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Abstract

In real-world database, most attribute values of ob-
jects are numerical, numeral is too detail to obtain-
ing good information or decision. Hence, linguistic
rules of a set of data would be very desirable and
human consistent. Based on a new aggregation op-
erator for aggregating linguistic terms, extracting
linguistic rules are presented. Due to obtain a lin-
guistic rule with higher truth degree, genetic algo-
rithm is used to optimize the number and member-
ship functions of linguistic terms.

Keywords: Linguistic rules, Linguistic aggrega-
tion operator, Genetic algorithm

1. Introduction

In our real life, on one hand, we usually face an
abundance of data that is beyond human cognitive
and comprehension skills. On the other hand, nat-
ural language is used to communicate information
by human beings. Hence, linguistic rules of a set
of data would be very desirable and human consis-
tent, e.g., for a data set on employees, a statement
(a linguistic rule) like “almost all younger and well
qualified employees are well paid" would be use-
ful and human consistent [1]-[5]. For a database,
discovering linguistic rules from a database needs
intelligent methods. The methodology of comput-
ing with words (CWW ) [6] may be viewed as an
attempt to harness the highly expressive power of
natural languages by developing ways of CWW or
propositions drawn from a natural language [7], [8].
Based on difference background, CWW have been
studied in [9]-[21].

Formally, an approach to the linguistic data
summary of a database could be expressed as fol-
lowing [1]:

1) V is a quality (attribute) of interest, e.g.,
age, salary, etc, in a database of employees;

2) Y = {y1, y2, · · · , yn} is a set of objects
(records) that manifest quality V , e.g., the set of

workers. Hence, V (yi) (i = 1, · · · , n) are values of
quality V for each object yi;

3) D = {V (yi)|i = 1, · · · , n} is a set of data
(the “database" on question).

Accordingly, a simple linguistic rule ccould be
expressed, e.g., most of employees are young is T.
It can be formalized by Qys are S is T, in which Q is
a fuzzy linguistic quantifier, Y = {yi|i = 1, · · · , n}
is a set of objects, S is a summarizer (linguistic
values), and T is a truth degree, e.g., “most (Q) of
employees (Y ) are young (S) is T ".

For linguistic value sl′ ∈ S, it’s membership
function is µsl′ : Dsl′ −→ [0, 1]. membership func-
tions of qm′ ∈ Q and tk′ ∈ T can be defined as
follows [18]:

1) Let P (Y ) = {A|A ⊆ Y } be the power set
of Y . Define a binary relation on P (Y ): A ∼ B
if and only if | A |=| B |, where | A | is power of
set A. Obviously, “∼" is an equivalence relation on
P (Y ). The factor set of P (Y ) by ∼ is denoted by
P (Y ) = P (Y )/ ∼.

2) For each fuzzy linguistic quantifier qm′ ∈ Q,
its fuzzy set is defined by

µqm′ : P (Y ) −→ [0, 1]. (1)

3) For each fuzzy linguistic truth degree tk′ ∈
T , its fuzzy set is defined by

µtk′ : [0, 1] −→ [0, 1]. (2)

For fixed Q, S and T , linguistic rules can be ex-
tracted automatically as follows [18]:

(1) Fixing a linguistic value sl′ ∈ S (it can be
one or several) and a level (threshold) θ, this can
be done by experts or deciders. Let

Dθ
sl′

= µ−1
sl′

(V (yi)) = {V (yi)|µsl′ (V (yi)) ≥ θ} (3)

(2) Selecting qm′ ∈ Q. According to Eq.(3),
qm′ can be selected such that

µqm′ (A) = max{µq1(A), · · · , µqm
(A)}, (4)

in which A = {yi|V (yi) ∈ Dθ
sl′
}.

(3) Selecting tk′ ∈ T . From the logical point
of view, tk′ can be selected as µtk′ (µqm′ (A)) =
max{µt1(µqm′ (A)), · · · , µtk

(µqm′ (A))}.



Example 1 [18] Given a part of a database. Let
Sage = {young(y), middle age(ma)}, Ssalary =
{low(l), high(h)}, Q = {several(s), about half(ah),
most(m)}, T = {approximately true(at), true(t),
very true(vt)}. Membership functions are given,
e.g.,

µy(x) =





1, ifx ∈ [25, 30],
4− 1

10x, ifx ∈ (30, 40],
0, ifx > 40.

· · ·

µvt(x) =
{

5x− 4, ifx ∈ [0.8, 1],
0, ifx ∈ [0, 0.8).

(1) Fixing linguistic values s′ = young ∈ Sage

and s′′ = high ∈ Ssalary. Let threshold θ =
0.5, then D0.5

s′ = {V (yi)|µs′(V (yi)) ≥ 0.5} =
{25, 31, 35, 28, 34, 27}, D0.5

s′′ = {V (yi)|µs′′(V (yi)) ≥
0.5} = {2.8, 3.0, 3.5, 2.9, 3.1}, As′ = {yi|V (yi) ∈
D0.5

s′ } = {y1, y3, y4, y5, y9, y10} and As′′ =
{yi|V (yi) ∈ D0.5

s′′ } = {y3, y4, y5, y6, y9, y10, y11, y12}
(2) According to µs, µah, µm and As′ , obtain
µs(As′) = 0, µah(As′) = 1, and µm(As′) = 0, i.e.,
max{µs(As′), µah(As′), µm(As′)} = µah(As′), and
µat(µah(As′)) = µt(µah(As′)) = µvt(µah(As′)) =
1. The linguistic rule is “about half of employees
are young is very true." (3) Similar (2), obtaining
the linguistic rule is “most of employees have high
salary is approximately true".

2. Aggregation of fuzzy linguis-
tic values

The management of linguistic information implies
the use of operators of comparison and aggregation.
In [11], the linguistic weighted averaging (LWA) op-
erator was presented as a tool to aggregate linguis-
tic weighted values. Based on information granule
(IG) [7], modifying the index of linguistic label and
OWA operator [22], new linguistic ordered weighted
averaging operators Flowa and Fi−lowa have been
proposed as follows [16]:

• Let X ⊆ R be a universal set, all granules of
X denotes P (x), and R+ = {x|x ≥ 0}, define
a linear function F : X −→ R+;

• Let µA be a membership function of a gran-
ule A ∈ P (X). Let F̃ (X) be the collec-
tion of membership functions on X such that
∀µA(x) ∈ F̃ (X), µA(x) be a membership func-
tion of a granule A ∈ P (X). Define G :
F̃ (X) −→ P (X).

• An equivalence relation ”'" on F̃ (X) can be
obtained: µA(x) ' µB(x) ↔ G(µA(x)) =
G(µB(x)), i.e., µA(x) and µB(x) are mem-
bership functions of the same granule A, and
each equivalence class is denoted by [µA(x)] ∈
F̃ (X)/ '.

• Select a representative element µA(x) of
[µA(x)], based on F and the extension prin-
ciple of fuzzy set, one-to-one mapping can be
obtained:

E : F̃ (X)/ '−→ D = {χ|χ : R+ → [0, 1],

E([µA(x)]) = E(µ(A)(x)) = χ} (5)

Above contents can be explanted by Fig. 1.

F̃ (X)/ ' -?

F̃ (X) -P (X)
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Fig. 1: Commutativity of a diagram of maps be-
tween P (x) and D.

Definition 1 [16] Let S = {sei|i = 0, · · · , T} be
a finite set, A = {aej1 , aej2 , · · · , afjn

} ⊆ S be a
set of labels to be aggregated (n ≤ T ). W =
{w1, w2, · · · , wn} be a weighting vector such that
∀s ∈ {1, · · · , n}, ws ∈ [0, 1], and

∑n
s=1 ws = 1. Let

B = (j1, j2, · · · , jn), where js is the center of j̃s,
C = σ(B) = (jσ(1), · · · , jσ(n)) such that jσ(s′) ≥
jσ(s),∀s′ ≤ s (C ′ such that jσ(s′) ≤ jσ(s),∀s′ ≤ s),
denote w = fowa(B) = WCT =

∑n
s=1 wsjσ(s), and

w′ = fi−owa(B) = WC ′T =
∑n

s=1 wsjσ(s), then the
new (inverse-)linguistic ordered weighted averaging
operator Flowa (Fi−lowa)is defined by

Flowa((aej1 , aej2 , · · · , afjn
)) = a ejk

, (6)

Fi−lowa((aej1 , aej2 , · · · , afjn
)) = a ej′k

(7)

where a ejk
(a ej′k ) such that j̃k(w) =

max{j̃1(w), j̃2(w), · · · , j̃T (w)}(| S |= T )( j̃′k(w′) =
max{j̃1(w′), j̃2(w′), · · · , j̃T (w′)}(| S |= T )).

3. Extracting complex linguis-
tic rules based on operator
Flowa and Fi−lowa

The so-called complex linguistic rules have the form
“Qy’s are Sej1 and · · · and S ejr

is T." According



to Fig. 1, it is easy to obtain “Qej1y
′s are Sej1 is

Tej1 ," · · · , and “Q ejr
y′s are S ejr

is T ejr
." Hence, for

a complex linguistic rule, the problem is how to
combine Qej1 , · · · , Q ejr

to obtain Q, and Tej1 , · · · , T ejr

to obtain T . Based on operator Flowa and Fi−lowa,
Q and T can be obtained.

Q = Flowa(Qej1 , · · · , Q ejr
), (8)

T = Flowa(Tej1 , · · · , T ejr
). (9)

In Eq.(8) and Eq.(9), weighting vectors W and W ′

can be computed by Yager’s linguistic quantifier
Q(r, a, b) [22],

Q(x, a, b) =





0, if x < a,
x−a
b−a , if a ≤ x < b,

1, if x ≥ b.

where x, a, b ∈ [0, 1]. Some examples of Q(r, a, b)
are most, at least half and as many as possible,
their parameters (a, b) are (0.3, 0.8), (0, 0.5), and
(0.5, 1), respectively. By using Q(r, a, b), weighting
vectors W and W ′ are

wi = Q(
i

r
, a, b)−Q(

i− 1
r

, a, b), i = 1, · · · , r, (10)

w′i = Q(
i

r
, a′, b′)−Q(

i− 1
r

, a′, b′), i = 1, · · · , r. (11)

Example 2 Continue Example 1, combin-
ing fuzzy linguistic quantifiers {about half,
most} and fuzzy linguistic truth degree
{approximately true, very true} are needed.
select Yager’s linguistic quantifier most, then
weighting vectors W = W ′ = (0.4, 0.6), and
Flowa(most3̃0, about half1̃8) = about half1̃8,
Flowa(very true3̃, approximately true0̃) =
approximately true0̃.

In which, y = F (x) = 3x. Complex linguistic
rules based on Flowa and Fi−lowa can be obtained re-
spectively, “about half of employees are young and
have high salary is approximately true" and “most
of employees are young and have high salary is
true."

4. Optimizing a complex lin-
guistic rule based on genetic
algorithms

Genetic algorithms (GA) are search algorithms that
use operations found in natural genetics to guide
the trek through a search space [23], [24]. A num-
ber of papers have been devoted to the automatic

generation of the knowledge base of a fuzzy rule-
based system (FRBS) using GA [25]-[31].

1) Optimizing the number and membership
functions of linguistic terms based on GA.

From information systems point of view,
a database is information system [32]. During
obtaining linguistic rules from a database, how
to select the number and membership functions
of linguistic terms is a problem. Let there exist
L attribute values in V , and each domain of
attribute is denoted by Dl ⊂ R+, l = 1, · · · , L,
then each object yi ∈ Y is understood as a
point on space D1 × D2 × · · · × DL [18], i.e.,
yi = (di1, di2, · · · , diL), dil ∈ Dl. Let n′ (n′ < n)
pattern yi = (di1, di2, · · · , diL), i = 1, · · · , n′ are
given as training patterns from M classes: class
1 (C1), · · · , class M (CM ). The problem is
to generate the number and membership func-
tions of linguistic terms on Dl (l = 1, · · · , L)
that divide the pattern space into M dis-
joint decision areas. Let each axis Dl of the
space D1 × D2 × · · · × DL be partitioned
into Kl fuzzy subsets {Al

kl
|kl = 1, · · · ,Kl}, then

D1×D2×· · ·×DL is divided into K1×K2×· · ·×KL

fuzzy subspaces, and each fuzzy subspace can
be expressed by If–Then rule: Rk1×···×kL

:
If di1 is A1

k1
and · · · and diL is AL

kL
,

then yi belongs to class Cm with CF =
CFk1 × · · · × kL. In which Rk1×···×kL

is label of
If–Then rule, Al

kl
(l = 1, · · · , L) is fuzzy subset

on Dl, Cm (m = 1, · · · ,M) is the consequent, and
CFk1×···×kL

is the grade of certainty of the If–Then
rule and determined by following procedure,

1. For each class Cm and rule Rk1×···×kL
, we have

αCm =
∑

yi∈Cm

A1
k1

(di1)× · · · ×AL
kL

(diL), (12)

2. Selecting

CFk1×···×kL
= max{αC1 , · · · , αCM

}. (13)

Remark 1 If CFk1×···×kL
= 0, in this case, rule

Rk1×···×kL
is useless to classify yi, and the conse-

quent of rule Rk1×···×kL
is modified by Cm = ∅. If

two or more αCm are equal to CFk1×···×kL
, then the

rule is not good to classify yi, or dividing fuzzy sub-
spaces are not suitable, and the consequent of rule
Rk1×···×kL

is also modified by Cm = ∅.

When a rule set R is given, a new pattern y′ =
(d′i1, · · · , d′iL) is classified by the follows procedure
based on R,



1. Calculate γk1×···×kL
for each rule Rk1×···×kL

,

γk1×···×kL
= A1

k1
(d′i1)× · · · ×AL

kL
(d′iL)

×CFk1×···×kL
, (14)

2. Find class Cm′ such that

γCm′ = max{γk1×···×kL
|Rk1×···×kL

∈ R}. (15)
If γCm′ = 0 or Cm′ = ∅ of rule, then the clas-
sification of y′ is rejected, i.e., y′ is left as an
unclassified pattern, else assign y′ to class Cm′

determined by Eq.(15).

The main components of optimizing the number
and membership functions of linguistic terms based
on GA is describe as follows [18]:

1) Encoding the solution: The two components
of the solution to be encoded are the number of
linguistic terms and the membership functions of
linguistic terms.

1. Number of labels (S1). In this paper, there are
L variables (qualities), the number of labels
per variable is stored into an integer array of
length L. In this contribution, the possible
values considered are the set {3, · · · , 9}.

2. Membership functions (S2). In this paper, we
deal with triangular functions, a real number
array of L×9×3 positions is used to store the
membership functions. Of course, if a chro-
mosome does not have the maximum number
of labels in one variable, the space reserved for
the values of these labels is ignored in the eval-
uation process.

If sl is the granularity of variable l (l = 1, · · · , L),
sl ∈ {3, · · · , 9}, P 1

lj , P
2
lj , P

3
lj are the definition

points of the label j of the variable l, and S2l is
the information about the fuzzy partition of vari-
able l in S2, then a graphical representation of the
chromosome is shown as follows:

S1 = (s1, s2, · · · , sL),

S2l = (P 1
l1, P

2
l1, P

3
l1, · · · , P 1

lsl
, P 2

lsl
, P 3

lsl
),

S2 = (S21, S22, · · · , S2L), S = S1S2.

Uniform fuzzy partitions are denoted by
(V 1

lj , V
2
lj , V

3
lj) for each variable. For general fuzzy

partition, a variation interval is defined for each one
of the membership function definition points [29],

i.e., P 1
lj ∈ [L1

lj , R
1
lj ] = [V 1

lj −
V 2

lj−V 1
lj

2 , V 1
lj + V 2

lj−V 1
lj

2 ],

P 2
lj ∈ [L2

lj , R
2
lj ] = [V 2

lj −
V 2

lj−V 1
lj

2 , V 2
lj + V 3

lj−V 2
lj

2 ],

P 3
lj ∈ [L3

lj , R
3
lj ] = [V 3

lj −
V 3

lj−V 2
lj

2 , V 3
lj + V 3

lj−V 2
lj

2 ].
2) Initial gene pool : The initial population is

composed of four groups:

1. In the first group, each chromosome will have
the same number of labels in all its variables
and the membership functions are uniformly
distributed across the domain of variable.

2. In the second group, each chromosome can
have a different granularity per variable (dif-
ferent values in S1) and the membership func-
tions are uniformly distributed as in the first
part.

3. In the third group, each chromosome will have
the same number of labels in all its variables.
Then a uniform fuzzy partition is built for each
variable as in the first group and the variation
intervals of all the definition points are calcu-
lated. Finally, a value for all the definition
points is randomly chosen from the correspon-
dent variation interval.

4. In the last group, each chromosome can have
different number of labels per variable as in
second group and the membership functions
are calculated in the same way as in the third
group, a random value is in the variation in-
terval.

3) Evaluating the chromosome: Each chromo-
some represents a kind of fuzzy classification on
D1 × D2 × · · · × DL. Our problem is to obtain
optimal solution which is to maximize the num-
ber of correctly classified pattern and to minimize
the number of If–Then rule. This problem can be
formulated as following two-objective combinato-
rial optimization problem,

Minimize : f(s) = ω1DCP (s) + ω2 | s |, (16)

Where s is a chromosome, DCP (s) is the number
of unclassified patterns by s, | s | is the number
of If–Then rules in s. In general, the classification
power of s is more important then its compactness,
therefor the weights in Eq.(16) should be specified
as 0 < ω2 ¿ ω1 [27]. The objective function f(s)
is treated as the fitness function in GA.

4) Genetic operators: Since there is a strong
relationship among the two chromosome parts, op-
erators working cooperatively in S1 and S2 are re-
quired in order to make best use of the representa-
tion used.

a) Selection: Let current population Ψ. The
selection probability P (s) of chromosome s is

P (s) =
(fmax(Ψ)− f(s))∑

s′∈Ψ(fmax(Ψ)− f(s′))
, (17)

in which fmax(Ψ) = max{f(s)|s ∈ Ψ}.
b) Crossover : Two different crossover opera-

tors are considered depending on the two parents’
scope [26],



Crossover when both parents have the same
granularity level per variable, in this case, crossover
operator in S2 and obviously, by maintain-
ing the parent S1 values in the offspring. If
(Sv

2 )t = ((P 1
11)

v, · · · , (P 3
LsL

)v) and (Sw
2 )t =

((P 1
11)

w, · · · , (P 3
LsL

)w) are to be crossed, the follows
four offspring are generated, in which, i = 1, 2, 3,

(Svw
2 )t+1

1 = d(P 1
1l)

vw, · · · , (p3
LsL

)vw),

(P i
lsl

)vw = d(P i
lsl

)v + (1− d)(P i
lsl

)w,

(Svw
2 )t+1

2 = d((P 1
11)

vw, · · · , (P 3
LsL

)vw),

(P i
lsl

)vw = (1− d)(P i
lsl

)v + d(P i
lsl

)w,

(Svw
2 )t+1

3 = d((P 1
11)

vw, · · · , (P 3
LsL

)vw),

(P i
lsl

)vw = max{(P i
lsl

)v, (P i
lsl

)w},
(Svw

2 )t+1
4 = d((P 1

11)
vw, · · · , (P 3

LsL
)vw),

(P i
lsl

)vw = min{(P i
lsl

)v, (P i
lsl

)w},

This operator uses a parameter that is either a con-
stant, or a variable whose value depends on the age
of the population [26]. The resulting descendants
are the two best of the four aforesaid offspring.

Crossover when the parents encode different
granularity levels. Let

Sv = ((s1)v, · · · , (sl)v, (sl+1)v, · · · , (sL)v, (S21)v,

· · · , (S2l)v, (S2(l+1))v, · · · , (S2L)v),

Sw = ((s1)w, · · · , (sl)w, (sl+1)w, · · · , (sL)w, (S21)w,

· · · , (S2l)w, (S2(l+1))w, · · · , (S2L)w)

be crossed at point l, the two resulting offspring
are,

Svw
1 = ((s1)v, · · · , (sl)v, (sl+1)w, · · · , (sL)w, (S21)v,

· · · , (S2l)v, (S2(l+1))w, · · · , (S2L)w),

Svw
2 = ((s1)w, · · · , (sl)w, (sl+1)v, (sL)v, (S21)w,

· · · , (S2l)w, · · · , (S2l)w, (S2(l+1))v, · · · , (S2L)v).

c) Mutation: Two different operators are used,

1. Mutation on S1, in this case, once a new value
s′l ∈ {3, · · · , 9} at point l of S1 is selected,
a uniform fuzzy partition for this variable is
stored in its corresponding zone of S2.

2. Mutation on S2: Let (Sv
2 )t =

((P 1
11)

v, · · · , (P i
lsl

)v, · · · , (P 3
LsL

)v) and
the element (P i

lsl
)v was selected for

this mutation (the domain of (P i
lsl

)v

is [(P i
lsl

)v
l , (P i

lsl
)v
r ]), the result is a vec-

tor (Sv
2 )t+1 = ((P 1

11)
v, · · · , ((P i

lsl
)v)′, · · · ,

(P 3
LsL

)v), and

((P i
lsl

)v)′ =





(P i
lsl

)v + ∆(t, (P i
lsl

)v
r − (P i

lsl
)v),

if e = 0,
(P i

lsl
)v + ∆(t, (P i

lsl
)v − (P i

lsl
)v
l ),

if = 1.

with t being the current generation, e a ran-
dom number that may have a value of zero or
one, and the function ∆(t, y) [24] is

∆(t, y) = y(1− r(1− t
T )b

),

with r being a random number in the interval
[0, 1], T the maximum number of generations
and b a parameter chosen by the user.

2) Obtaining a complex linguistic rule with
higher truth degree based on GA.

In some cases, if all Qfjr′
and Tfjr′

(r′ = 1, · · · , r)
are used to obtain Q and T , respectively, then
the truth degree of the complex linguistic rule is
low. From the real-world practice point of view, a
complex linguistic rule with lower truth degree is
useless. To solve this problem, parts of Qfjr′

and
Tfjr′

(r′ = 1, · · · , r) are selected to obtain Q and T ,
respectively. Due to Qfjr′

and Tfjr′
(r′ = 1, · · · , r)

can be decided by each other, discussion is based
on Tfjr′

(r′ = 1, · · · , r).
1) Encoding the solution: The solution to be

encoded is truth degree of each simple linguistic
rule. The coding scheme generates fixed-length
r chromosomes, a graphical representation of the
chromosome is as follows: ∀r′ ∈ {1, · · · , r}, tr′ ∈
{0, 1},

S = t1t2 · · · tr, (18)

in which if tr′ = 0, it means that the truth degree
Tfjr′

at point tr′ does not take part in aggregation,
otherwise, Tfjr′

takes part in aggregation.
2) Initial gene pool : According to Eq.(18),

there are 2r solutions, as each chromosome is en-
coded as a binary coded GA, the initial population
is randomly selected as usualness.

3) Evaluating the chromosome: Our aim is to
obtain a complex linguistic rule with higher truth
degree. For a solution s = t1t2 · · · tr and fixed
Yager’s linguistic quantifier Q(r, a, b), denote

(Tej , αj) = (Flowa(Tej1 , · · · , T ejr
), j̃(w)), (19)



in which, Tfjr′
such that tr′ = 1, w is decided by

Definition 1. According to Eq.(19), fitness function
is obtained as follows:

Maximize : f(s) = ξ1j + ξ2αj . (20)

In which, ξ1 + ξ2 = 1, ξ1 and ξ2 (decided by expert
or user) express important degree of j and αj , re-
spectively. f(s) means higher truth degree and it’s
membership degree.

4) Genetic operators: Let current population
be Ψ. The selection probability P (s) of chromo-
some s is

P (s) =
(f(s)− fmin(Ψ))∑

s′∈Ψ(f(s′)− fmin(Ψ))
, (21)

in which fmin(Ψ) = min{f(s)|s ∈ Ψ}, Let the in-
dex of fmin(Ψ) be j′, then

f(s)− fmin(Ψ) = ξ1(j − j′) + ξ2(αj − αj′). (22)

Based on these genetic operators and fitness func-
tion Eq.(20), the optimal solution can be obtained,
i.e., a complex linguistic rule with higher truth de-
gree and it’s membership degree is obtained.

5. Conclusion

From the formalization point of view, a linguistic
data summary is equal to a fuzzy rule with fuzzy
linguistic quantifier and truth degree. Based on lin-
guistic ordered weighted averaging operator Flowa

and Fi−lowa, the method to extract Q, S and T of a
complex linguistic rule is discussed. Based on GA,
how to select the number and membership func-
tions of linguistic terms are discussed during ob-
taining linguistic rules from a database.
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