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Abstract 

Theoretical studies of evolutionary algorithms (EAs) have been developed by researchers whose main interests are 

convergence properties of algorithms. In this paper, we report the computational complexity of an algorithm that is 

a variant of (1 + 1) EA, called Random Local Search (RLS). While a standard EA uses a mutation of flipping 

each bit in a parent string, RLS flips exactly one bit at each step. It has been noted the close resemblance of RLS 

with the coupon collector problem (CCP). CCP has a long history of probabilistic research, and many interesting 

results are obtained. This study makes use of such results with some modifications. We also show some useful 

results representing the evolution process of (1 + 1) EA.  

Keywords: Evolutionary algorithm, Random Local Search, Coupon collector's problem, Markov chain. 

1. Introduction 

Theoretical studies of evolutionary algorithms (EAs) 

have been developed by researchers whose main 

interests are convergence properties of algorithms [1,2]. 

Especially, the time complexity of algorithm is a most 

attracting topic for them. For the runtime analysis of 

EAs, one usually chooses (1 + 1) EA as the first trial. 

A detailed overview of these studies are presented in 

[3].  

In this paper, we report the computational complexity 

of an algorithm called Random Local Search (RLS), 

which is a variation of (1 + 1) EA. While a standard 

EA uses a mutation of flipping each bit in a parent 

string, RLS flips exactly one bit at each step. It has been 

noted the close resemblance of RLS with the coupon 

collector's problem (CCP). The CCP has a long history 

of probabilistic research, and many interesting results 

are obtained [4]. This study makes use of such results 

with some modifications. We show some useful 

theorems representing the evolutional process of RLS.  

A general framework for analyzing the average hitting 

times of EAs by applying Markov chain model is 

studied by many researchers. The state space 𝑆 of the 

chain is given by the number of bit ones, {0,1, … , 𝑙}, 

where 𝑙 is the length of bit string. The behavior of this 

Markov chain is completely determined by the 

transition matrix 𝑷 of an absorbing Markov chain [5]. 

The explicit form of absorbing Markov chain can be 

obtained. Using this expression of 𝑷, we show that the 

expected runtime of RLS algorithm is 𝑙𝐻1 steps, where 

𝐻1 is the first Harmonic number. The runtime of this 

chain is approximately given by 𝑙 𝑙𝑜𝑔(𝑙). Furthermore, 

the distribution of runtime 𝑇 is also obtained, and can 

be expressed in the closed form by using Stirling 

number of the second kind. There are many such 

interesting results for the RLS algorithm. The paper 

reports some of them. 

2. Evolutionary Algorithms 

Evolutionary Algorithm (𝜇 + 𝜆)  came from 

Evolutionary Strategy developed by Rechenberg and 

Schwefel, where 𝜇  and 𝜆  are numbers of parent 

solutions and offspring solutions, respectively [6]. We 

choose the parameters 𝜇 = 1 and 𝜆 = 1 for simplicity. 
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Though (1 + 1) EA seems too simple for an analysis, 

it has attracting properties. As Wegener states that [2], 

(1). it is efficient for many problems,  

(2). it can not get stuck in a local optimum, and  

(3). the analysis of it reveals many tools that can be 

used in more practical algorithms. 

Algorithm 1     (1 + 1) EA 

1: Initialize 𝑥 ∈ {0,1}𝑙 uniformly at random. 

2: Create 𝑥′  by flipping each bit in 𝑥  with 

probability 𝑝𝑚. 

3: Select if 𝑓(𝑥′) ≥ 𝑓(𝑥) then 𝑥 ≔ 𝑥′. 

4: Go to 2 until a termination condition is fulfilled. 

As a test function, we adopt OneMax function 𝑓(𝑥) 

𝑓(𝑥) =∑𝑥𝑖

𝑙

𝑖=1

,   𝑥𝑖 ∈ {0,1}, 
 

where 𝑥 is a binary string of length 𝑙. We consider the 

maximization problem of OneMax function. The 

optimum solution is 𝑥𝑜𝑝𝑡 = {1}
𝑙 , and 𝑓(𝑥𝑜𝑝𝑡) = 𝑙 . 

Since many studies suggested that the mutation 

probability of 𝑝𝑚 = 1/𝑙 may be the best choice, we 

carried out our analysis using this value. 

The second choice of Evolutionary Algorithm is the 

Random Local Search (RLS). We define RLS as 

Algorithm 2     Random Local Search 

1: Initialize 𝑥 ∈ {0,1}𝑙 uniformly at random. 

2: Create 𝑥′  by flipping one bit in 𝑥  which is 

selected at random. 

3: Select if 𝑓(𝑥′) ≥ 𝑓(𝑥) then 𝑥 ≔ 𝑥′. 

4: Go to 2 until a termination condition is fulfilled. 

The difference of two algorithms are in the step 2. 

3. Coupon Collector's Problem 

Consider the case that there are 𝑐 types of coupons, 

and each day a collector randomly gets one coupon with 

the equal probability 1/𝑐 . How many days has the 

collector to wait for collecting all types of coupons.  

As an elementary problem, we consider the number of 

days 𝑛 until both of the 2 types of coupons，A and B,  

are collected. First, we calculate the expectation value 

𝐸[𝑛]. If two types of coupons are collected at the 𝑛th 

day, there are two cases,  

 

 

 

Since there are 𝑛2 cases, the probability of collecting 

one set of coupons is 

𝑝(2)(𝑛) =
2

2𝑛
=

1

2𝑛−1
. 

 

The expectation of 𝑛 is given by 

𝐸[𝑛] = ∑𝑛(
1

2
)𝑛−1

∞

𝑛=2

=
1

(1 − 1/2)2
− 1 = 3. 

 

Next, we try to solve this problem in another approach. 

First, we calculate the probability 𝑞(2)(𝑛) of collecting 

one set of coupons until 𝑛 days. Among all events in 𝑛 

days, there are two events which do not collect at least 

one of two coupons, 

 

 

 

Hence, we have 

𝑞(2)(𝑛) = 1 −
2

2𝑛
= 1 −

1

2𝑛−1
. 

 

Using this result, we have 

𝑝(2)(𝑛) = 𝑞(2)(𝑛) − 𝑞(2)(𝑛 − 1) =
1

2𝑛−1
. 

 

Then, we consider the case of 𝑐 coupons. Let 𝐴𝑖 be 

the event that the 𝑖th coupon is still not collected at the 

𝑛 th day. Probabilities 𝑃(𝐴𝑖)  and 𝑃(𝐴𝑖 ∩ 𝐴𝑗)  with 

(𝑖 ≠ 𝑗) are given by 

𝑃(𝐴𝑖) = (1 −
1

𝑐
)
𝑛

,   𝑃(𝐴𝑖 ∩ 𝐴𝑗) = (1 −
2

𝑐
)
𝑛

. 
 

In general, the probability of the event that the coupons 

𝑖1, 𝑖2, … , 𝑖𝑘 are still not collected at the 𝑛th day is  

𝑃(𝐴𝑖1 ∩ 𝐴𝑖2 ∩⋯∩ 𝐴𝑖𝑘) = (1 −
𝑘

𝑐
)
𝑛

. 

 

We define events 𝐹 and 𝐺. Event 𝐹 is the case of 

failure that at least one coupon is still not collected at 

the 𝑛th day, while 𝐺  is the case of success that a 

collector gets all coupons until the 𝑛th day. Since the 

relation 

𝑃(𝐺) = 1 − 𝑃(𝐹),  

holds, we calculate the failure probability 𝑃(𝐹) instead 

of of the success probability 𝑃(𝐺). Event 𝐹 is given 

by 

AAA ··· A B,     BBB ··· B A. 

𝑛 − 1 𝑛 − 1 

AAA ··· A,       BBB ··· B. 

𝑛 𝑛 
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𝐹 = 𝐴1 ∪ 𝐴2 ∪⋯∪ 𝐴𝑐 =⋃𝐴𝑖

𝑐

𝑖=1

. 
 

Using the principle of inclusion-exclusion 

𝑃 (⋃𝐴𝑖

𝑐

𝑖=1

) =∑𝑃(𝐴𝑖)

𝑐

𝑖=1

− ∑ 𝑃(𝐴𝑖1 ∩ 𝐴𝑖2)

𝑖1<𝑖2

+⋯

+ (−1)𝑐+1𝑃(𝐴1 ∩ ⋯∩ 𝐴𝑐). 

Thus we have the probability of collecting all types of 

coupons until 𝑛th day 

𝑞(𝑐)(𝑛) = 1 − 𝑃(𝐹) =∑(
𝑐
𝑖
) (−1)𝑖 (1 −

𝑖

𝑐
)
𝑛𝑐

𝑖=0

. ⑴ 

The final result of the probability of collecting 𝑐  

types of coupons at the 𝑛th day is 

𝑝(𝑐)(𝑛) = 𝑞(𝑐)(𝑛) − 𝑞(𝑐)(𝑛 − 1)     

                           = ∑(
𝑐 − 1
𝑖
) (−1)𝑖 (1 −

𝑖

𝑐
)
𝑛−1𝑐−1

𝑖=0

. 

 

 

⑵ 

4. Markov Chain Model 

This section presents the Markov chain approaches to 

the EAs. 

4.1. (𝟏 + 𝟏)Evolutionary algorithm 

The search space of OneMax function is Ω = {0,1}𝑙, 

and we divide Ω into (𝑙 + 1) subsets Ω = 𝑆0 ∪ 𝑆1 ∪

⋯∪ 𝑆𝑙 , where 𝑓(𝑆𝑖) = 𝑖 . The transition matrix 

𝑃𝑖,𝑗 = 𝑃(𝑗|𝑖)  represents the evolution of (1 + 1) EA, 

(1). for 𝑖 > 𝑗 
𝑃𝑖,𝑗 = 0.  

(2). for 𝑖 < 𝑗 

𝑃𝑖,𝑗 =∑(
𝑖
𝑟
) 𝑝𝑚

𝑟(1 − 𝑝𝑚)
𝑖−𝑟 (

𝑙 − 𝑖
𝑗 − 𝑖 + 𝑟

)

𝑘

𝑟=0

 

× 𝑝𝑚
𝑗−𝑖+𝑟(1 − 𝑝𝑚)

𝑙−𝑖−(𝑗−𝑖+𝑟) 

           = ∑(
𝑖
𝑟
) (
𝑙 − 𝑖
𝑠
) 𝑝𝑚

𝑟+𝑠(1 − 𝑝𝑚)
𝑙−(𝑟+𝑠)

𝑘

𝑟=0

, 

 

 

 

 

⑶ 

where 

𝑠 = 𝑗 − 𝑖 + 𝑟,    𝑘 = min (𝑙 − 𝑗, 𝑖).  

(3). for 𝑖 = 𝑗 

𝑃𝑖,𝑖 = 1 −∑𝑃𝑖,𝑗

𝑙

𝑗>𝑖

. 
 

In a matrix form, these equations are given by 

𝑷 =

(

 
 

𝑃0,0 𝑃0,1
    0 𝑃1,1

⋯ ⋯ 𝑃0,𝑙
⋯ ⋯ 𝑃1,𝑙

0 0
⋮
0

⋮
0

⋱ ⋱ ⋮
⋱
⋯

⋱ ⋮
0 1 )

 
 

 

 

 

⑷ 

The form of 𝑷 suggests that this Markov chain is 

absorbing, and there are 𝑙 transient and one absorbing 

states, respectively. The canonical form of the transition 

matrix is given by 

𝑷 = (
𝑸 𝑹
𝟎 𝑰

) 
⑸ 

The 𝑙 × 𝑙  submatrix 𝑸  represents the transitions 

among transient states 𝑆0, 𝑆1, ⋯ , 𝑆𝑙−1. The unit matrix 

𝑰 in this case is a scalar 1. The 𝑙 × 1 submatrix 𝑹 is 

the probability of the transitions from transient states to 

the absorbing state 𝑆𝑙, 
𝑹 = (𝑝0,𝑙 , 𝑝1,𝑙 ,⋯ , 𝑝𝑙−1,𝑙)

𝑇 .  

For the calculation of the hitting time of the optimum 

solution, we use the fundamental matrix 

𝑵 = (𝑰 − 𝑸)−1, ⑹ 

where the size of 𝑰 is the same as 𝑸. The Markov 

chain theory tells that the expected steps to enter into 

the absorbing state(s) are given by [5] 

𝒎 = 𝑵𝟏,  

where 𝑚𝑖 is the expected absorbing steps started from 

𝑆𝑖, and 𝟏 is a colummn vector whose all entries are 1. 

By solving a set of linear equations 

(𝑰 − 𝑸)𝒎 = 𝟏, ⑺ 

we obtain the solutions 

𝑚𝑙−1 = 1/𝑝𝑙−1,𝑙 ,  

and for (0 ≤ 𝑖 ≤ 𝑙 − 1) 

𝑚𝑖 = (1 + ∑ 𝑃𝑖,𝑗𝑚𝑗

𝑙−1

𝑗=𝑖+1

)/( ∑ 𝑃𝑖,𝑗

𝑙

𝑗=𝑖+1

). 
 

4.2. RLS algorithm 

The transition matrix for the RLS process is given by 

𝑷 =

(

 
 
 

0 1 0
0 1/𝑙 (𝑙 − 1)/𝑙
0 0 2/𝑙

0     ⋯      0  
0 ⋯ 0

(𝑙 − 2)/𝑙 ⋯ 0
⋮ ⋮ ⋮
0 0 0
0  0         0       

⋱   ⋱ ⋮
⋯ (𝑙 − 1)/𝑙 1/𝑙

     ⋯     0 1 )

 
 
 

 

 

 

⑻
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From eq.⑺ 
1 − 𝑖

𝑙
(𝑚𝑖 −𝑚𝑖+1) = 1,   (0 ≤ 𝑖 ≤ 𝑙 − 1) 

1

𝑙
𝑚𝑙−1 = 1,            

 

we have a set of solutions 

𝑚𝑖 = 𝑙 (1 +
1

2
+ ⋯+

1

𝑙 − 𝑖
). ⑼ 

Thus the expected first hitting time of the optimum 

solution in RLS is given by eq.⑼ for 𝑖, the number of 

bit ones in the initial state. The distribution of the first 

hitting time 𝑛 is given by 𝑝(𝑙)(𝑛) for 𝑖 = 0 using eq.

⑵. 

5. Numerical Experiment 

In this section, we compare results of the theoretical 

predictions with experiments of RLS and (1 + 1) EA. 

We used the mutation rate 𝑝𝑚 = 1/𝑙 for (1 + 1) EA. 

The length of string is 𝑙 = 100, and we performed 

10000 runs for each parameter set, and averaged over 

them. 

Figure 1 shows the time dependence of probability 

𝑝(𝑙)(𝑛) of the first hitting time of optimum solution in 

RLS. The solid line is the result of numerical 

calculation. 

The result is moving averaged with window size of 21. 

The dotted line is the theoretical prediction obtained by 

eq.⑵, which well reproduces the result of the numerical 

calculation. 

 

Figure 2 shows the time dependence of probability 

𝑝(𝑙)(𝑛) of the first hitting time of optimum solution in 

(𝟏 + 𝟏) EA. The solid line is the result of numerical 

EA calculation. The dotted line is the theoretical 

prediction obtained by using Markov chain transition 

matrix. The present model using Markov chain also can 

reproduce the numerical experiment of EA. 

 

6. Summary 

In this paper, we demonstrate that the probabilistic 

methods including Markov chain model can reproduce 

the first hitting time of optimum solution in RLS and 

(1 + 1) EA for OneMax function. These studies can 

help to understand the working mechanism of 

Evolutionary Algorithms, and give some suggestions to 

design algorithms for other problems. We cannot show 

results for linear functions obtained by present 

algorithms and methods of population genetics [7] due 

to limitation of space. We will report them in other 

occasions. 

Our next aim is to apply drift analysis to optimization 

problems. Drift analysis was a class of tools developed 

by Yao and other researchers [3,8], and can give upper 

and lower bounds to running time of a given algorithm. 

Fig. 2. Distribution of the first hitting time of optimum 

solution in (𝟏 + 𝟏) EA with 𝒍 = 𝟏𝟎𝟎. The initial state 

is a bit string of 𝒍/𝟐 zeros and 𝒍/𝟐 ones. The solid 

line is the result of (𝟏 + 𝟏) EA calculation. The dotted 

line is the theoretical prediction using Markov chain 

model. 

Fig. 1. Distribution of the first hitting time of optimum 

solution in RLS with 𝒍 = 𝟏𝟎𝟎. The initial state is a bit 

string of all zeros. The solid line is the result of RLS 

calculation. The dotted line is the theoretical prediction. 
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We are now trying to combine drift analysis and 

classical probabilistic methods. 
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