Journal of Robotics, Networking and Artificial Life, Vol. 1, No. 3 (December 2014), 207-211

Proposal of a Supporting Method for Debugging to Reproduce
Java Multi-threaded Programs by Petri-net

Tetsuro Katayama”, Shoichiro KitanoT, Yoshihiro Kitai, Hisaaki Yamaba' and Naonobu Okazaki'
TFaculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
*Security Center, Kanagawa Institute Technology, Kanagawa 243-0292, Japan

“Corresponding author, E-mail: kat@cs.miyazaki-u.ac.jp
Tel: +81-985-58-7586, Fax: +81-985-58-7586

Abstract

It is difficult to implement the multi-threaded programs. The reason is that the behavior of each thread is
non-deterministic. Also it is difficult to reproduce the situation in which an incident occurs. This paper proposes a
supporting method for debugging to reproduce Java multi-threaded programs by visualizing the behavior of the
programs with Petri-net. Moreover, we have confirmed the effectiveness of our method by implementing a tool.

Keywords: multi-threaded program, debugging, Petri-net, Java, reproducibility

1. Introduction

In recent year, many computers are adopted multi-core
CPUs. For using such resources effectively, the demand
of multi-threaded programs increases.

In multi-threaded programs, it is hard work for even
expert programmers to implement them, and easier to
embed bugs than single-threaded programs[1]. Most of
such bugs are discovered in latter half of the
development process or in executing the programs by
users. Therefore, it is difficult to fix the programs. It is
necessary to remove the bugs at the unit testing to
resolve this problem.

One of the testing methods executes a program with
plural interleaving by putting off a timing of execution
of each thread. Hereby, we can discover potential bugs
in a multi-threaded program.

However, even if this testing method shows that
bugs exist, in multi-threaded programs, it is hard to
discover the cause of the bugs in debugging because the
behavior of multi-threaded programs is
non-deterministic.

This paper proposes a supporting method for
debugging to reproduce multi-threaded programs by

Petri-net to improve efficiency of debugging work for
the multi-threaded programs written in Java language.

Specifically, the proposed method gives
reproducibility to multi-threaded programs, generates
data file for execution path of multi-threaded program,
and simulates the behavior of the program by Petri-net
based on the data file.

Here, ordinal Petri-net cannot express the behavior
of multi-threaded programs written in Java completely.

2. Supporting Method Using Petri-net

2.1. Supporting method

This section proposes a supporting method for
debugging that improves the efficiency of discovering
the cause of bugs by giving reproducibility to
multi-thread programs. The procedure is following.
(i) Generating the data file of the execution path in the
situation in which an incident occurs
The data has ID of threads executing process,
executed processes, timing of processes, and ID of
generated threads.

Published by Atlantis Press
Copyright: the authors

207

S. Kitano, T. Katayama, Y. Kita, H. Yamaba and N. Okazaki

public class Example {

static class ThreadExample extends Thread {
public void run() {
Object lock = new Object();
synchronized (lock) {
System.out.println(“in synch™);

}

System.out.println(“lock release”);

}

public static void main(String[] args) {
System.out.println("Hello");
new ThreadExample().start();
System.out.println(" World");

}

Fig. 1. Example of a Multi-threaded Program written
in Java.

(ii) Generating a Petri-net model from a tested Java
program
We explain the method to model Java programs by
Petri-net in the next section.

(iii) Simulating the behavior of Java program which has
tested
This process uses the data file and a Petri-net
model.

2.2. Modeling Petri-net for Java programs

This paper models Java programs by Petri-net using the
conversion rule as follows. Fig.2 is an example of a
Petri-net model for the program of Fig.l which is an
example of a multi-threaded program written in Java.

e astatement is converted into a place,

e areserved word ‘synchronized’ is converted into a
place,

e astate of waiting lock is converted into a place,

e a beginning of the method is converted into a
place,

e a transition to the next statement is converted into
a transition,

e athread is converted into a token,

e alocked instance is converted into a token.

start main

!
*
Object lock =
System.out. new (hject()

start run

printin{” Hellow™)

new Thread Example().
start()

System.out.
printin{"World")

——
" imi_\'nrh“}“ _x!’/
—____.--""_------s)nrhrunisﬁl:d
——

FHOPOAOHO

System.out.printin
(*lock release™);

Fig.2. Petri-net Modeling of Fig.1.

O @

Thread Locked Instance

Fig. 3. Model for Identifying a Thread and a Locked
Instance.

2.3. Extending Petri-net

To improve the efficiency of discovering the cause of
bugs, we extend Petri-net. This extension can support to
understand the behavior of Java programs more
intuitively.

2.3.1 Identifying tokens by ID

Because of inability of Petri-net to identify the each
token which passes as the same path, we enable
Petri-net to identify each token by adding ID to tokens.

2.3.2 Expressing the role of tokens by color

The modeling rule which we have described in section
II cannot make us to understand that the token expresses
thread or locked instance intuitively. Thus, we define a
token expressing thread is a white circle and a locked
instance is a black circle as shown in Fig.3. This
definition makes us easy to understand the role of
tokens.

Published by Atlantis Press
Copyright: the authors

mhramm“\l w20 | T~

O

Fig. 4. Example of Petri-net with ID.

2.3.3 Expressing locked instances

At present, it is hard to understand our Petri-net when
many locked instances exist in the model or many
threads share one locked instance. Also, there is a
problem not to know which thread locks which instance.

As an example of these problems, Fig.4 expresses
that there are threads numbered ID 1,3,4 which use the
locked instance numbered ID 10 and thread numbered
ID 2 which use the locked instance numbered ID 20.
However, such information is not described in the
Petri-net model. As shown in Fig.5, it is impossible to
confirm the cause of waiting threads with 1D3,4 when
the thread with ID1,2 have moved to the next place.

Hence, we extend a token expressing a thread to
describe ID which should be locked by each thread.
Furthermore, in order to express the state of a thread
locking an instance, we extend a token expressing a
thread to describe the locked token on the thread token.
This extension can express the state of releasing the
lock in synchronized block happened by wait() method
which is a method of java.lang.Object class.

3. Confirmation

We confirm the effectiveness of proposed supporting
method for debugging by implementing a tool.

Proposal of a Supporting

O

State of Waiting for a Locked Instance.

/
/

T2

&+

Fig. 5.

13 ek 10
1D:d lock 10 |

I
-

om0 |
synchronized

xS,

Ay
A

P
P
| e [

&)

ip:ziock 20 |

N

Fig. 6. Extended Petri-net for Java.

3.1. The method of confirmation

As an example, we use a multi-threaded program
without the process of synchronization written in Java.
Fig.7 shows the code of the example.

This program outputs strings by three classes
succeeding java.lang.Thread class. FirstNamePrinter
class outputs “Shoichiro”, SpacePrinter class outputs “
and SurnamePrinter outputs “Kitano”. The expected
result is a string “Shoichiro Kitano”. However, because
of this program without process of synchronization, the
result is often different from the expected result.

Fig.8 shows a part of the code generated by our tool
from the tested code. An unexpected result is discovered
by executing the code. Furthermore, our tool can
generate the data file of an execution path in testing the
code.

Published by Atlantis Press
Copyright: the authors

209

5

S. Kitano, T. Katayama, Y. Kita, H. Yamaba and N. Okazaki

public class NakedNamePrinter |

private final String firstName;
private final String surName;

public NakedNamePrinter(String firstName, String surName) |
this.firstName = firstName; //NakedNamePrinter 1
this.surName = surName; //NakedNamePrinter 2
new FirstNamePrinter().start(); /NakedNamePrinter 3
new SpacePrinter().start(); /NakedNamePrinter 4
new SurnamePrinter().start(); /NakedNamePrinter 5

H

private class FirstNamePrinter extends Thread |
public void run(){
System.out.print(firstName); //FirstNamePrinter 1
H
H

private class SpacePrinter extends Thread |
public void run() {
System.out.print(’ '); //SpacePrinter 1
1
H

private class SurnamePrinter extends Thread {
public void run() {
System.out.printin(surName); /SurnamePrinter 1
H
H

public static void main(String|] args) {
new NakedNamePrinter("Shoichiro”, "Kitano"); //main 1

H

Fig. 7. A Tested Code.

By using a data file generated by executing the code
shown in Fig.8, we have confirmed the effectiveness of
our proposed method by letting students in our
laboratory use our tool.

3.2. Result

Fig.9 shows Petri-net generated by our tool. In Fig.9,
the label with number added to the place corresponds
with the comment in Fig.7, and the place expresses
statement with corresponded the comment.

Fig.10 shows the reproduction of situation when an
incident occurs. Primarily, the place should be marked
in order of “FirstNamePrinter 1, “SpacePrinter 17, and
“SurnamePrinter 1” in this Petri-net. In Fig.10, Because
of a token is on “SpacePrinter start run”, it realizes that
“SpacePrinter 1” is not executed and “SurnamePrinter
1” has been executed earlier than “SpacePrinter 1” by
the marking of a place with “SurnamePrinter 1.

Here, we can understand that threads are not
executed in order our expectation. Thus, we have
noticed that there is a defect in synchronized process
between threads.

public class NakedNamePrinter |

private final String firstName;
private final String surName;

public NakedNamePrinter{String firstName, String surName) {
long t;
t = System.nanoTime();
ExecutionWriter.addExecutionData(t, “start NakedNamePrinter");

this.firstName = firstName;
t = System.nanoTime();
ExecutionWriter.addExecutionData(t, "this.firstName = firstName");

this.surName = surName;
i = Sysiei 3

ExecutionWriter. addl mullonDaln[t. "this.surName = surName");

new FirstNamePrinter().start();

t = System.nanoTime();

ExecutionWriter.addExecutionData(t, "new FirstNamePrinter().start()");
new SpacePrinter().start();

t = System.nanoTime();

ExecutionWriter.addExecutionData(t, "new SpacePrinter().start()");
new SurnamePrinter().start();

t = System.nanoTime();
ExecutionWriter.addExecutionData(t, "new SurnamePrinter().start()");

Fig. 8. A Part of the Generated Code.

start main
HabedianePrinter |

. start NakediamePrinter ,-O
-

\ /’ ., NabedfamePrinter 7

,/’ O
FirsthamePrister start run '
== BaksdiamePrinter 3
\O SurnamePrinter start ra

—I—\ \ = JabedlanePrinter 4

Firstlamebrinter 1
—— \‘
Spacefrinter 1 \
F:
Iakedlut?mm' §
min]

O —t

— O

Fig. 9. Petri-net Generated by Tool.

SpacePrinter start run

——
SurnimePrinter 1

From this, because of reproducing the situation in
which an incident occurs and understanding the
behavior of a program graphically, it is easy to discover
a cause of a bug. Thus, we have confirmed our method
is effectively.

Published by Atlantis Press
Copyright: the authors

o Pk] : |
start min
Bakediametrinter |
O start BabedamePrinter O
A
/
——— i
d
™ /
. BakedanePrinter
NS
---------- o
S;nPrl ater start |.n
(Pirsthassbrinter start rua 4
m = [NabedianePrinter 3
RNt Surnamefrinter start run
---------- U \\\ U
\\\ \\\._ . /
. ~
- == Rakediinstrinter 4
| . \
4 FirsthamePrinter 1\\\\ [9" i 1
Spacebrinter 1 e |

Fig. 10. Situation in Which an Incident Occurs.

3.3. Comparison with related work and existing
tool

As related work, some researches discover potential
bugs of multi-threaded programs by automatically
generated Petri-net models[2][3][4]. In these researches,
it is possible to discover the existence of bugs by
analyzing Petri-net statically. However, this approach

cannot discover the cause of bugs.

There is a tool for multi-threaded programs that
discover potential bugs by executing the unit testing
tool cannot reproduce the
situation in which an incident occurs to test the
multithreaded program by plural interleaving at random.
Therefore, discovering cause of bugs is depended on

automatically[5]. This

users.

On the other hand, our debugging method can
reproduce the same situation in many times, because our
method uses the data file of an execution path that was
really executed. It makes us easy to discover the cause
of bugs. Therefore, it may be said that our proposing
method is effective for removing the potential bug of the

multi-thread program.

Proposal of a Supporting

4. Conclusion

In this paper, we have proposed supporting method for
debugging to reproduce Java multi-threaded programs

by Petri-net.

And we have extended Petri-net to

understand the behavior of Java programs more. We
think that this extension improves the efficiency of

debugging.

Furthermore, we have shown the

effectiveness of our method by adapting a tool to an
example and comparing with related works and the
existing tool.

Future issues are as follows.

Improving of the adaptation range of our tool,
Confirming effectiveness of extended Petri-net.

References

1.

J. K. Ousterhout, Why Threads Are A Bad Idea (for most
purposes), Presentation given at the 1996 Usenix Annual
Technical Conference, (1996),
http://www.softpanorama.org/People/Ousterhout/Threads
K. M. Kavi, A. Moshtaghi, D. Chen, Modeling
Multithreaded ~ Applications Using Petri ~ Nets
International Journal of Parallel Programming, Vol. 30,
No. 5, (2002), pp. 353-371.

G.R. Suciu, F. Zuberek, W.M, Timed Petri net Models of
Multithreaded ~Multiprocessor ~ Architectures, IEEE
Proceedings of the Seventh International Workshop on
Petri Nets and Performance Models, (1997), pp. 153-162.
H. Liao, Y. Wang, H. K. Cho, J. Stanley, T. Kelly, S
Lafortune, S. Mahlke, S. Reveliotis, Concurrency bugs in
multithreaded software, modeling and analysis using
Petri nets, Discrete Event Dynamic Systems, (2013), Vol.
23, Issue 2, pp. 157-195

ConTest - A Tool for Testing Multi-threaded Java
Applications,
https://www.research.ibm.com/haifa/projects/verification/
contest/

Published by Atlantis Press
Copyright: the authors

211

