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Abstract  

During the last decade, there has been increased use of 
neural networks (NNs), fuzzy logic (FL) and genetic 
algorithms (GAs) in artificial intelligence (AI). Since 
these three methods are complementary rather than 
competitive, a better performance model which has 
combined GAs, FL and NNs comes into being 
gradually. This paper presents genetic-fuzzy-neuro (G-
F-N) model to design the dual-fuzzy neural-networks 
(DFNNs) controller. For the convenience of adaptive 
control, the structure of the two-fuzzy neural-network 
controller is divided into two parts. Each part is a 
fuzzy neural-network (FNN). The adaptive controller 
uses two FNNs. One FNN is used to identify a fuzzy 
model of controlled object. The other is online-
tracking learning the suitable control policy. 
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1. Introduction 

This paper presents a novel design method of dual-
fuzzy neural networks (DFNNs) controllers using 
genetic-fuzzy-neuro (G-F-N) model. For the 
convenience of adaptive control, the structure of the 
DFNNs controller is divided into two parts. Each part 
is a fuzzy neural-network (FNN)[1]-[4]. At the same 
time, one fuzzy neural-network is controller, and its 
output is control input; the other is on-line tracking to 
learn the suitable control policy. When time passes, 
the outside situation has changed, the control policy is 
no longer suitable. Then the actions of two fuzzy 
neural-networks can be exchanged and the suitable 
control policy can be applied to real control system. 

The objective of the present research work is to 
fuse GAs, FL, and NNs[5]-[8] to develop a genetic-
fuzzy-neuro model to design the DFNNs controller. 
When one FNN is the controller, it is using the FL and 
NNs to control the system, the other is online-tracking 
learning using GAs and NNs to ensure it can learning 
the best control policy at any moment[9]-[13].   

In this paper, we mainly discuss the DFNNs 
controller and how to use the genetic-fuzzy-neuro 

model to control the system and learning the suitable 
control policy. It is divided into six sections, the first 
one is introduction, then we will talk about the fuzzy 
control system. In section 3, DFNNs control system 
will be discussed. Next, we will advance the genetic-
fuzzy-neuro (G-F-N) model to design the DFNNs 
controller and its adaptation process. Conclusion is the 
last section. 

2. Fuzzy control system  

The fuzzy controller controls the output of the 
controlled object y to follow the command with 
the manipulated variable u . The FNNs are used for 
the fuzzy model and the fuzzy controller. Fig. 1 shows 
the fuzzy control system and it is designed in the 
following process: 
(1) The fuzzy model is identified from the input-

output data of the controlled object. 
(2) The fuzzy controller is designed with the linguistic 

fuzzy rules of the fuzzy model. The response of the 
control system is checked. 

(3) The adaptive tuning of the control rules is done 
using the fuzzy model of the controlled object. 

 

Fig.1: Fuzzy control system. 

3. Dual-Fuzzy Neural-Networks 
(DFNNs) control system 

We design a fuzzy neural-network controller that is 
constructed by two fuzzy neural-networks (Fig. 2). At 
the same time, one fuzzy neural-network is controller, 
and its output is control input; the other is on-line 
tracking learning. At the appropriate time, which is 



decided by switching line that can be gotten from the 
fuzzy control rules table, and function of the two fuzzy 
neural-networks is exchanged. After exchange, the 
fuzzy neural-network that was used to control starts 
on-line tracking learning, and the fuzzy neural-
network that was used to on-line tracking learning 
starts control. The process is continuous. Time series 
about DFNNs is shown in Fig. 3. 
 

Fig.2: Dual-fuzzy neural-networks control system. 
 

The on-line tracking learning is conventional 
gradient descent method, and according to Lyapunov 
stability theorem condition, the on-line tracking 
learning makes that system stable. Meanwhile, this 
makes self-adaptive process more effectively, and the 
control process of the system is not affected by the on-
line tracking learning. This is advantageous to real 
control. Compared with the other studies, the proposed 
control is simple and effective. It is believed that the 
proposed control can be applied to many control 
systems. 

We define the dual-fuzzy neural-network law as 

following: 
1 2( ) (1 ( ))FNN FNNU t U t U= ∂ + −∂ , (1) 

Where 1FNNU and 2FNNU are output of dual-fuzzy 

neural-network, ( ) {0,1}t∂ ∈ , ( ) 0t∂ = ( or 1 )is 

decided by the switching line (the switching region ) 

which can be gotten from the fuzzy control rules.

 

0t 1t 2t 3t 4t 5t 6t1t−
Fig.3: Time series about DFNNs control system. 

When 1FNNU U= (or 2FNNU U= ), then 2FNNU (or 

1FNNU ) is learning, the learning process of FNN is 
main on-line tracking learning. if 2FNNU learning, the 
learning data come from 1FNNU and its learning does 
not affect the control. When the control error becomes 
badly, the two fuzzy neural networks are exchanged, 
and shift the learning from one FNN to the other. 

4. Genetic-Fuzzy-Neuro (G-F-N) 
model architecture 

The architecture of DFNNs using G-F-N model is 
shown in Fig. 4. The proposed G-F-N model is a 
fusion of GA, FL, and NN paradigms. The 
hybridization of GAs, FL, and NNs offset conquer the 
demerits of one paradigm by the merits of another. In 
the model, GAs are primarily concerned with 

optimization, FL with imprecision, and NN with fuzzy 
input–output mapping. 

The process by which G-F-N model calculates 
the fitness of each chromosome to learn the suitable 
control policy consists of the following steps. In Fig. 4,
the rule base and the inference engine in the traditional 
FLS are replaced by the NN. The NNs architecture and 
the recall of neural processing are used to represent the 
functions of the rule base and the inference engine, 
respectively. The hybridization of the FL and NN is 
regarded as ‘‘neuro with fuzzy input–output,’’ 
meaning a NN with both fuzzy inputs and fuzzy 
outputs [6][10]. In this work, for convenience, the term 
‘‘neuro with fuzzy input–output’’ is called FNN which 
is a general phrase to express fusion of FL and NN[6].

Although FNNs seem to be more reasonable than 
traditional FL to simulate the characteristics and 
process of human inference, they have demonstrated 
difficulties in selecting an appropriate topology as well 
as appropriate parameters when dealing with different 
tasks. In addition, the determination of suitable 
distributions of MFs and defuzzification parameters 



for solving disparate problems is a time-consuming 
process whose difficulties increase with problem 
complexity. GAs are good at optimization, providing 
an effective approach to cope with the drawbacks of 

FNN. Therefore, G-F-N model employs a GA to 
simultaneously search for the fittest shapes of MFs, 
optimal FNN topology, and optimal parameters of 
FNN. The novelty of this research is to use GAs to 

simultaneously search for all parameters required in a 
FNN, which provides more chances to derive global 

optimum solutions for specific problems with less 
efforts. 

 

Fig.4: G-F-N model in DFNNs controller. 

5. Genetic-Fuzzy-Neuro (G-F-N) 
model adaptation process 

The adaptation process of G-F-N model is shown in 
Fig. 5, which adapts the evolutionary process of GAs. 
In the process, ( )P t denotes a population of ξ
individuals at generation t , 0 ( )P t denotes an 

offspring population of s individuals, and ( )MP t
denotes a mutation population of t individuals. In the 
beginning ( 0t = ), a population of ξ individuals is 
randomly generated. Each solution encodes model 
variables (such as distributions of MFs, NN topologies, 
interconnections, synaptic weights, etc.) into a binary 
string to simulate a natural chromosome. The fitness of 
chromosomes is then evaluated. The process by which 
G-F-N model calculates the fitness of each 
chromosome consists of the following steps. Firstly, 
the chromosome’s genotype is converted to its 
phenotype. Then, the model evaluates the objective 
function of the chromosome by the derived phenotype. 
Finally, the value of objective function is converted 
into fitness. The crossover repeatedly exchanges high-
performance notations in the search for better and 
better performance. It operates on a pair of 
chromosomes (parents) at a time and produces two 
children by exchanging the parents’ features, e.g. 
model variables. The mutation produces spontaneous 

random changes in various chromosomes. It protects 
against premature loss of important notations while 
fine-tuning model variables. Next, the selection process 
emulates the survival-of-the-fittest mechanism in 
nature. It selects a new population with respect to the 
probability distribution based on fitness for survival. 
The selected new population is then submitted to 
evaluate their fitness to begin a new generation of 
evolvement. When time passes, the outside situation 
has changed, the control policy is no longer suitable. 
Then the actions of two fuzzy neural-networks can be 
exchanged and the suitable control policy can be 
applied to real control system. 

5.1. Initialize population 

Each solution encodes model variables into a binary 
string to simulate a natural chromosome. Every string 
(FNN string) comprises two segments: MF sub-string 
and NN sub-string. Two methods, SWRM and BRM, 
are employed to encode MFs and NNs into sub-strings. 
The SWRM and BRM encode MFs and NN by a fixed 
and variable sub-string, respectively. Therefore, the 
EFNIM encodes the problem using variable length 
gene code. The lengths of the sub-strings depend on the 
characteristics of the variables including the required 
variable precision, amount of variables, and variable 
domains. Then, combining the MF sub-string and the 
NN sub-string together, the entire chromosome can be 
acquired. The values of genes are randomly generated 



with 0 or 1 to produce random variables for each 
chromosome. 

By using SWRM, the required length of MF sub-
string, RLMF, for encoding MFs is carried out as 
follows: 

1

( )
cMFrn

MF sm sm wd wd
h h

h
RL n rl n rl

=

= × + ×∑ , (2) 
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Fig.5: G-F-N model methodology. 

 

Where cMFrn is the required number of complete MF 

sets, sm
hn is the number of summits in a complete MF 

set for input variable h , smrl is the required length for 

a summit depending on the precision demand, wd
hn is 

the number of widths in one complete MF set for input 

variable h , and wdrl is the required length for a width 

depending on the precision demand. 

Considering all input variables use a common 

complete MF set or each input variable uses its 

individual complete MF set to fuzzify the crisp input 

data, cMFrn can be expressed as 

1cMF
ivrn

n


= 
 , (3) 

Where ivn is the number of input variables. The crisp 

input is a value having only single number. 

The number of summits in a complete MF set 

depends on the used MF shape and the number of fuzzy 



sets in one complete MF set. So, sm
hn can be defined as 

follows: 

( 2) 2 3 2 1MF MF
h hsm

h MF
h

n n
n

n

 − × + = −= 


, (4) 

Where MF
hn is the number of fuzzy sets in one 

complete MF set for input variable h .

The number of widths in one complete MF set can 

be calculated from the number of fuzzy sets in one 

complete MF set. Therefore, wd
hn is calculated in the 

following form: 

( 2) 2 2 2( 1)wd MF MF
h h hn n n= − × + = − , (5) 

The mapping from a domain ,x xlb ub   to a 

required length xrl for variable x is straightforward 

and can be written as: 
12 ( ) 10 2 1

x xrl x x rp rlub lb− < − × ≤ − , (6) 

Where rp is the required places after the decimal 

point and xlb , xub are the lower and upper bound 

values of the variable x .

Taking log functions on both sides of the right-

hand parts of the inequality above yields 

log( ) 10 1
log(2)

x x rp
x ub lbrl

 − × +=  
 

, (7) 

5.2. Evaluate individuals 

The complete set of genes comprises a genotype of a 
chromosome, which consists of the MF sub-string and 
NN sub-string. The resulting organism, MFs and NN, 
is called a phenotype. In the previous sections, the 
initial solutions (phenotypes) are encoded into 
chromosomes (genotypes). In this section, the 
genotypes of MFs and NNs are decoded into their 
phenotypes. Here, the binary string is converted into 
relative real values. The present work encodes the MFs 
and NNs using SWRM and BRM, respectively. 
Therefore, the processes of decoding MF and NN sub-
strings are related to the encoding procedures, which 
may be treated as reversion operations of SWRM and 
BRM. 

5.3. Perform crossover 

G-F-N model uses one-cut-point crossover and 
exchanges right parts of parents. The position of the cut 
point is randomly generated within the union length of 
parents, as shown in Fig. 5. It means that crossover 
exchanges the summit positions of MFs, widths of MFs, 
hidden layers, hidden neurons, interconnections, biases, 
and activation slopes.  

In the crossover procedure, the produced children 
do not replace parents. The model keeps all produced 
children at the intermediary population 

5.4. Perform mutation 

The purpose of mutation is to adjust the value of 

summits and widths of MFs, interconnections, weights, 

biases, and activation slopes for better performance. It 

alters one or more genes with a probability (
gep ), 

which is smaller than or equal to mutation rate (
mup ). 

Mutation operation compares the gene’s 
gep with 

mup bit by bit. If ge mup p≤ , then value of gene will 

be altered. 
G-F-N model mutates the genes in population and 

children population. The mutated chromosomes do not 
replace the original ones. They are placed in the 
intermediary population. 

5.5. Select individuals 

G-F-N model uses the ‘‘roulette set’’ method to select 
fitter chromosomes on the enlarged intermediary pool. 
Performing selection on such enlarged sampling space 
improves GA performance by enlarging the searching 
space in parallel and by increasing crossover and 
mutation rates without introducing too much random 
perturbation. Also, it provides population, children 
population, and their mutation with the same chance of 
competing for survival. 

6. Conclusions 

In this paper, we proposed a new fuzzy control system, 
the dual-fuzzy neural-networks control system 
(DFNNs). The two fuzzy neural-networks have 
different actions in the control process, at the same 
time, one is controller, and the other is online tracking 
learning. This paper also presented a G-F-N model for 
evolving the optimum DFNNs. As a result, the 
proposed model has a potential to solve various kinds 
of problems that traditional FNNs can do and further to 
derive better results. G-F-N model is developed based 



on simulating natural evolution process. Further 
research may construct G-F-N model to mathematically 
analyze the DFNNs control system adaptation process. 
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