
A New Parallel Quantum Genetic Algorithm with 
Probability-Gate and Its Probability Analysis 

Shuxia Ma1  Weidong Jin2

1Department of Mathematics, Southwest Jiaotong University, Chengdu 610031, China 
2School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China 

Abstract 
In this paper, a novel Quantum Genetic Algorithm 
(QGA) called Parallel Probability-gate Quantum 
Genetic Algorithm (PPQGA) is proposed. The main 
points of PPQGA are that a new chromosome 
representation called qubit representation, a new 
updating gate called probability-gate and a novel 
evolutionary strategy being used in update procedure 
are introduced. Based on the concepts and principles 
of quantum computing introduced, PPQGA is 
characterized by rapid convergence, good global 
search capability and the ability of possessing 
exploitation simultaneously. The experimental results 
of several special functions show that PPQGA can 
speedup the migration of the top individuals of 
subpopulations and is superior to other several genetic 
algorithms greatly in quality and efficiency.  
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1. Introduction 
Genetic Algorithm (GA) advanced by Prof. Holland in 
Michigan University in 1975 is called Basic Genetic 
Algorithm.(BGA). It is a powerful search technique 
that has been shown to robust optimization algorithms 
and has been used successfully to find adequate 
solutions to complex problems in numerous domains 
of science and engineering. However, there exist some 
problems in the utilization of GA that they can be very 
demanding in terms of computation and memory, and 
sequential GA may get trapped in a suboptimal region 
of the search space thus becoming unable to find better 
quality solutions. So Parallel Genetic Algorithms 
(PGAs) are proposed to solve more difficult problems 
which need large population [1]-[3]. 

Quantum computation is a newly emerging 
interdisciplinary science of information science and 
quantum science. In 1994, Shor proposed the first 
quantum algorithm to solve the difficult classic 
computing problem of prime factorization of large 

numbers. This algorithm can also be applied to RSA 
encryption technique [4]. In 1996, Grover proposed a 
quantum algorithm of random search in database, 
which can accelerate the search in untidy database by 

N  order on the quantum computer [5]. Because of 
its unique characteristics of computation, quantum 
computation has attracted wide attention and soon 
become the research focus. 

Quantum Genetic Algorithm (QGA) is the 
combination of quantum computation and genetic 
algorithm. At present, the research in this field 
concentrates mainly on two models: one is the 
Quantum Inspired Genetic Algorithm(QIGA) based on 
the quantum’s multi-universe character [6], the other 
is the Genetic Quantum Algorithm (GQA), based on 
the superposition character of qubit and quantum state 
[7]. This paper proposes a Parallel Probability-gate 
Quantum Genetic Algorithm (PPQGA). 

In the algorithm, the individuals in the universe 
are expressed by multi-state gene qubit encoding 
method. In the individual’s updating, the general 
quantum rotation gate strategy is replaced by the 
probability-gate strategy, in which every updating is 
made certain by a probability matrix instead of the 
general quantum rotation gate strategy. The rationality 
of the probability matrix is analyzed in the paper and 
the experimental results of several special functions 
are listed to indicate that PPQGA is superior to other 
several genetic algorithms greatly in quality and 
efficiency. 

2.  Quantum genetic algorithm 
The QGA is based on the representation of the 
quantum vector. It applies the probabilistic amplitude 
representation of qubit to the coding of chromosome 
so that one chromosome can represent the 
superposition of many states. With the update 
operation of chromosome by quantum rotation gate, it 
eventually reaches the optimum resolution of the aim. 

2.1. Qubit encode  



In quantum computer, the smallest information 
location is a two-state quantum system, called qubit. 
In QGA, qubit is used to store and represent one gene. 
This gene may be in the ‘1’ state, the ’0’ state, or any 
superposition of the two. That is to say, the 
information represented by this gene is not stable, but 
probable. The characteristic of the representation is 
that any linear superposition of solutions can be 
represented. Therefore, when an operation is carried 
out on this gene, it may be done to all probable 
information simultaneously. 

2.2. The structure of QGA 
The smallest unit of information stored in two-state. 
The state of a qubit can be represented as |ψ 〉= 
| α 〉 ＋  | β 〉 where α  and β  are probability 
amplitudes of the corresponding states. Normalization 
of the state to unity guarantees |α |2+| β |2=1, where 
| α |2 gives probability that qubit will be found in 
‘0’state and | β |2 gives probability that qubit will be 
found in ‘1’state . According to this, a system with m 
qubits can contain information of 2m states and any 
linear superposition of all possible states can be 
represented as follows:  

 1

1

α

β

⎡
⎢⎣

2

2

α

β L

L m

m

α

β

⎤
⎥⎦

  |α i| +|2 β i| =1 (i=1,2,…,m)  (1) 2

The basic structure of QGA is described as follows: 
1. Initialize colony Q(t), and t=0; 
2. Create P(t) by measuring Q(t) states; 
3. evaluate P(t); 
4. Store the best individual among P(t) and its fitness; 
5. Stop condition: The condition is satisfied then 
output the best one, if not, go on; 
6. Update Q(t) with quantum rotation gate to get son 
colony Q(t+1), then t=t+1, go to 2. 

The Q(t) is the t-th generation colony of quantum 
chromosomes, P(t) is the linear superposition of all 
possible states of t-th generation colony. When the 
colony is initialized, all the quantum chromosomes 
have the same value 1 2/ , it means that a quantum 
chromosome represents all possible superposition 
states with the same probability. In step 2, there is a 
random number belong to [0,1], if it bigger than 2t

iα , 

then it is endowed with 1, or endowed with 0. In step 6, 
updating Q(t) with appropriate quantum gate to make 
the quantum chromosomes have better state.  

2.3. Qubit rotation gate updating 
strategy 

As the updating execution mechanism, the quantum 
gate can be designed in compliance with the practical 
problem. Though many quantum gates can be selected, 
quantum rotation gate is preferable due to the 
calculation character of QGA.  

 Commonly, Q(t) is updated with quantum 
rotation gate which is chosen as quantum logic gate 
through the formula as: 
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where θΔ is the rotation angle of quantum rotation 
gate and often be get from lookup table of QGA for 
convergence.  
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Table 1: Lookup  table of  QGA. 

 
where ix  and is the i-th bit of ibest x  and best 

individual separately, ( )f x  is fitness of x , ( )s i iα β  

is sign of iθ . 

3. Parallel probability-gate 
quantum genetic algorithm 

This paper proposes a Parallel Probability-gate 
Quantum Genetic Algorithm that adopts a multi-
universe parallel Structure [8]. In this structure, 
different universes make the evolutionary towards 
their own different aims, and the excellent individuals 
in different circumstance among the universes 
exchange through emigration and quantum crossover 
mechanism. And a novel evolutionary strategy with 
probability-gate is used in update procedure. All these 
will effectively overcome the premature convergence, 
and have higher convergence speed and precision than 
QGA. 



3.1. Probability-gate and its 
structure 

From the structure of QGA know that QGA evolves 
quantum chromosomes by some quantum gates and 

creates binary system values by measuring 
2t

iα . This 

paper proposes probability-gate which update 
2

2

| |

| |

t
i

t
i

α

β

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

to  by probability matrix, by 
1 2

1 2

| |

| |
    =1,2, ,

t
i

t
i

i
α

β

+

+

⎡ ⎤
⎢ ⎥
⎣ ⎦

L m

⎥

which the processing time of search satisfactory 
solutions of optimization problems is greatly reduced. 
Furthermore, the quantum gate is random, and to a 
great extent, the individual could degenerate or the 
colony gets trapped  in a suboptimal  region of the 
search space thus becoming unable to find better 
quality solutions. By probability-gate, the former 
information of the best individual to overlap to 
quantum chromosomes will be reserved for making 
the P(t) has better filial generation. 

Definition 1 If quantum chromosomes Q(t) are 

updated by      =A                  (3) 
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then A is called a probability-gate. 

In this definition, the i-th qubit of the t+1-th 
generation individual is obtained by multipling 
probability matrix A and the i-th qubit of the t-th 
generation individual straitly. It effectively avoids 
continually refering lookup table. Next theorem 
describes the structure of (3) is reasonable. 

If define
1

( )iμ
 as adjusting quantity of the i-th 

qubit, commonly its value depends on the situation of 
the i-th bit. ( )f b  is the best individual of last 

generation.  and  is the i-th bit of the best 
individual in this generation and in last generation 
separately. The probability-gate is created as follows: 
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According this structure, Q(t) is updated by 
judgement of ( ), ( )f x f b , x and b  in spite of refering 
lookup table which is lack of pertinence. Noticing 

formual (6) and 
2t

iβ =1-
2t

iα , the theorem will be 

easily gained as follows: 
Theorem 1 If Q(t) is updated according with 

above probability-gate A, then: 
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At the same time， 
2 21 11t t

i iβ α+ += − . 

Proof.  To prove theorem, when  ( ) ( )f x f b≥ , 
we note that formula (3) is expressed as 
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Namely, the first part of the theorem is gained.  
As well as 

2 21 11t t
i iβ α+ += −  

and the rest of the theorem is gained with the same 
way. The theorem shows that the construct of matrix 
A, just as formula (4), is reasonable. 

The theorem denotes that when x is not superior 
to b  we increase the probability of Q(t) according b  
to embody character of b whereas embody character 
of x . 

3.2. Probability analysis 
If the individuals of P(t) is m bits, for its former bits 
decides the individual be or not be in suboptimal 
region, and for every bit getting value 0 or 1 from 

2t
iα  is subject to uniformity distributing in [0，1], 

when Q(t) creates P(t), the difference probability of 
the t-th bit of individual with b is: 
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For many local regions problem, when the radius 
of the smallest local region is 12 1)( −+−km , the 
probability of the individual must being in local region 
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while . That is ∞→t 1→p . It shows this region is 
efficient. When the radius of the biggest local region is 

( ) 12 m l− + 1− , then the probability of the individual 
must getting out the local region is: 
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From all above analysis, the update matrix A 

could make ensure that the next generation will 
includes b in it or get out the local region and finds 
better one. Both of these conclusions are we wanted. 

Now the basic structure of PPQGA is described as 
follows: 
1. Initialize colony Q(t), and t=0; 
2. Initialize the genus Q(t) and create P(t) by Q(t); 
3. Save the best value of P(t); 
4. t← t+1; 
5. Create P(t) by Q(t-1); 
6. Judge of P(t) then get the best individual x ; 
7. Compare x  with  and get quantum probability-
gate A, save the best individual in ; 

b
b

8. Stop condition: the condition is satisfied, then 
output the best one, if not, go on; Renovate Q(t) by A, 
t=t+1, then go to 4. 

4. Model test functions 
(1) De Jong function： 

1

2 2100( ) (1 )1 2 1F x x x= − + − 2                 (12) 

2.048 2.048, 1, 2x ii− ≤ ≤ =  
It is a 2-dim function. It has only one minimum 

value (1,1) 0f = . Though this function is a single-
peak-value function, but it is morbidity function and it 
is difficult to optimize. 
(2)    Six-peaks-value-hunchback function： 
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This function has six local minimum values, and 

two of them are the global minimum value: 
( 0.0898, 0.7126) ( 0.0898, 0.7129)
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 (3) Many-peaks-value function: 
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                       (14) 10 10    i=1,2,3xi− ≤ ≤

This function has many local minimum values and 
one global minimum point (-0.676256, -0.381582, -
1.282868), and global minimum value is –
12.76547355. 

With GA, QGA and PPQGA, we have 
experimented 50 times with stopping condition: Not 



stop until 100 generations in the experimentation. The 

scale of colony is 50 and 
1

( )
200 2

i
i

μ =
−

. The result 

is shown as follows: 
 

Table 2: The optimize results of these kinds of algorithm. 
 
where 

TT: The times of test 
AT: The times of alternating 
FT: The times of finding the optimize 
FFT: Times for the optimum is found in first 50 
generation  
Precision: Times for the optimum is found 

5. Conclusions 
This paper proposes a new parallel evolutionary 
algorithm PPQGA with the qubit representation, the 
strategies of updating quantum gate using probability-
gate. The analysis of the structure with probability 
theory is given in paper. PPQGA is based on the 
principles of quantum computing such as concepts of 
qubits and superposition of states. It can represent a 
linear superposition of states. PPQGA is characterized 
by rapid convergence, good global search capability 
and short computing time. The experimental results of 
three special functions demonstrate that PPQGA is 
superior to GA, QGA in efficiency and quality.  
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