

Proposal of a Supporting Method to Generate a Decision Table from the Formal Specification

Tetsuro Katayama*†, Kenta Nishikawa†, Yoshihiro Kita‡, Hisaaki Yamaba† and Naonobu Okazaki†
†Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan

‡Security Center, Kanagawa Institute of Technology, Kanagawa 243-0292, Japan

*Corresponding author, E-mail: kat@cs.miyazaki-u.ac.jp
Tel: +81-985-58-7586, Fax: +81-985-58-7586

Abstract

In recent years, the software quality becomes more important because the system becomes large scale and high
performance. In general, many defects are embedded in the upstream process of the software development. As one
reason of the above, specifications include ambiguous description. As a means for writing specifications strictly,
formal methods are proposed. By the way, as one of test design techniques, the decision table is proposed.
However, it takes much time and effort to extract test items and understand contents written on specifications in
designing manually the decision table. This paper proposes a supporting method to generate a decision table from
the formal specification in order to improve efficiency of the test design with formal methods. We have
implemented a supporting tool to generate a decision table. It automatically generates a skeleton decision table from
the formal specification. By using the tool, it is considered that the efficiency of the test design is improved.

Keywords: formal method, VDM++, test design, decision table, automatic generation

1. Introduction

In recent years, the software quality cannot be
maintained with the conventional software development
methods because the system becomes large scale and
high performance. At the same time, effect of defects in
the system becomes one of the major social problems
with the economy and life [1].

Hence, the software quality becomes more important.
A demand for reliability and safety of the system is
becoming increasingly.

In general, many defects are embedded in the
upstream process of the software development. As one
reason of the above, each step in the software
development process moves to the next step with
specifications included ambiguous description.
Therefore, specifications should be written strictly. As a
means for writing specifications strictly, formal

methods [2] are proposed. The formal methods are a
means for using strict specifications in each step in the
software development process. They express the system
with a specification description language based on
mathematical logic. Using the formal methods can
remove defects or ambiguity of the specifications. They
attract attention as a means to improve software quality.

By the way, as one of the test design techniques, the
decision table [3] is proposed in the testing process of
the software cycle. The decision table uses a matrix
divided the logical relationships in specifications into
items of conditions and actions. However, it takes much
time and effort to extract test items and understand
contents written on specifications in designing manually
the decision table. It is no exception even if you write
strict specifications with formal methods.

Journal of Robotics, Networking and Artificial Life, Vol. 1, No. 3 (December 2014), 174-178

Published by Atlantis Press
Copyright: the authors

 174

K. Nishikawa, T. Katayama, Y. Kita, H. Yamaba and N. Okazaki

This paper proposes a supporting method to generate
a decision table from the formal specification in order to
improve efficiency of the test design with formal
methods. This paper uses the formal specification
description language VDM++ which is the lightweight
formal methods VDM (Vienna Development Method)
to write the formal specification. The proposed method
supports to generate a decision table by extracting the
logical relationship of the conditions and actions from a
specification written with VDM++. We have
implemented a supporting tool to generate a decision
table. It automatically generates a skeleton decision
table from the formal specification. By using the tool, it
is considered that the efficiency of the test design is
improved.

Here, the skeleton decision table which the tool
generates has condition items, action items, and
combinations of truth-values for the condition items.
This means that a user must add to write truth-values in
action items of the generated skeleton decision table to
complete the decision table.

2. Supporting Method to Generate a Decision
Table from the Formal Specification

Fig.1 shows the flow of the proposed method. The
proposed method consists of three parts as follows.

(i) Scanner/Parser
(ii) CA-Extractor

(iii) SDT-Generator
We explain the flow of the proposed method as

follows.
(1) A user prepares a formal specification after it is

finished the syntax checking and type checking.
(2) A user runs the supporting tool to generate a

decision table after the user specified a formal
specification.

(3) The supporting tool to generate a decision table
runs Scanner/Parser, which uses a formal
specification specified by the user as an input.

(4) Scanner/Parser generates the analysis data by
analyzing the formal specification.

(5) CA-Extractor generates the extraction data
extracted conditions and actions of the formal
specification from the analysis data by generated
Scanner/Parser.

(6) SDT-Generator generates a skeleton decision table
from the extraction data by generated CA-Extractor,
and output it as a csv file.

We explain each part as follows.

2.1. Scanner/Parser

Scanner/Parser is a VDM++ analyzer for Overture
implemented by Marcel Verhoef [4]. Scanner/Parser

Fig. 1:The flow of supporting method to generate a decision table from the formal specification.

Published by Atlantis Press
Copyright: the authors

 175

 Proposal of a Supporting

 1 class FizzBuzz
 2 functions
 3 public static checkFizzBuzz : nat->seq of char
 4 checkFizzBuzz(input) ==
 5 if input mod 3 = 0 and input mod 5 = 0 then
 6 "FizzBuzz"
 7 elseif input mod 3 = 0 then
 8 "Fizz"
 9 elseif input mod 5 = 0 then
10 "Buzz"
11 else
12 "number"
13 pre
14 input > 0 ;
15 end FizzBuzz

reads the formal specification specified by a user.
Scanner/Parser generates the analysis data (.app) from
the formal specification.

The analysis data has analysis information (e.g.,
token, token ID, and abstract syntax tree) needed by
CA-Extractor..

Extraction of conditions
 Conditions extraction processes are pre-conditions

expressions, post-conditions expressions and
if-then-else expressions.

 To extract conditions, CA-Extractor extracts between
from a start token (if, else, pre, post) to an end token
(then, ;) as a condition.

e.g., if (elseif) conditionA then → conditionA
 pre conditionB ; → conditionB
Extraction of actions
 Actions extraction processes are if-then-else

expressions.
 To extract actions, CA-Extractor extracts just after a

start token (then or else) as an action.
e.g., else actionA → actionA

2.2. CA-Extractor

CA-Extractor extracts conditions and actions from the
analysis data generated by Scanner/Parser, and writes
them to extraction data (.node). CA-Extractor extracts
conditions and actions only from pre-conditions
expressions, post-conditions expressions and
if-then-else expressions.

Table 1 shows extraction processes of conditions and
actions.

2.3. SDT-Generator

SDT-Generator generates a skeleton decision table
from the extraction data by generated CA-Extractor, and
outputs it as a csv file. Output format of a skeleton
decision table is adopted CSV format because it is
versatile.

Table 2 shows an example of a skeleton decision
table which SDT-Generator outputs. SDT-Generator

describes condition items and action items on the
second column of a skeleton decision table.
SDT-Generator describes truth-values in condition
items on and after the third column of a skeleton
decision table. The skeleton decision table of
truth-values in action items is empty, because the
supporting tool to generate a decision table cannot
generate truth-values in action items.

3. Application Example

We have implemented a supporting tool to generate a
decision table, in order to realize the proposed method.
It supports the test design. It automatically generates a
skeleton decision table from the formal specification.

We confirm that it works properly by adapting it to an
example. Specifically, we confirm two items as follows.

(i) To extract conditions and actions from a formal
specification

(ii) To generate truth-values in condition items
Fig.2 shows the formal specification which is used as

an application example. It is a specification of
FizzBuzz, which is described in VDM++. FizzBuzz is a
group word game. Players take turns to count
incrementally, replacing any number divisible by three

 Node #1 #2 … #15 #16
Condition A>0 T T … F F
Condition B=true T T … F F

… … … … … … …
Action NAT null null null null null

… … … … … … …

Table 2:Extraction processes of conditions and actions.

Fig. 2:The formal specification of FizzBuzz.

Fig. 3:A part of the skeleton decision table. Table 1:An example output of the skeleton decision table.

Published by Atlantis Press
Copyright: the authors

 176

K. Nishikawa, T. Katayama, Y. Kita, H. Yamaba and N. Okazaki

with the word "fizz", and any number divisible by five
with the word "buzz".

The formal specification of FizzBuzz in Fig.2 is
described a pre-condition (i.e., in the 13th and 14th line)
which means a value of the input is more than zero.

Fig.3 shows a part of the skeleton decision table
generated by the supporting tool, and it is the result of
applying the formal specification to the supporting tool.

We have confirmed that the skeleton decision table in
Fig.3 is satisfied (i) and (ii). Therefore, we have
confirmed that the supporting tool to generate a decision
table works properly.

4. Discussion

This paper has proposed a supporting method to
generate a decision table from the formal specification
in order to improve efficiency of the test design with
formal methods. We have implemented a supporting
tool to generate a decision table, in order to realize the
proposed method. It automatically generates a skeleton
decision table from the formal specification. By using
the tool, it is considered that the efficiency of the test
design is improved.

We discuss our proposed method in this chapter.

4.1. Problems of the supporting tool to generate a
decision table

We show problems of the supporting tool to generate
a decision table as follows.
 Generating truth-values in action items

The supporting tool to generate a decision table
cannot automatically generate truth-values in action
items. This means that a user must add to write
truth-values in action items of the skeleton decision
table, in order to complete the decision table. If
condition items increases, it takes much time and effort
to describe manually truth-values in action items.
 Supporting to each syntax: cases expressions, for

loop, and while loop, and so on
There is a limit to the formal specification applicable

to the supporting tool to generate a decision table.
Specifically, the supporting tool does not support to all
syntax in VDM++. Hence, targets of conditions and
actions extracted from a formal specification are
pre-conditions expressions, post-conditions expressions
and if-then-else expressions.

4.2. Evaluation of the proposed method

We confirm usefulness of the proposed method by
using the generated skeleton decision table in chapter 3.
First, we have completed the decision table by
describing truth-values in action items of the skeleton
decision table by hand. Second, we have implemented
FizzBuzz in Java from the formal specification used as
an application example in chapter 3.

We have tested FizzBuzz program by using the
completed decision table, and at the result, we have
been able to test all combinations of conditions and
actions in FizzBuzz. Therefore, we have confirmed the
usefulness of the proposed method.

4.3. Discussion about the supporting tool to
generate a decision table

The supporting tool to generate a decision table
extracts conditions and actions from a formal
specification, and automatically generates a skeleton
decision table. It is able to reduce the time and effort
when testers manually design the testing.

Few researches of test design from the formal
specification are reported, and the method is not well
established. In addition, some tools to automatically
generate a decision table are proposed [5, 6], but no tool
to support the test design from a formal specification
such as our proposed method.

By using the supporting tool to generate a decision
table, it is considered that the efficiency of the test
design from a formal specification is improved.

5. Conclusions

This paper proposed a supporting method to generate
a decision table from the formal specification in order to
improve efficiency of the test design with formal
methods. We have implemented a supporting tool to
generate a decision table, in order to realize the
proposed method. The supporting tool generates a
skeleton decision table from the formal specification by
extracting conditions and actions of the formal
specification.

We have confirmed that it generates the skeleton
decision table and truth-value in conditions and actions
of the skeleton decision table. By using the supporting
tool to generate a decision table, it is considered that the
efficiency of the test design from a formal specification
is improved.

Published by Atlantis Press
Copyright: the authors

 177

 Proposal of a Supporting

Future issues are as follows.
 Generating truth-values in action items
 Supporting to each syntax: cases expressions, for

loop, and while loop, and so on
 Comparing with a decision table described by hand

References

1. John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee,
Nico Plat, Marcel Verhoef (2005), Validated Designs for
Object-Oriented Systems, Springer.

2. Shin Nakajima (2007), Formal Methods as Software
Engineering Tools (in Japanese), NII Technical Report,
NII-2007-007J.

3. ISO 5806, Specification of single-hit decision tables.
4. A Scanner/Parser for the Overture Toolset,

http://overturetool.hosting.west.nl/twiki/bin/view/Main/O
vertureParser/ (accessed November 29, 2013).

5. CEGTest, http://softest.jp/tools/CEGTest/ (accessed
November 29, 2013).

6. PictMaster, http://sourceforge.jp/projects/pictmaster/
(accessed November 29, 2013).

Published by Atlantis Press
Copyright: the authors

 178

	1. Introduction
	2. Supporting Method to Generate a Decision Table from the Formal Specification
	2.1. Scanner/Parser
	2.2. CA-Extractor
	2.3. SDT-Generator

	3. Application Example
	4. Discussion
	4.1. Problems of the supporting tool to generate a decision table
	4.2. Evaluation of the proposed method
	4.3. Discussion about the supporting tool to generate a decision table

	5. Conclusions
	References

