
Video Forensic of Fragmented Video Based on
H.264/AVC Video Compression Standard

Kang Sheng
School of Computer Science and Technology

Beijing Institute of Technology
Beijing, China

jokeforce@gmail.com

Xinyi Liao
School of Computer Science and Technology

Beijing Institute of Technology
Beijing, China

suiyi528@163.com

Quanxin Zhang
School of Computer Science and Technology

Beijing Institute of Technology
Beijing, China

zhangqx@bit.edu.cn (corresponding author)

Jiaqing Qu
Shanghai Radio Equipment Research Institute

Shanghai, China
qujiaqing@hrbeu.edu.cn

Yu’an Tan
School of Computer Science and Technology

Beijing Institute of Technology
Beijing, China

victortan@yeah.net

Abstract—Traditional video forensics were just for complete
video files, which aim at reconstructing the processing
history of the video data and validating their origins or
authenticity. They have obtained great achievements.
However, we cannot always get complete video file in
practice, sometime we only get part of it. In this paper, we
came up with a method that can restore images of IDR
frames from fragmented video files. After analyzing the
format of MP4 and H.264/AVC Compression Standard, we
proposed an algorithm to search for valid slices from
fragment video files. With these slices, images of IDR frames
can be restored by reconstructing sequence parameter set
and picture parameter set. Test results show that images can
be successfully restored in most cases except that FMO or
data segmentation is adopted in the process of encoding.

Keywords- video forensics; fragmented video; H.264/AVC;

restore image; reconstruct SPS and PPS

I. INTRODUCTION
In the recent years, the availability of inexpensive,

portable, and highly usable digital multimedia devices has
increased the possibility of generating digital audiovisual
data without any time, location, and network-related
constraints. In addition, the versatility of the digital support
allows copying, editing, and distributing the multimedia
data with little effort. As a consequence, the authentication
and validation of a given content have become more and
more difficult, due to the possible diverse origins and the
potential alterations that could have been operated. At the
same time, a significant research effort has been recently
devoted to the forensic analysis of multimedia data [1-3].
A large part of the research activities in this field are
devoted to the analysis of still images. At present,

researches on video forensics are mainly concentrated on
the following three methods: (1) Forensic tools for video
acquisition analysis [4-5]; (2) Forensic tools for video
compression [6]; (3) Forensic tools for video doctoring
detection [7-9]. These methods have all achieved good
results, however, their objects are complete video files, and
we often find that video files have been deleted by parties
and would not be restored in actual video forensics, which
brings great difficulties to the forensic work. This paper
just focused on video forensic of incomplete files in the
disk and satisfactory results were achieved by restoring
images of IDR frame from fragmented video through the
reconstruction of SPS (sequence parameter set) and PPS
(picture parameter set). We select H.264/AVC Video
Compression Standard as the standard video encoding
method, because H.264 is currently the most commonly
used formats for the recording, compression, and
distribution of video content [11].

II. ACQUIRE SLICES FROM FRAGMENTED VIDEO

A. Cluster

The sector is the smallest unit of physical storage in the
disk, but the operating system fails to address a large
number of sectors, so it combines contiguous sectors
together to form a cluster, and then it manages these
clusters. Therefore, the cluster is the basic unit of disk file
storage management in the operating system. The number
of sectors in a cluster is decided by the file system format
and the allocated unit size. Generally, a cluster may
include 2, 4, 8, 16, 32 or 64 sectors.

The operating system stipulates that only a file can be
stored in one cluster for a more efficient management of

International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014)

© 2014. The authors - Published by Atlantis Press 492

disk space, therefore, the file in the disk is consisted of
continuous or dispersed clusters, but sectors within any
cluster must be continuous and only belong to this file.

So, as long as there is a complete video file's cluster,
forensic analysis can be carried out even if only part of the
file fragments would be acquired.

B. Analysis of Video Format

The video format is numerous, but no matter in any
format, a video file is essentially different tracks wrapped
inside a container. Therefore, different video formats are
just put in different containers, the core data of video
bitstream is the same. The first step is to open the container
so as to get the data of video bitstream inside, so we need
to analyze each video format concretely.

MP4 (MPEG-4 Part 14) is a common multimedia
container format, which is defined in the "ISO/IEC 14496-
14" standard file and belongs to a part of MPEG-4. In this
paper, we take MP4 format as an example to explain how
to extract the bitstream data from videos.

MP4 is composed of "boxes" of different sizes, in
which media information is stored by placing small-size
boxes in large-size boxes. The basic structure of box is
shown in Fig .1.

BoxHeader

UINT32 size

UINT32 type

UINT64 largesize

Box

BoxHeader

BoxData

Figure 1. Structure of MP4 box

Among them, "size" specifies the space occupied by
the whole box, including the header part. If the size of box
is so large that exceeds the maximum number of uint32,
"size" is set as 1, and the next 8 bit "largesize" is used to
store the size.

As shown in Fig .2(a) that MP4 file consists of three
large boxes, respectively are ftyp box, moov box and mdat
box, which are used to indicate the file type, store the
media information and store the media data separately.

The mdat box is the key box that we need to pay
further attention, and bitstream data is stored in this box.
Meanwhile, in most cases, video file fragmentation
obtained is data from the mdat box. As shown in Fig .2(b),
mdat box consists of "size" of 4 bytes, "type" of 4 bytes
(namely "mdat") and "BoxData" of size-8 bytes.

The "mdat BoxData" consists of continuous slice data,
among which the structure of slice is as shown in Fig .2(d),
the actual data comes after the 4 byte’s size.

root

ftyp box

moov box

mdat box

mdat box

size(UINT32)

type(mdat)

BoxData

Boxdata

slice1

slice2

slice3

slice

size(UINT32)

slice data

(a) (b) (c) (d)
Figure 2. Structure detail of MP4 format

C. Extraction of Video Frame

In the H.264/AVC Video Compression Standard, an
image is composed of N slice groups, and N=1 if FMO

(Flexible Macroblock Ordering) mechanism isn't adopted.
Each slice group is composed of one or several slices, and
a slice is equal to a NALU if there isn't any data
segmentation. Image is always decoded by independent
slices, and then the decoded MBs (Macroblock) are
reprogrammed into an image according to slice groups. So
in that sense, the slice is the largest decode unit in practice
[15].

Besides, FMO is only allowed within the Baseline and
Extended profiles. The much more common Constrained
Baseline, Main, and all High profiles do not support it, and
software that can create or decode it is rare. Some video
conferencing units use it; otherwise, the JM reference
software is the primary support [10].

Therefore, under the condition of without considering
the data segmentation, a full image may be restored if we
can obtain several consecutive slices of a frame by
searching in fragmented files with slice as the basic unit,
otherwise part of the image may be restored.

 The maximum size of a frame is 8000000 bytes
according to the official documentation, so a single slice
must be less than or equal to 8000000, and the "size" part
of slice must be in the form of 0x00xxxxxx, namely the
first byte is 0x00. The following algorithm is given to
search for slices:
Setp1 Reads a byte, ch=read (1)
Setp2 Judge whether ch is equal to 0, if yes, turn step3,
otherwise turn step1
Setp3 Read three bytes, size1=read (3)
Setp4 Read size1 bytes, nalu1=read (size1)
Setp5 Judge whether nalu1 is legal, if yes, turn step6,
otherwise seek (-size1-3), and then turn step 1
Setp6 Read a byte, ch=read (1)
Setp7 Judge whether ch is equal to 0, if yes, turn step 8,
otherwise seek (-size1-4), and then turn step 1
Setp8 Read three bytes, size2=read (3)
Setp9 Read size2 bytes, nalu2=read (size2)
Setp10 Judge whether nalu2 is legal, if yes, turn step11,
otherwise seek (-size2-4-sie1-3), and then turn step1
Setp11 Succeed, both nalu1 and nalu2 are legal slices

To determine whether a nalu is legal is simply to check
nal_header (the first byte of nalu). The structure of
NAL_Header is as shown in Fig .3. The ‘F’ is the
forbidden bit, it should be 0 and nal_unit_type must be in
the range [0, 9], otherwise the nalu is illegal.

1 07 6 5 4 3 2

F NRI NAL_Type

NAL_HEADER RBSP

Figure 3. Structure Unit of NAL

III. RESTORE IMAGE FROM SLICES
We have already obtained slices that can be decoded

independently in the sections above, however, only slice of
I frame can restore images, because the encoding of I
frame just depends on itself and is independent of other
frames [12]. In this paper, we only deal with IDR frame for
convenience's sake.

493

Firstly, we choose certain nalus of which nal_unit_type
is equal to five in order to select IDR frames. And
nal_unit_type is the last 5 bits of the first byte of slice as
shown in Fig .3.

Next, we can start restore images with the bitstream
data from slices of IDR frame that get from the original
disk.

In fact, we can easily restore images by directly
decoding IDR frames if we can obtain related SPS and
PPS in numerous nalus, because the slice is decoding-
independent. But in reality, we just fail to obtain the
corresponding SPS and PPS frequently, therefore, we need
to reconstruct SPS and PPS with a combination of various
conditions in order to restore images.

SPS PPS IDR slice IDR slice IDR slcie B slcie B slcie B slice

Sclice header Slice data

MB MB MB MB MB MB

IDR B B P B B ... IDR B

Skip indictations

...

Sequences

Network
abstraction layer

Slice layer

Figure 4. Hierarchy of video stream

A. Reconstruct SPS

On the basis of SPS syntax in Section 7.3 of Standards
Documentation, a number of explorations and tests are
made with a combination of JM source code and a set of
effective reconstruct scheme of SPS is finally concluded in
this paper as follows:

There are probably 40 parameters in SPS, so it is
almost impossible for us to reconstruct all these parameters.
However, our purpose to reconstruct SPS is simply to
restore images of IDR frame, so a big part of parameters
herein are not helpful for the decoding of IDR [13-14]. In
this paper, parameters that need to be focused on are given.

1) profile_idc & level_idc: profile defines a set of
coding tools or algorithms that can be used in generating a
conforming bitstream whereas a level places constraints on
certain key parameters of the bitstream. All decoders
conforming to a specific profile must support all features
in that profile. As the term is used in the standard, a "level"
is a specified set of constraints that indicates a degree of
required decoder performance for a profile. A decoder that
conforms to a given level must be able to decode all
bitstreams encoded for that level and all lower levels. So as
to decode IDR frames, we can always set profile_idc to
Main Profile and level_idc to max (51) which can support
the maximum picture resolution, frame rate, and bit rate
that a decoder may use.

2) seq_parameter_set_id: it specifies the ID number
of SPS, set it as 0.

3) log2_max_frame_num_minus4: it is a parameter to
read another syntax element of frame_num, which also
indicates the maximum value of frame_num:

 2_ _ _ _ 4 42log max frame num minusMaxFrameNum 
So this parameter can be calculated by the combination
with the digit of framenum in slice header, e.g. a

framenum is a four-bit binary figure like 0010 or 0001,
then log2_max_frame_num_minus4 is 4-4=0.

4) pic_order_cnt_type: it specifies the coding method
of POC (Picture Order Count) and the play order of POC
logo image. But this value is irrelevant since we only
decode IDR frames, than we set it as 0 for simplicity.

5) log2_max_pic_order_cnt_lsb_minus4: it indicates
the value of the variable MaxPicOrderCntLsb:

2 _ _ _ _ _ _ 4 42log max pic order cnt lsb minus
MaxPicOrderCntLsb




In most cases, it is set to log2_max_frame_num_min-
us4 + 2(or 1). If it is not correct, then other values should
be tried.

6) num_ref_frames: it indicates the maximum length
that may be achieved by the reference frame queue, which
does little to help decoding IDR frames. Set it as 2 by
default.

7) pic_width_in_mbs_minus1&pic_height_in_map_un

its_minus1: these are two important parameters, indicate
the image width and the image height respectively, which
are both calculated in Macroblocks. These two parameters
are essential for decoding because they directly indicate
the video resolution. Two methods can be used to obtain
the two values, among which one method is to enumerate
all mainstream resolutions violently, whose number is not
very large, and there would certainly exists a decoding
process that wouldn't cause any conflict after trying to use
every possible resolutions. In that case, we find the values
of these two parameters; another method doesn't require
enumeration, but there are some limitation for it. We have
mentioned above that each frame video is divided into N
slices that can encode and decode independently, if N>1,
then we can get the width and height according to
first_mb_in_slice parameter in slice header. Here we
show how we get it with the following example:

first_mb_in_slice is the first parameter of slice_header,
we get a value of 00000000100111111 from a certain
slice header. It is encoded by unsigned Golomb entropy
encoding, which can be decoded into a decimal number of
318.

It means that the first MB of the slice is the 318th MB
in the whole IDR frame, obviously, due to 318=53x6, the
size of a single slice is 53x6. As for the number of slices,
we can calculate it out by using the maximum value of
first_mb_in_slice. Still in this example, the maximum
value is 000000000010011111001, namely 1272, then we
have 1272/328 + 1 = 5 slices, so the size of the complete
IDR frame is 53x30, which can be transformed into the
standard resolution of 848x480. In this way, the values of
these two parameters we finally obtained are 52 and 29.

B. Reconstruct PPS

The parameters of PPS are less and simpler than these
of SPS. Some important parameters are listed as follows:

1) pic_parameter_set_id & seq_parameter_set_id: the
id of PPS and SPS, set both of them to 0.

2) entropy_coding_mode_flag：0 stands for CAVLC
entropy coding and 1 stands CABAC. Try both of them
respectively.

3) num_slice_groups_minus1: it specifies the number
of slice groups in an image, which is set as 0 if there is no

494

slice groups. The methods proposed in this paper would
be useless if a slice group mode is adopted for video
encoding.

4) num_ref_idx_l0_active_minus1&num_ref_idx_l1_a

ctive_minus1：these two permeants specify the length of
the current reference queue, which is not so important. Set
them to 1.

5) weighted_pred_flag: it is helpless for decoding
IDR frames. Set it to 1.

6) pic_init_qp_minus26 ： it is a very important
parameter which indicates the initial value of quantization
parameter in luminance component. Its value range is [-26,
+25]. Generally, we take 0, 1, 2 to try respectively, which
can solve problems in most cases. If they don’t work, the
whole value range should be traversed, but it would be
better if it is traversed from middle to endpoints.

There are some flag parameters of no great importance.
Set them to 0.

IV. EXPERIMENT AND RESULTS
In the test, we copied multiple files to disk

simultaneously, including some MP4 files. In this way,
video clusters may distributed on the disk discontinuously.
This was verified by WinHex, a tool that can view cluster
distribution. Then we damaged some clusters.

We searched for slices in the disk using the algorithm
mentioned above. Fortunately, all of the slices of IDR
frames had been found, even including SPS and PPS
which we must pretend not to find. By ignoring some
parameters, guessing some parameters and calculating
some parameters, SPS and PPS were reconstructed. Then
we finally succeeded in restoring most images. In addition,
the quality of images are not affected. However, many
limitations exist in the methods proposed in this paper,
mainly including the following four points:
1. The methods are invalid if FMO is adopted for

encoding.
2. The methods are invalid for video with data

segmentation.
3. It is difficult to use these methods to restore images if

a resolution should be enumerated and the resolution
of a video is just relatively rare.

4. At present, only IDR image can be restored, while
nothing can be do with video sequence.

V. CONCLUSION
Using the method mentioned in this paper, we can

search disks arbitrarily to find useful slices and restore
them as images. It would be quite significant for video
forensic.

At the same time, further improvement should be
carried out based on the above four points, so as to allow
our methods to deal with more videos. We made a little
attempt for points four: if the disk media we have is TF
card of a camera, because most encoding parameters of
videos shot by a same camera are consistent, we can
always easily find PPS or SPS from other videos in disk
and use them directly by a slight modification or, if
condition permits, we can use the original camera to shoot

some videos and reconstruct a complete SPS and PPS by
comprehensively applying these parameters, thus restoring
the video sequence.

ACKNOWLEDGMENT
This work is supported by National Natural Science

Foundation of China (No. 61300047), 863 Program (No.
2013AA01A212), Students' Innovative Plan of BIT
(BJ1317), Shanghai Aerospace Science and Technology
Fund (SAST201341).

REFERENCES
[1] Venkatraman, D.; Makur, A.: A compressive sensing approach to

object-based surveillance video coding, in Proc. of IEEE Int. Conf.
on Acoustics, Speech and Signal Processing (ICASSP 2009),
Taipei, Taiwan, April 19–24, 2009, 3513–3516.

[2] Wang, W.; Farid, H.: Detecting re-projected video, in Information
Hiding, Lecture Notes in Computer Science, K. Solanki, K.
Sullivan, and U. Madhow, eds., vol. 5284, Springer, Berlin 2008,
72–86.

[3] Poisel, R.; Tjoa, S.: Forensics investigations of multimedia data: a
review of the state-of-the-art, in 2011 Sixth Int. Conf. on IT
Security Incident Management and IT Forensics (IMF), Stuttgart,
Germany, May 10–2, 2011, 48–61.

[4] Lin, Y.-C.; Varodayan, D. P.; Girod, B. Image authentication using
distributed source coding. IEEE Trans. Image Process., 21(1)
(2012), 273–283.

[5] Bianchi, T.; Piva, A.: Detection of nonaligned double jpeg
compression based on integer periodicity maps, IEEE Trans. Info.
Forensics Secur., 7(2) (2012), 842–848.

[6] Conotter, V.; Boato, G.; Farid, H.: Detecting photo manipulation
on signs and billboards, in ICIP, IEEE, 2010, 1741–1744.

[7] Lee, M.-J.; Kim, K.-S.; Lee, H.-K.: Digital cinema watermarking
for estimating the position of the pirate. IEEE Trans. Multimed.,
12(7) (2010), 605–621.

[8] Tagliasacchi, M.; Tubaro, S.: Blind estimation of the QP parameter
in H.264/AVC decoded video, in 2010 11th Int. Workshop on
Image Analysis for Multimedia Interactive Services (WIAMIS),
April 2010, 1–4.

[9] Bestagini, P.; Allam, A.; Milani, S.; Tagliasacchi, M.; Tubaro, S.:
Video codec identification, in Proc. 37th Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP 2012), March 25 30, 2012,
2257–2260.

[10] Kang, L.-W.; Hsu, C.-Y.; Chen, H.-W.; Lu, C.-S.; Lin, C.-Y.; Pei,
S.-C.: Feature-based sparse representation for image similarity
assessment, IEEE Trans. Multimed., 13(5) (2011), 1019–1030.

[11] Stamm, M. C.; Liu, K. J. R.: Anti-forensics for frame
deletion/addition in mpeg video, in ICASSP, IEEE, 2011, 1876–
1879. Stamm, M.; Liu, K.: Anti-forensics for frame
deletion/addition in mpeg video, in 2011 IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), May 2011,
1876–1879.

[12] Dias, Z.; Rocha, A.; Goldenstein, S.: First steps toward image
phylogeny, in 2010 IEEE Int. Workshop on Information Forensics
and Security (WIFS), December 2010, 1–6.

[13] Kang, L.-W.; Hsu, C.-Y.; Chen, H.-W.; Lu, C.-S.; Lin, C.-Y.; Pei,
S.-C.: Feature-based sparse representation for image similarity
assessment, IEEE Trans. Multimed., 13(5) (2011), 1019–1030.

[14] Valenzise,G.;Nobile,V.; Tagliasacchi,M.; Tubaro,S.: Countering
jpeg anti-forensics, in ICIP, B. Macq and P. Schelkens, eds., IEEE,
2011, 1949–1952.

[15] vanHouten,W.;Geradts, Z. J.M.H.; Franke, K.;Veenman, C.
J.:Verification of video source camera competition (camcom2010),
in ICPR Contests, Lecture Notes in Computer Science, D. Ünay, Z.
Çataltepe, and S. Aksoy, eds., vol. 6388. Springer, 2010, 22–28

495

