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Abstract 

Genetic algorithms (GAs) are stochastic optimization techniques, and we have studied the effects of stochastic 
fluctuation in the process of GA evolution. A mathematical study was carried out for GA on OneMax function 
within the framework of Markov chain model. We obtained the steady state solution, which represents a 
distribution of the first order schema frequency. We treated the task of estimating convergence time of the Markov 
chain for OneMax problem, and studied the effects of mutation probability and string length on the convergence 
time. 
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1. Introduction 

We have studied the probability that a population 
includes the optimum solution by applying Markov 
chain model1. We call this probability as the success 
probability of GA. We obtained the analytical form of 
the transition matrix 𝑃  of Markov chain2, which 
represents the evolution of the population in OneMax 
problem. We also found that GA for the OneMax 
problem is equivalent to the asymmetric mutation 
model3. There are rich studies of the asymmetric 
mutation model, and we can apply these results to the 
OneMax problem in GA. The relation between the 
convergence time and success probability was studied 
analytically and experimentally. In these analyses, we 
applied the Wright-Fisher model4.  

In this paper, first, we considered the effects of 
crossover on the evolution speed of OneMax problem. 

This task was carried out by using linkage analysis. 
Next, we studied the convergence time of the Markov 
chain for OneMax problem. This analysis was 
performed by using the eigenvalues of transition matrix 
representing the behavior of population in the GA. From 
this analysis, we found that the convergence of GA to 
the stationary state can be represented approximately by 
mutation rate and string length. We used this theoretical 
result for the analysis of real GA calculations. 

2. Mathematical Model 

2.1. OneMax model 

We treat the evolution process of a population with 𝑁 
individuals. The individuals are represented by binary 
strings of length 𝑙, and there are 𝑛 = 2𝑙 genotypes, 

𝑖 =< 𝑖(𝑙), … , 𝑖(1) >, 𝑖(𝑘) ∈ {0,1}.  
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Fig. 1. Average fitness 

We use the relative frequency 𝑥𝑖(𝑡) for describing the 
evolution 

𝑥𝑖(𝑡) = 𝑁𝑖(𝑡)/𝑁,  

where 𝑁𝑖(𝑡) is the number of individuals of genotype 
𝑖 at generation 𝑡. The relative frequencies satisfy the 
normalization condition 

�𝑥𝑖(𝑡)
𝑛−1

𝑖=0

= 1. 
 

The average fitness 𝑓(̅𝑡)  of the population at 
generation 𝑡 is 

𝑓(̅𝑡) = �𝑓𝑖𝑥𝑖(𝑡)
𝑛−1

𝑖=0

. ⑴ 

The OneMax fitness function 𝑓𝑖 is defined as 

𝑓𝑖 = �𝑖(𝑘)
𝑙

𝑘=1

. ⑵ 

Thus the string of all ones < 1,1, … ,1 >  is the 
optimum solution of this function. 

2.2. Linkage equilibrium 

We derive here the evolution equation for the first 
order schema frequency. To do this, we introduce the 
notion of linkage equilibrium. Linkage means the 
correlation between the different loci in a chromosome, 
and if there is some correlation we call this state as 
linkage disequilibrium5. Crossover and mutation have 
the effect of making the population in linkage 
equilibrium. 

The distribution of a population in linkage equilibrium 
is given by 

𝑥𝑖(𝑡) = �ℎ𝑖(𝑘)(𝑡)
𝑙

𝑘=1

, ⑶ 

where ℎ𝑖(𝑘)(𝑡) is a frequency of the first order schema 
at position 𝑘, and 𝑖 =< 𝑖(𝑙), … , 𝑖(1) >. We also use 
the notation of ℎ0

(𝑘) and ℎ1
(𝑘) for the first order schema 

frequencies of bit 0 and bit 1, respectively. 
In the deterministic schema theory, the evolution of the 

first order schema in linkage equilibrium can be 
obtaimed2. The relative frequency of the first order 
schema at position 𝑘 is determined by 

ℎ1
(𝑘)(𝑡 + 1) = 𝑎ℎ1

(𝑘)(𝑡) + 𝑏, ⑷ 

where constants 𝑎 and 𝑏 are 

𝑎 = �1 −
1
𝑙
� (1 − 2𝑝𝑚), 𝑏 =

1
𝑙

(1 − 2𝑝𝑚) + 𝑝𝑚. 
 

3. Analysis of Evolution Rate 

3.1. Fisher’s theorem 

According to Fisher’s “Fundamental Theorem of 
Natural Selection”5, evolution rate becomes faster if 
variance of fitness becomes larger. The change ∆𝑓(̅𝑡) 
of fitness 𝑓̅(𝑡) at generation 𝑡 is 

∆𝑓(̅𝑡) = 𝑓̅(𝑡 + 1) − 𝑓(̅𝑡). ⑸ 

Variance of fitness 𝑉𝐴𝑅(𝑓) is 
𝑉𝐴𝑅(𝑓) = �𝑓𝑖2𝑥𝑖(𝑡)

𝑖

− 𝑓(̅𝑡)2. 
⑹ 

From eqs. ⑸ and ⑹, we have 

∆𝑓(̅𝑡) =
1

𝑓(̅𝑡)
𝑉𝐴𝑅(𝑓). 

 

We call 𝑣(𝑡) as evolution rate 
𝑣(𝑡) ≡ ∆𝑓̅(𝑡) = 𝑓̅(𝑡 + 1) − 𝑓̅(𝑡).  

If we ignore mutation, evolution rate 𝑣(𝑡)  is 
proportional to the variance of fitness. We note that 
variance of fitness must be increased in order to 
promote the evolution. 

3.2. Experiments 

We examined the effect of crossover by numerical 
calculation for OneMax problem. The length of string is 
𝑙 = 20 , population size 𝑁 = 100  and mutation rate 
𝑝𝑚 = 0.02. We applied roulette selection. We averaged 
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Fig. 2. Variance of fitness 

the results obtained by repeating 1000 calculations. The 
initial state was randomly generated with 𝑝(1) = 1/𝑙. 
We compared three types of calculations: without 
crossover, one-point crossover and uniform crossover. 

Figures 1 and 2 show values of average and variance 
of fitness, respectively. 

We find that Fisher’s theorem explains the results of 
Figs. 1 and 2. 

3.3. Linkage analysis 

The linkage disequilibrium coefficient is 

𝐷[𝑚,𝑚′] = 𝑝𝑚,𝑚′
(11) − 𝑝𝑚

(1)𝑝𝑚′
(1). ⑺ 

Here, 𝑝𝑚
(1) is the probability that the 𝑚-th bit is 1, 

and 𝑝𝑚,𝑚′
(11)  is the probability that the 𝑚-th bit and the 

𝑚′-th bit are both 1. Using Walsh function and Walsh 
conversion, the variance is given by 

𝑉𝐴𝑅(𝑓) = 𝑉𝐴 + 𝑉𝐼 ,  

where 

𝑉𝐴 = � 𝑝𝑚
(1)(1 − 𝑝𝑚

(1))
𝐿

𝑚=0

,  

𝑉𝐼 = 2 � 𝐷[𝑚,𝑚′]
𝑚<𝑚′

.  

Since 𝑉𝐴 depends only on 𝑝𝑚
(1), which is the function 

of one bit, it is not affected directly by crossover. On the 
other hand, 𝑉𝐼  dependents on the correlation of two 
loci. Therefore, the value varies by crossover. If 
correlation of two loci is small, the absolute value of 𝑉𝐼 
is small. In addition, because 

𝑉𝐼 ≤ 0,  

variance increases with weaker correlation. 

3.4. Analysis of variance 

We used the same conditions as the experiment of 
section 3.2, and analyzed the variance of Fig.2 by 
linkage analysis.  

Fig. 3 shows the change of 𝑉𝐴  and 𝑉𝐼  with 
generation. 

 
From this calculation, we found that the variance of 

fitness is influenced by crossover. Crossover breaks the 
correlation between two loci, and a population will be in 
linkage equilibrium. In the case of uniform crossover, 
we found that the variance of fitness is the largest, and 
evolution rate is the fastest. 

4. Analysis of Convergence 

4.1. Markov model 

In this study, we used the concept of Markov chain. 
Markov chain is a stochastic process, in which the 
transition only depend on the previous state. 

One of the Markov model in population genetics is a 

Fig. 3. Change of 𝑽𝑨 and 𝑽𝑰 with generation. 

Published by Atlantis Press 
Copyright: the authors 

227



Wright-Fisher model5,6. Wright and Fisher put forward 
their evolution equation by considering the finite 
individuals. The Wright-Fisher model treats 
chromosomes having one locus and two alleles, 
corresponding to the GA of 𝑙 = 1  with genotypes 
𝑘 ∈ {1,0}3. The number of the first genotype 1 takes 
the values of 

𝑁1 = 0,1, … ,𝑁,  

and that of the genotype 0 is given by 𝑁0 = 𝑁 −𝑁1. 
We analyze evolution processes by taking into account 

the effect of random sampling, and consider the fitness 
proportionate selection. If there are 𝑁1 = 𝑖 copies of 
the genotype 1  at the current generation 𝑡 , the 
probability 𝑃(𝑗|𝑖) of 𝑁1 taking the value of 𝑗 at the 
next generation 𝑡 + 1  is given by the binomial 
distribution 

𝑃𝑖 ,𝑗 = 𝑃(𝑗|𝑖) = �𝑁𝑗 � 𝑝𝑖
𝑗(1 − 𝑝𝑖)𝑁−𝑗 

⑻ 

𝑝𝑖 = 𝑎𝑦 + 𝑏 = 𝑎 �
𝑖
𝑁
� + 𝑏. 

 

The probability 𝑃(𝑗|𝑖)  specifies the process of 
random sampling, and the future behavior of the process 
only depends on its current frequencies3. Thus this 
process is a Markov chain. Let 𝜇𝑖(𝑡) be the probability 
that the population is in the state of 𝑁1 = 𝑖  at 
generation 𝑡. 

In the following, we use the vector notation 
𝜇𝑇 = (𝜇0, 𝜇1, … , 𝜇𝑁),  

with the normalization condition 

�𝜇𝑖(𝑡)
𝑁

𝑖=0

= 1. ⑼ 

Then the evolution process is described by 

𝜇𝑗(𝑡 + 1) = �𝜇𝑖(𝑡)𝑃𝑖,𝑗

𝑁

𝑖=0

. ⑽ 

The evolution equation is given in the vector form 

𝜇(𝑡 + 1)𝑇 = 𝜇(𝑡)𝑇𝑃, ⑾ 
where 𝑃 is a matrix of the size (𝑁 + 1) × (𝑁 + 1). 
We know the eigenvalues of this matrix5,7, 

𝜆0 = 1, 𝜆1 = 𝑎, 𝜆2 = 𝑎2(1 − 1/𝑁), …  ⑿ 
It should be noted that the second largest eigenvalue 
𝜆1  does not depend on the population size 𝑁 . We 
denote the left and right eigenvectors 

𝐮𝑖𝑇𝑃 = 𝜆𝑖𝐮𝑖𝑇 ,   𝑃𝐯𝑖 = 𝜆𝑖𝐯𝑖 ,   (0 ≤ 𝑖 ≤ 𝑁).  

These eigenvectors satisfy the orthogonally condition 

𝐮𝑖𝑇 ∙ 𝐯𝑗 = 0  (𝑖 ≠ 𝑗).  ⒀ 

The explicit form of the right eigenvector 𝐯0 is given 
by 

𝐯0 = (1,1, … ,1)𝑇 ,  ⒁ 
and all elements of the left eigenvector 𝐮0 are positive. 
We adopt the normalization conditions 

� |𝑢𝑖|
𝑁

𝑖=0

= 1,   𝐮𝑖𝑇 ∙ 𝐯𝑖 = 1. 
 

We consider the GA under positive mutation rate 
𝑝𝑚 > 0 . In this case, all elements of the transition 
matrix 𝑃 are positive, and the Markov chain of schema 
evolution is irreducible and aperiodic. The Markov 
chain theory states that an irreducible and aperiodic 
Markov chain converges to the stationary distribution 𝜋 

𝑙𝑖𝑚
𝑡→∞

𝜇(𝑡) = 𝜋,  ⒂ 

and all elements 𝜋𝑖 are positive5. 
The initial distribution of the first order schema can be 

expanded in terms of the left eigenvectors 

𝜇(𝑡 = 0)𝑇 = �𝐶𝑖𝐮𝑖𝑇
𝑁

𝑖=0

.  ⒃ 

Since 𝐮𝑖 is eigenvector, and from eq. ⑾, we have 

𝜇(𝑡)𝑇 = �𝜆𝑖𝑡𝐶𝑖𝐮𝑖𝑇
𝑁

𝑖=0

.  ⒄ 

Multiplying the right eigenvector 𝐯0 from right side 

𝜇(𝑡)𝑇 ∙ 𝐯0 = �𝜆𝑖𝑡𝐶𝑖𝐮𝑖𝑇 ∙ 𝐯0

𝑁

𝑖=0

= 𝜆0𝑡 𝐶0 = 𝐶0, 
 

and from eq. ⑼ and ⒁, we have 𝐶0 = 1. At large 𝑡, 
𝜇(𝑡) is approximately given by 

𝜇(𝑡) ≈ 𝐮0 + 𝑎𝑡𝐶1𝐮1,  ⒅ 

where 𝐮0 is the stationary distribution 𝜋. 

4.2. Total variation distance 

An important goal of the Markov chain theory is to 
estimate the rate of convergence to the stationary state. 
To this aim, the total variation distance has been used in 
many researches8. The total variation distance between 
the stationary distribution and the first order schema at 
generation 𝑡 is defined as 

𝑇𝑉(𝑡) =
1
2
� |𝜇𝑖(𝑡) − 𝜋𝑖|
𝑁

𝑖=0

. ⒆ 
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Substituting eq. (18) into this equation, we have 

𝑇𝑉(𝑡) = 𝐶 𝑎𝑡 , ⒇ 
at large t, and C is a constant. It should be noted that the 
convergence behavior is determined by only one 
parameter a. 

4.3. Experiments 

We compared results of the theoretical prediction with 
GA experiments. Crossover is uniform crossover with 
crossover rate = 1. Mutation rate is 𝑝𝑚 for each bit. 
Selection is roulette selection. We averaged the results 
obtained by repeating 10000 calculations. The initial 
state was randomly generated with 𝑝(1) = 1/2.  

 
Figure 4 is frequencies of the first order schema 

calculated by the theoretical prediction and GA 
experiments. The line of “Theory” is the results of 
theoretical calculation obtained by using eqs. ⑽ and 
⒂. The line of “OneMax” is the stationary distribution 
of the first order schema by GA experiments. 

Figures 5, 6, 7 and 8 are the total variation distance 
𝑇𝑉  between the stationary distribution and the first 
order schema. Experimental results were obtained by 
the moving average with the window size of 21. We 
fitted the experimental data by matching the theoretical 
TV with approximation curve of eq.(20) at arbitrary 
matching time tm.  

 
 
Figure 5 shows the results with N=100, l=20 and 
𝑝𝑚 = 0.02. We used the matching time tm=10. The 
dotted line is the approximate curve obtained by eq.⒇. 
We found that the convergence behavior of the GA 
calculation is well reproduced by eq. ⒇. 

 
 Figure 6 is the results when the population size 𝑁 is 

changed to 200 from the experiment of Figure 5. The 
matching time is 10. 

Fig. 4. Frequencies of the first order schema 

𝑵 = 𝟏𝟏𝟏
𝒍 = 𝟐𝟏 
𝒑𝒎 = 𝟏.𝟏𝟐 

Fig. 5. Convergence of the first order schema 

𝑵 = 𝟏𝟏𝟏
𝒍 = 𝟐𝟏 
𝒑𝒎 = 𝟏.𝟏𝟐 

Fig. 6. Convergence of the first order schema 

𝑵 = 𝟐𝟏𝟏
𝒍 = 𝟐𝟏 
𝒑𝒎 = 𝟏.𝟏𝟐 
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Figure 7 shows the results when the length of string 𝑙 

is changed to 10 from the experiment of Figure 5, and 
tm=8. 
 

 

 
Figure 8 is the results when the mutation rate 𝑝𝑚 is 

changed to 0.01 from the experiment of Figure 5. The 
mating time tm=15. 

5. Summary 

We studied the speed of GA calculation using the 
fitness function of OneMax. First, we showed that the 
speed of increase in average fitness function can be 
explained by separating the variance of fitness into two 
parts. Second, we studied the GA process to converge to 
stationary state. We obtained the approximate 
expression for predicting the convergence properties of 
Markov chain in terms of one parameter a.  
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Fig. 7. Convergence of the first order schema 

𝑵 = 𝟏𝟏𝟏
𝒍 = 𝟏𝟏 
𝒑𝒎 = 𝟏.𝟏𝟐 

Fig. 8. Convergence of the first order schema 

𝑵 = 𝟏𝟏𝟏
𝒍 = 𝟐𝟏 
𝒑𝒎 = 𝟏.𝟏𝟏 
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