the set
of all subsequences of «, written by N(a) =
{7 : 7is a subsequence of o.}. Furthermore we write
N(c, B) for the set of neighborhoods covering both «
and (3, which is in fact the set of all common subse-
quences of o and (3. The algorithm in Figure 3 is de-
signed to find all common subsequences.

6.3. The probability that one expla-
nation is before another

For any two explanations a,b € A we consider a se-
quence ab. a and b can be regarded as singleton se-
quences.

According to Lemma 1 we have

G(ab) = ﬁ Z cov(ab, x)

zel

Recall that K is a normalization factor independent of
ab, N is the number of sequences in I, and cov(ab, x)
is the number of common subsequences ab and . Sim-
ilarly

G(b) = ﬁ Zcov(b,x)

zel

The probability that a is before b is then modeled
by

Calb) = C;(ZS)

6.4. An example

Suppose there are three decision makers (DMs):
dmy,dmsy,dms, and there are five alternatives
a,b,c,d,e. The preferences by individual DMs are
dmg : abcde, dmsy : ab,aced, dmg : be, aed. Assum-
ing equal weighting of the decision makers we have a
preference set I = {abcde, ab, aced, be, aed}.

Consider a query sequence ¢ = ac. To calculate
G(q) we need to calculate cov(q,x) for every x € I,
which is the number of all common subsequences of g
and x.

Consider x = abcde. The set of all subsequences
of zis {0, a, b, ¢, d, e, ab, ac, ad, ae, be, bd, be, cd,
ce, de, abe, abd, abe, acd, ace, ade, bed, bee, bde, cde,
abed, abee, abde, acde, bede, abede}.

The set of all subsequences of ac is {0, a, ¢, ac}.
Therefore cov(ac,abede) = 4. Similarly we have
cov(ac, ab) = 2, cov(ac, aced) = 4, cov(ac,bc) = 2,
and cov(ac, aed) = 2. Therefore G(ac) = = (4+2+
4+242) = 3%,

Similarly G(ab) = 1%, G(ad) = %, G(ae
=, Gbe) = 3%, G(bd) = =, G(be) = 7=,
G(ed) = 5. G(ce) = %, and G(de) = 5.
Applying the ORDERBYPREFERENCE algorithm we
get the approximately optimal total order: a,b,c, e, d,
which agrees maximally with the individual preferences
by all three DMs. A decision can then be made on the

basis of this total order.
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7. Related Work

Some related systems like [5] and [4] focused already
on temporal argumentation systems but both are based
on one DM and one fixed preference criteria. The for-
mer uses specificity whilst the second only counts the
number of arguments in favour and opposed to a claim.
We believe different contexts and different DMs will
impose different criteria and therefore for a system to
be of practical use that component of the system has to
allow more flexibility.

Research and endeavor towards disaster manage-
ment have been undertaken and exercised in various
initiatives under different banners. For example, the
United Nation started the International Decade for Nat-
ural Disaster Reduction (IDNDR) programme in late
1980s and the follow-up International Strategy for Dis-
aster Reduction (ISDR) programme in late 1990s [12].



The application of information technologies to enhance
disaster management [13] has been a constant centre
of research, which explores the critical and evolving
role of IT and its infrastructure, in particular, the com-
munication and information sharing. Recently using
agent technologies for disaster management has got mo-
mentum with a number of agent-based disaster man-
agement simulation systems being developed [14, 15].
These systems provide disaster management experience
for decision makers through training and experiments;
and technically they concentrate on the co-ordination of
agents. Instead we focus here on real-time support for
DMs. Our framework assist DMs to evaluate situations
and make decisions as a threat is unfolding. The sys-
tem can be used to detect particular events and warn on
possible threats as well as to predict a possible outcome
and give an explanation associated with the conclusion.
Advice to the DMs is based on decision criteria which
can be adapted to different domains and the opinion of a
team of advisers can be gathered to combine their views
on a specific set of decisions to be made.

8. Conclusions

We provide a system which combines basic important
features to the decision-making process. The use of
causality reasoning based on the temporal evolution of
a scenario provides a natural way to chain meaning-
ful events and possible states of the system. Allowing
the specification of possible conflicting situations also
brings a very typical element in these domain as there is
usually several ways to analyze a problem and several
possible competing strategies to follow and it is often
the case that information originating in different sources
can be inconsistent. A decision procedure to decide on
those conflicting situations has been explained which
serves as a decision making framework involving not
only one DM but also a hierarchy of DMs.
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