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Abstract. The action of concentrated loads on spherical shell has been widely studied. The solution 
for a concentrated normal force was first obtained by E. Reissner in 1946 by using the classical 
theory of shallow shells. This problem was also considered by S.P. Timoshenko (1946), Stanislaw 
Lukasiewic (1979), W.T. Koiter (1963), W.C. Young (1989) etc. In deriving these solutions, it is 
assumed that the stresses and displacements are very small at some distance from the loading point. 
In this paper, the displacement of non-shallow spherical thin shell under a concentrated load has 
been considered. Appling the above all kinds of methods, we have calculated the deflections under 
the point of application of concentrated loads on spherical thin shells with R/t=10~50 and 
R/t=100~500. The results are analyzed and all kinds of methods are compared, the calculation 
precisions and covering ranges of all kinds of methods are discussed.  

Introduction 

The action of concentrated loads on spherical thin shell has been widely studied. The solution for 
a concentrated normal force was first obtained by E. Reissner in 1946 by using the classical theory 
of shallow shells. This problem was also considered by S.P. Timoshenko (1946), Stanislaw 
Lukasiewicz (1979), W.T. Koiter (1963), W.C. Young (1989) etc. In deriving these solutions it is 
assumed that the stresses and displacements are very small at some distance from the loading point.  
The results are analyzed and all kinds of methods are compared, the calculation precisions and 
covering ranges of all kinds of methods are discussed. 

Deflection Solutions 

Timoshenko (1946) 

Timoshenko (1946) take the fact into account that the effect of transverse shear Qr on membrane 
forces can be neglected in the case of a shallow shell and the deflection at the center of such a shell 
is affected very little by the respective conditions on the outer edge. He considered a shallow shell 
with a very large radius subjected to a point load P at the apex r=0 (Figure 1), while the normal 
displaces w must be finite at r=0, and w must vanish for r=∞. He obtained for the deflection of the 
shell at the point of the application of the load the value (Figure 1): 
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When the central load P is uniformly distributed over a circular area of a small radius c (Figure 2), 
the following results hold at the center of the loaded area r=0: 
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function 4   are given in Table 86 of Timoshenko(1946). 

          

      Fig. 1 The Shell at the Point of the Load          Fig. 2 P Uniformly Distributed 

Koiter (1963) 

The non-shallow spherical shell loaded at the vertex has been considered by Koiter(1963) in 
spherical coordinates, and based on the equations of the theory of non-shallow spherical shell. 
Koiter obtained the following expression for the normal deflection under the point of application of 
the load P (Figure 1): 
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O     Koiter(1963) 

Where 

t

R)1(3 22   ; γ0 is Euler’s constant, γ0=0.5772 

Lukasiewicz (1979) 

Lukasiewicz (1979) [3] also obtained an approximate formula for the displacement of 
non-shallow shell under a concentrated load P (Figure 1): 
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However, the equation cannot be used to calculate the deflection at those points of the shell that 
are very close to the point of application of the load (r<t). If we neglect the effect of transverse 
shear deformation, we can obtain the following expression for the normal deflection under the point 
of application of the load P (Figure 1): 
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Lukasiewicz (1979) also gave an expression for the normal deflection under the point of 
application of the load P when the central load P is uniformly distributed over a circular area of a 
small radius c (Figure 2): 
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Young (1989) 

Young (1989) gave a simple formula for partial spherical shell with any edge support and load P 
concentrated on small circular area of radius c at pole. The deflection does not include any 
deflection due to the edge supports or membrane stresses remote from the loading. 

The deflection under the center of the load P (Figure 2): 
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Where A  is a numerical coefficient that depends upon   and its values can be obtained from 
Table 30 of Young (1989). 

Comparison of Solutions 

Appling the above all kinds of methods, we have calculated the deflections under the point of 
application of concentrated loads on spherical shells with R/t=10~50 and R/t=100~500. The results 
are shown as the following Figure 3 and Figure 4. 

      
Fig. 3 Comparison of Solutions for the 

Deflections under thePoint of Application of 
Local Load P(R/t=10~50) 

Fig. 4 Comparison of Solutions for the 
Deflections under thePoint of Application of 

Local Load P(R/t=100~500) 

Conclusion 

From the comparision of solutions, we can see that the results of all kinds of solution differ little, 
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especially for R/t=100~500. The results of Koiter (1963) and Lukasiewicz (1979)a are very close, 
the results of Timoshenko(1946)b and Young(1989) are very close too. The solution of Koiter  (1963) 
is most precise, the solution of Young (1989) differs from Koiter (1963) furthest, but the formula is 
simplest. 
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