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Abstract

In this article, we have established the concept of
the upper and the lower approximation of non-
convex set. Meantime, the properties of rough ap-
proximation of non-convex set have been investi-
gated. As we know, every non-convex set can be
approached by the upper and lower approxima-
tion convex set with respect to a given direct. Fi-
nally, the relationship between the shadow of u and
u−direction of the rough approximation sets have
been given.
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1. Introduction

Let V be a real linear vector space. Following we
will introduce some basic definitions.

Definition 1 Let S ⊂ V. For every λ ∈ (0, 1), if

λx1 + (1− λ)x2 ∈ S, (1)

where x1, x2 ∈ S, then S is said to be convex in V.

Definition 2 Let S ⊂ Rm be a non-empty set, u ∈
Rm be a non-zero vector. Then

(1) If λ ∈ (0, 1), and for every x1, x2 ∈ S, there
exist the real number γ ≥ 0 such that

λx1 + (1− λ)x2 + γu ∈ S, (2)

then S is called a convex set with respect to u-
direction;

(2) The Set

S(u) = {y − λu|y ∈ S, λ ≥ 0} (3)

is called the u-shadow of S. The following diagram
can best expressed (see fig. 1).

Remark 1 Any non-empty convex set S ⊂ Rm is
convex set with respect to u-direction,for any non-
zero vector u ∈ Rm. Besides, for any non-empty set
S, we obtain S ⊂ S(u).

Fig. 1: u-shadow of S.

2. Preliminaries

As well known, convex sets are of good character,
but not every set is convex. So how to express the
non-convex set with a pair of rough approximation
convex set is the main emphasis of our paper. For
the sake of convenience, we will establish the fol-
lowing concept.

Definition 3 Let S ⊂ V, ∀x1, x2 ∈ S. A direction
can be established by the segment λx1 + λx2, which
denoted by p.

According to Definition 3, the non convex set S can
be divided into affirmative convex set and possibly
convex set, with the aid of the line paralleled to p.
If S is a finite field, then there must exist a unique
segment SL. With this segment, a maximal con-
vex subset can be confirmed, which is the maximal
subset among the affirmative convex set, and we
call it the generalized lower approximation set of S
with respect to p− direction, denoted by Sp. The
following form can better express

Sp = ∪{Y ∈ V \ SL | Y ⊂ S}. (4)



Fig. 2: Sketch map.

Clearly, ∀x1, x2 ∈ Sp, we obtain λx1 + (1− λ)x2 ∈
Sp.

Definition 4 In definition 4, every direction p is
equivalent to a equivalence relation. In S, every seg-
ment paralleled to p belongs to the same equivalence
class.

It is worthy pointing that Sp is not convex in gen-
eral. If we add a region Sneg to S, and make S∪Sneg

become the minimal convex set including S − Sp,
then S ∪ Sneg is said to be a generalized upper ap-
proximation set of S with respect to p− direction,
denoted by Sp. The following form can better ex-
press

Sp = ∪{Y ∈ V \ SL | Y ∩ S 6= ∅} = Sp ∪ Sbn, (5)

where Sbn = {S−Sp}∪Sneg. Clearly, Sp ⊆ S ⊆ Sp

(see fig.2). According to the above definition and
Remark, we can also get the following result.

(1) Let S ⊂ V. If p is different, then we can get
the same generalized upper approximation set Sp

and different lower approximation set Sp;
(2) If S is convex, then Sp = Sp.

Definition 5 [2] Let S ⊂ V. Then the intersection
of all the convex sets including S in V is called
convex hull, denoted by co(S). The convex hull is
the smallest convex set including S.

3. Main Results

Theorem 1 Let S ⊆ V. Suppose that p1 and p2

are two directions, then the following results hold.
(1) If p1 ‖ p2, then Sp1

= Sp2
;

(2) If p1 ∦ p2, then Sp1
∩Sp1

6= ∅, and Sp1
∩Sp1

is also convex.

Fig. 3: Sp1
∩ Sp1

.

Proof.(1) By Definition 4, it can be easily to
get the result.

(2) Let lP1 and lp2 be two polar line paralleled
to p1 and p2, respectively, and lp1 ∩ lp2 = Q. Then
from the definition of polar line, we obtain Q ∈ Sp1

.
Similarly, we also get Q ∈ Sp2

, that is, Sp1
∩Sp1

6=
∅. ∀y1, y2 ∈ Sp1

∩ Sp1
, then ∀λ ∈ (0, 1),

y1, y2 ∈ Sp1
⇒ λy1 + (1− λy2)y2 ∈ Sp1

. (6)

Similarly, we also have ∀λ ∈ (0, 1),

y1, y2 ∈ Sp2
⇒ λy1 + (1− λy2)y2 ∈ Sp2

. (7)

If there exist λ∗1, λ
∗
2, λ

∗
1 + λ∗2 ∈ (0, 1) satisfied

(λ∗1 + λ∗2)y1 + (1− (λ∗1 + λ∗2))y2 /∈ Sp1
∩ Sp1

,

and take λ∗1 + λ∗2 = λ∗, then λ∗y1 + (1 − λ∗)y2 /∈
Sp1

∩ Sp1
, that is,

λ∗y1 + (1− λ∗)y2 ∈ Sp1
and

λ∗y1 + (1− λ∗)y2 ∈ Sp2
, (8)

which is a contradiction with the form (6) and (7).
Hence ∀λ1, λ2, λ1 + λ2 ∈ (0, 1),

(λ1 + λ2)y1 + (1− (λ1 + λ2))y2 ∈ Sp1
∩ Sp1

,

therefore Sp1
∩ Sp1

is also convex.

Theorem 2 Let S ⊆ V. Then the following state-
ments hold.

(1) If S is convex, then Sp ⊂ co(S) = Sp = S,
for any direction p;

(2) If S is not convex, then Sp ⊂ co(S) = Sp.

Proof. It is easy to get the result with the aid
of Definition 3 and Definition 5

According to Theorem 2, for any p, S, we can
see Sp ⊆ S ⊆ co(S) = Sp.



Fig. 4: Sketch map.

Theorem 3 Let S1, S2 ⊆ V. Then
(1) Sp(S1 ∩ S2) ⊂ Sp ∩ Sp(S2);
(2) Sp(S1 ∪ S2) ⊂ Sp ∪ Sp(S2).

Theorem 4 Let S ⊆ V be a non-convex set.
Given a non-empty set A ⊆ S. Then

(1) If A is not convex, and Sp ∩ A 6= ∅, then
Sp ∩Ap 6= ∅;

(2) If A is not convex, and A ⊆ Sp, then Ap ⊆
Sp, Ap ⊆ Sp.

Proof. (1) By the fact that A ⊆ S and Ap ⊆
A, then we have (Ap∩Sp ⊆ (A∩Sp)). Since A∩Sp =
∅, Sp ∩Ap 6= ∅.

(2) Clearly, Ap ⊆ Sp so following we will prove
Ap ⊆ Sp. In fact, from the assumption that A ⊆ Sp,
we have co(A ∩ Sp) = co(A) = co(A) ∩ coSp.) Be-
sides, because Sp is convex, so co(Sp) = Sp, hence
Ap = co(A) ⊆ Sp.

Meanwhile, according to the definition of u−
shadow of S and the generalized rough approxima-
tion of u− direction, we can also get the following
result.

Proposition 1 ( 1) If u− shadow of S is convex,
then Su ⊆ S(u);

(2) If u− shadow of S is not convex, then Su∩
S(u) = S;

(3)Su ⊆ S(u).
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